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UNIT 1

Abstract Data Type (ADT): Introduction

An Abstract Data Type (ADT) is a type of data structure that encapsulates data
and the operations that can be performed on it, while hiding the implementation
details. It defines a set of values and a set of operations that can be performed on
the values. ADTs allow the user to focus on what operations can be performed
without worrying about how they are implemented.

« Examples include lists, stacks, queues, sets, and more.

« ADTs provide modularity and flexibility in program design by abstracting
the underlying details.

Date Abstract Data Type

A Date Abstract Data Type is an ADT designed to store and manipulate dates. It
typically includes:

« Operations for setting, getting, and comparing dates (e.g., setDate,
getDate, compareDate).

« Support for date arithmetic, such as adding or subtracting days.

« Methods for formatting and printing dates in various formats (e.g.,
printDate).

Bags (or Multisets)

A Bag is an ADT that represents an unordered collection of elements where
duplicates are allowed. Unlike sets, bags do not enforce uniqueness.

« Operations on bags include:
o Add: Insert an item into the bag.

o Remove: Remove an item from the bag (may remove one occurrence
orall).



o Count: Count the number of occurrences of an item.
o Size: Return the total number of items in the bag.

Bags are used in situations where the frequency of elements is important, but the
order of elements is not.

Iterators

An Iterator is a design pattern used to traverse through a collection, such as a list,
set, or bag. It provides a way to access elements sequentially without exposing
the underlying representation of the collection.

« Basic operations of iterators include:
o hasNext(): Checks if there are more elements to iterate.
o next(): Returns the next element in the collection.

o remove(): Removes the last element returned by the iterator
(optional operation).

Iterators are crucial for allowing easy access and manipulation of elements in a
collection, one at a time.

Array: Array Structure

An array is a data structure that holds a fixed number of elements, typically of the
same data type, in a contiguous block of memory. Arrays provide efficient access
to elements using an index, with each element being accessed in constant time
(0(1)).

« Characteristics:
o Fixed size, determined at the time of creation.
o All elements are of the same type.
o Efficient indexing and retrieval of elements.
o Typically used when the number of elements is known and constant.

Python List

In Python, the equivalent of an array is called a list. However, Python lists are
more flexible than traditional arrays because:

« Dynamic size: Python lists can grow and shrink dynamically, allowing
insertion and deletion of elements.

« Heterogeneous: They can store elements of different data types.

« Methods: Python lists come with many built-in methods, such as append(),
remove(), pop(), sort(), and reverse().

Example:

my_list =[1, 2, 3, 'hello’, 5.6]

Python lists are very versatile and can be used to simulate traditional
arrays.

Two-Dimensional Array

A two-dimensional array (2D array) is an array of arrays, where each
element is itself an array. It is used to represent tabular data or a matrix, where
data is stored in rows and columns.

e Structure:
o 2D arrays are often visualized as grids.

o Eachelementin a 2D array is accessed using two indices: one for the
row and one for the column.

In Python, a 2D array can be represented using lists of lists:

matrix = [
(1,2, 3],
(4,5, 6],
[7,8,9]]
print(matrix[1][2]) # Output: 6



Matrix Abstract Data Type
A Matrix ADT is a special type of two-dimensional array that is used to
represent mathematical matrices. It consists of rows and columns of data, often
numbers, and supports various operations commonly used in mathematics, such
as:
« Addition/Subtraction: Adding or subtracting corresponding elements.
« Multiplication: Matrix multiplication follows special rules where rows of
the first matrix are multiplied by columns of the second.
« Transpose: Reversing rows and columns.
« Determinant and Inverse: Advanced operations for square matrices.
In Python, the NumPy library provides a powerful way to work with

matrices:

import numpy as np

matrix = np.array([[1, 2], [3, 4]])

transpose = matrix.T

Sets

A Set is an abstract data type that represents a collection of unique
elements, meaning no duplicates are allowed. Sets are used when the presence of
an element is more important than the frequency or order.

« Key Characteristics:
o Unordered: Elements in a set have no specific order.

o No duplicates: A set automatically removes duplicate elements.
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o Efficient operations: Operations like insertion, deletion, and
membership testing are typically efficient (average O(1) time
complexity in many implementations).
In Python, sets can be created using the set() function or with curly braces
{}:

my_set={1, 2, 3, 4}
my_set.add(5)
print(my_set) # Output: {1, 2, 3, 4, 5}

Common set operations include union, intersection, difference, and
symmetric difference.
Maps
A Map (also known as a Dictionary in Python or HashMap in other
languages) is a data structure that stores key-value pairs, where each key is
unique, and it maps to a corresponding value.
« Key Characteristics:
o Key-value pairs: Each element in a map consists of a unique key
associated with a specific value.
o Efficient lookups: Maps allow efficient retrieval, insertion, and
deletion based on the key.
o Flexible keys: In many implementations, keys can be of various data
types (numbers, strings, tuples, etc.).
In Python, maps are represented using dictionaries (dict):
my_map = {'name': 'John', 'age": 25}

print(my_map['name']) # Output: John



my_map(['age'] = 26 array_3d = np.array([[[1, 2], [3, 411, [[5, 6], [7, 8]1])
print(my_map) # Output: {'name': 'John', 'age': 26} print(array_3d[1][0][1]) # Output: 6
Multidimensional Arrays

A Multidimensional Array is an array with more than one dimension. It is U N | T 2

often used to represent data in multiple dimensions, such as matrices (2D arrays), 1. Experimental Studies in Algorithm Analysis

or higher-dimensional spaces.
Experimental studies involve empirical testing to evaluate the

« Key Characteristics: . . .
v performance of algorithms based on actual running times. The process

o Multiple indices: A multidimensional array is accessed using multiple includes imp]ementing the a|gorithm, se]ecting input data' and
indices (e.g., two indices for a 2D array, three for a 3D array). observing the behavior during execution.
o Fixed size: The size of each dimension is fixed upon creation. Key steps in experimental studies:

o Efficient access: Accessing an element is efficient, as elements are . ) ) ) . )
« Implementation: The algorithm is coded in a specific programming

stored contiguously in memory. language.

« Input Selection: A range of inputs is chosen, from best-case (smallest) to
worst-case (largest or most complex) scenarios.

arrays) or libraries like NumPy for higher dimensions: « Execution: The algorithm is run on each set of inputs.

« Data Collection: Metrics like time (execution time) and space (memory
usage) are recorded.

In Python, a multidimensional array can be created using lists of lists (for 2D

# Creating a 2D array (matrix)

matrix = [ « Analysis: Performance is analyzed by plotting graphs (e.g., time vs. input

1,2, 3] size) to detect patterns.

(4,5, 6], Benefits:

[7,8,9] T S .

« Real-world applicability: Provides insights into actual performance rather

] than theoretical limits.

. 110 #0 6 « Comprehensive testing: Can test various conditions, from optimal to edge
print(matrix[1][2]) utput: cases.

Drawbacks:

# Using NumPy for multidimensional arrays

« Machine dependency: Results vary depending on hardware, operating

import numpy as np
system, and environment.



« Input specificity: It only evaluates performance based on chosen inputs,
which may not be representative of all scenarios.

Experimental studies measure an algorithm’s performance through real
execution on chosen inputs. Key steps include coding, input selection,
execution, and data collection. This method gives real-world
performance but is machine-dependent and limited by input specificity.

2. Seven Functions in Algorithm Analysis

The seven mathematical functions are commonly used to describe the running
time complexity of algorithms. These functions represent different growth rates,
ranging from constant time to exponential time, and are essential in
understanding how the performance of an algorithm scales as the input size
increases.

1. Constant Function — O(1)

« Description: The running time does not depend on the input size. The
algorithm performs a fixed number of operations regardless of how large
the input is.

« Example: Accessing an element from an array by index.
« Growth Rate: No growth — the time remains constant.
2. Logarithmic Function — O(log n)

« Description: The running time grows logarithmically as the input size
increases. Typically occurs in algorithms that repeatedly divide the input
size by some factor.

« Example: Binary search on a sorted array.

« Growth Rate: Increases slowly even with large inputs; if input size doubles,
the time increases by a constant factor.

3. Linear Function — O(n)

« Description: The running time increases directly in proportion to the input
size. Every element is processed at least once.
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Example: Simple loops that iterate through all elements, like finding the
maximum value in an array.

Growth Rate: The time grows linearly as the input size increases.

4. Linearithmic Function — O(n log n)

Description: A combination of linear and logarithmic growth. Commonly
found in efficient sorting algorithms.

Example: Merge sort, quicksort (average case).

Growth Rate: More efficient than quadratic but slower than linear
algorithms.

5. Quadratic Function — O(n?)

Description: The running time grows proportionally to the square of the
input size. Typically found in algorithms with nested loops.

Example: Bubble sort, selection sort.

Growth Rate: Increases significantly with input size —if the input size
doubles, the time quadruples.

6. Cubic Function — O(n3)

Description: The running time grows proportionally to the cube of the input

size. Occurs in algorithms with triple nested loops.

Example: Matrix multiplication using naive methods.

Growth Rate: Even more significant increase compared to quadratic. Rarely

efficient for large inputs.

7. Exponential Function — O(2n)

Description: The running time doubles with each additional element in the

input. Found in algorithms that solve problems through exhaustive search
or brute force methods.

Example: Solving the traveling salesman problem using brute force,
recursive algorithms like the naive Fibonacci calculation.
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« Growth Rate: Extremely rapid growth, making these algorithms impractical
for large inputs.

Why These Functions Matter:

These functions represent the complexity classes that allow us to predict the
scalability of algorithms. Lower complexity (O(1), O(log n)) is preferred for
efficiency, while higher complexity (O(n?), O(2”n)) may become impractical for
large inputs.

Common Use Cases:

o O(1): Ideal for lookups or basic operations like pushing or popping in data
structures (e.g., stacks, queues).

« O(log n): Searching in sorted datasets, such as binary search trees.

o O(n): Algorithms that require linear scans, such as finding elements in
unsorted arrays.

« O(nlog n): Sorting algorithms used in real-world applications.
« 0(n?): Simple algorithms on small datasets, like basic sorting methods.

Understanding these functions helps developers choose the best algorithms
based on performance needs and input size.

3. Asymptotic Analysis

Asymptotic analysis is a fundamental concept in algorithm analysis that focuses
on evaluating the performance of algorithms in terms of their input size,
especially when the input becomes very large. It provides a way to describe the
running time or space requirements of an algorithm in a general, machine-
independent manner.

Definition:

« Asymptotic analysis describes the behavior of an algorithm as the input size
approaches infinity. Instead of calculating exact runtimes, it estimates the
growth of the algorithm's time or space complexity in terms of the input
size, denoted as "n."
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« The key idea is to ignore constant factors and smaller terms, focusing only
on the dominant term that influences the growth of complexity as input
size increases.

Purpose:
« To classify algorithms according to their efficiency.
« To predict the scalability of algorithms for large inputs.

« To abstract away hardware and environmental factors, offering a more
generalized performance measure.

Key Asymptotic Notations:
1. Big O Notation (O):

o Definition: Describes the upper bound of the running time of an
algorithm. It represents the worst-case scenario, meaning the
maximum time the algorithm will take as the input size grows.

o Example: An algorithm with time complexity O(n) will take time
proportional to the input size, meaning if the input size doubles, the
running time will double.

o Usage: It provides a guarantee that the algorithm will not exceed this
time, which is useful in predicting worst-case performance.

2. Omega Notation (Q):

o Definition: Describes the lower bound of the running time. It
represents the best-case scenario, meaning the minimum time an
algorithm will take.

o Example: An algorithm with Q(n) means that at least n operations
are required in the best case.

o Usage: Used to understand the least time complexity an algorithm
can achieve.

3. Theta Notation (©):
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o

Definition: Describes the tight bound of the running time. It provides
both an upper and lower bound, meaning the algorithm’s
performance will grow at a rate bounded by this function in both
best and worst cases.

Example: An algorithm with ©(n) has its running time directly
proportional to n in both best and worst scenarios.

Usage: It's used when the growth rate of an algorithm is known to be
exactly proportional to a certain function.

Steps in Asymptotic Analysis:

1. Express the Running Time as a Function of Input Size (n):

o

The first step is to identify the algorithm's running time as a function
of input size. This could involve counting operations (e.g.,
comparisons, assignments) or using mathematical formulas to
represent time complexity.

2. Find the Dominant Term:

o

o

Once the function is expressed, focus on the term that grows the
fastest as n increases. This is called the dominant term.

For example, in the function f(n)=3n2+2n+5f(n) = 3n"2 + 2n +
5f(n)=3n2+2n+5, the term 3n23n"23n2 grows the fastest as n
increases, so this term dominates the running time.

3. Drop Constant Factors:

o

In asymptotic analysis, constant factors and lower-order terms are
ignored because they have minimal impact on the growth rate as n
becomes large.

Using the previous example, f(n)=3n2+2n+5f(n) =3n"2 + 2n +
5f(n)=3n2+2n+5 simplifies to O(n2)0O(n*2)0(n2), as constants like 3
and lower-order terms like 2n are disregarded.

4. Apply the Appropriate Notation:
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o Based on the analysis, use the correct asymptotic notation (O, Q, or
©) to describe the algorithm's growth rate.

Why Asymptotic Analysis is Important:

Scalability: It helps to predict how algorithms will perform with increasing
input size, making it easier to choose the most efficient algorithm for large
datasets.

Machine Independence: It abstracts away factors like processor speed or
system architecture, focusing only on the algorithm's efficiency.

Comparison: Asymptotic analysis provides a standardized way to compare
different algorithms based on their time and space complexities.

Examples of Asymptotic Behavior:

1.

Constant Time — O(1): Algorithms that perform a fixed number of
operations regardless of input size. Example: Accessing an element in an
array.

. Logarithmic Time — O(log n): Algorithms that reduce the problem size

exponentially at each step, like binary search.

. Linear Time — O(n): Algorithms that perform a fixed number of operations

per input element, like scanning an array.

. Quadratic Time — O(n?): Algorithms that involve nested loops, like bubble

sort.

. Exponential Time — O(2/n): Algorithms that grow very quickly, like

recursive algorithms solving the traveling salesman problem using brute
force.

Limitations of Asymptotic Analysis:

Ignores Constants: In some cases, constant factors can have a significant
impact, especially when input sizes are small.

Doesn't Consider Practical Constraints: Asymptotic analysis focuses on
large inputs, but real-world constraints like memory limits or specific
hardware characteristics might not be factored in.



15

Summary:

Asymptotic analysis provides a theoretical framework to analyze and predict the
efficiency of algorithms by focusing on the growth of their running time or space
usage with increasing input size. It uses notations like Big O, Omega, and Theta to
represent the upper, lower, and tight bounds of the complexity. This allows for
standardized comparisons and understanding of an algorithm's scalability.

4, Recursion

Recursion is a powerful programming technique in which a function calls itself
either directly or indirectly to solve smaller instances of the same problem. A
recursive function typically includes:

1. Base Case: A condition that stops the recursion and returns a result without
further recursive calls.

2. Recursive Case: A part of the function where the function calls itself with
modified arguments.

Recursion is particularly useful for problems that can be divided into smaller
subproblems of the same type, such as searching, sorting, and mathematical
problems like calculating factorials or the Fibonacci sequence.

Key Components of Recursion:
« Base Case: Prevents infinite recursion by providing a terminating condition.

« Recursive Call: Function calls itself with a smaller or simpler version of the
original problem.

There are different types of recursion based on how the recursive calls are made,
including Linear Recursion, Binary Recursion, and Multiple Recursion.

4.1. Linear Recursion
Definition:

« Linear recursion occurs when a recursive function makes at most one
recursive call at each step. Each recursive call reduces the size of the
problem and eventually reaches the base case.
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How It Works:

« The problem is broken down into smaller parts until the base case is
reached, and then the solution is gradually built up by combining the
results from the recursive calls.

Structure of Linear Recursion:
1. Base Case: The simplest case that terminates the recursion.
2. Recursive Case: The function calls itself with a smaller or reduced input.
Example:
« Asimple example is calculating the factorial of a number:
def factorial(n):
if n ==0: # Base case
return 1
else:

return n * factorial(n - 1) # Recursive case

Here, each call to factorial($n) calls factorial($n-1) until n becomes 0, at which
point it returns 1 and unwinds the recursive calls.

Applications:

« Problems like finding the sum of a list, Fibonacci series, and simple tree
traversals often use linear recursion.

4.2. Binary Recursion
Definition:

« Binary recursion occurs when a recursive function makes two recursive calls
at each step. This is often used in problems where the solution depends on
solving two subproblems.

How It Works:
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« At each step, the function calls itself twice, and the results of these two
calls are combined. This type of recursion often leads to a binary tree
structure of function calls.

Structure of Binary Recursion:
1. Base Case: Terminates when the simplest case is reached.
2. Recursive Case: The function makes two recursive calls.
Example:
« Aclassic example is the Fibonacci sequence:
def fibonacci(n):
if n <= 1: # Base case
return n
else:
return fibonacci(n - 1) + fibonacci(n - 2) # Two recursive callsin

this example, for each fibonacci($n), the function calls itself twice: once with n-1
and once with n-2. This forms a binary recursion tree, where each node makes
two recursive calls.

Applications:

« Binary recursion is common in divide-and-conquer algorithms like
mergesort, quicksort, and certain dynamic programming problems.

o Itisalso used in problems that can naturally be divided into two
subproblems, such as tree traversals.

Drawbacks:

« Binary recursion can lead to overlapping subproblems, resulting in
redundant computations. This inefficiency is often handled using
memoization or dynamic programming.

4.3. Multiple Recursion

Definition:
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« Multiple recursion occurs when a recursive function makes more than two
recursive calls at each step. This is a more generalized form of recursion
where each call can spawn multiple subcalls.

How It Works:

« The problem is broken down into several smaller subproblems, and
multiple recursive calls are made. The results of all the recursive calls are
then combined to produce the final solution.

Structure of Multiple Recursion:

1. Base Case: Terminates the recursion when the smallest subproblem is
reached.

2. Recursive Case: The function makes several recursive calls, each dealing
with a different part of the problem.

Example:

o Atypical example of multiple recursion is the Towers of Hanoi problem:

def fibonacci(n):
if n <= 1: # Base case
return n
else:
return fibonacci(n - 1) + fibonacci(n - 2) # Two recursive calls

In this example, the function makes multiple recursive calls (two calls for moving
disks between pegs). Each move breaks down the problem into smaller
subproblems involving fewer disks.

Applications:
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« Problems involving multiple recursive branches or multiple
subcomponents, such as graph traversals, combinatorial problems, and
puzzles like the Towers of Hanoi.

Drawbacks:

« Multiple recursion can quickly lead to high time complexity because of the
exponential number of recursive calls.

« Like binary recursion, it may require optimizations like dynamic
programming or memoization to avoid redundant calculations.

Key Differences Between the Types of Recursion:
1. Linear Recursion:
o One recursive call at each step.
o Straightforward and simple.
o Example: Factorial, Fibonacci (iterative).
2. Binary Recursion:
o Two recursive calls at each step.
o Forms a binary tree structure.
o Example: Fibonacci (recursive), tree traversal algorithms.
3. Multiple Recursion:
o More than two recursive calls at each step.
o Complex, with branching recursion trees.
o Example: Towers of Hanoi, combinatorial problems.
Advantages of Recursion:

« Simplicity: Recursion can simplify the code for problems that have a natural
recursive structure.

« Problem Decomposition: It breaks down complex problems into smaller
subproblems, which can be easier to solve.
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Disadvantages of Recursion:

« Memory Overhead: Each recursive call consumes stack space, and deep
recursion can lead to stack overflow.

« Efficiency: Recursive algorithms can sometimes be inefficient, especially
with overlapping subproblems, unless optimized with techniques like
memoization.

Conclusion:

Recursion is a versatile tool in algorithm design, enabling solutions to complex
problems by dividing them into smaller, more manageable subproblems. Linear,
binary, and multiple recursion each apply to different problem types, allowing
algorithms to be crafted based on the nature of the problem at hand. However,
efficiency and memory usage should always be considered when using recursion.

Analyzing Recursive Algorithms

Analyzing recursive algorithms involves understanding their behavior in terms of
time complexity and space complexity, and how the recursive calls break down a
problem into subproblems. The main goal of analyzing recursive algorithms is to
determine the number of recursive calls, the depth of recursion, and how much
work is done at each recursive level.

Key Factors in Analyzing Recursive Algorithms:

1. Number of Recursive Calls: The number of times the recursive function
calls itself. This affects the depth of the recursion tree and the total number
of computations.

2. Work Done at Each Level: At each level of recursion, there may be some
work done in addition to the recursive call itself. This can include
operations like merging arrays, adding numbers, or copying data.

3. Base Case: The condition that stops recursion. It’s essential to identify
when recursion terminates to prevent infinite recursion and stack overflow.

Steps in Analyzing Recursive Algorithms:
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1. Identify the Recurrence Relation:

o The recurrence relation describes how the problem size decreases
with each recursive call. It provides a formula for the time complexity
of the algorithm.

o Recurrence relations are expressed in the form:
T(n) = aT(f(n)) + g(n)

= T(n): The time complexity for solving a problem of size n.
= a: The number of recursive calls made by the algorithm.
= f(n): The size of the subproblem in each recursive call.

= g(n): The work done outside of the recursive calls (usually in
the form of loops or arithmetic operations).

Example: Consider the time complexity of the merge sort algorithm:
o T(n) =2T(n/2) + O(n), where:

= 2T(n/2): Two recursive calls are made, each on a subproblem
of size nf2.

= O(n): The work done at each level to merge the results is O(n).
2. Construct the Recursion Tree:

o Arecursion tree is a visual representation of the recursive calls. Each
node in the tree represents a function call, and the children of that
node represent the recursive calls made by the function.

o Theroot of the tree represents the original function call with
problem size n. Each level of the tree represents the recursive calls
made at each depth, and the leaves represent the base cases.

Example: Merge Sort Recursion Tree:
o The top level has T(n).

o The next level has two subproblems, each of size n/2.
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o This continues until the base case is reached (when the subproblem
sizeis 1).

3. Analyze the Depth of Recursion:

o The depth of the recursion tree is the number of levels in the tree,
which determines how many recursive calls are made before the
base case is reached.

o For divide-and-conquer algorithms like merge sort, the depth is
typically log(n) because the problem size is halved at each level (e.g.,
n->n/2->n/4>..>1).

4, Calculate the Work Done at Each Level:

o After identifying the depth of the recursion, the next step is to
calculate the work done at each level of the recursion tree.

o In many recursive algorithms, the amount of work done at each level
is O(n), as in the case of merge sort, where merging the two halves
takes O(n) time.

5. Summing the Work Across All Levels:

o To compute the total time complexity, sum the work done at each
level of the recursion tree.

o Ifthe recursion depth is log(n) and O(n) work is done at each level,
the total time complexity is: T(n)=0(n)+0O(n)+...+0(n)=0(n-log n)T(n)
=0(n) + O(n) + ... + O(n) = O(n \cdot \log
n)T(n)=0(n)+0(n)+...+0(n)=0(n-logn) This gives the total time
complexity of the recursive algorithm.
Methods for Solving Recurrence Relations:

Several techniques can be used to solve recurrence relations and determine the
time complexity of recursive algorithms:

1. Substitution Method:

o Involves making a guess for the solution and then proving that the
guess is correct by using mathematical induction.
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o Example: Solve T(n) = 2T(n/2) + n.
= Guess: T(n) = O(n log n).

= Prove by induction that this guess satisfies the recurrence
relation.

2. Recursion Tree Method:

o Visualize the recursive calls as a tree and calculate the total work
done at each level, then sum across all levels to get the total time
complexity.

o Example: For T(n) = 2T(n/2) + O(n), the recursion tree shows that
each level has O(n) work, and there are log(n) levels, so the total
complexity is O(n log n).

3. Master Theorem:

o Provides a shortcut for solving recurrences of the form T(n) = aT(n/b)
+ O(nd).

o Based on the values of a, b, and d, it gives the time complexity in
three cases:

1. If a < bAd: T(n) = O(n~d).
2. If a = bAd: T(n) = O(n”d log n).
3. If a > bAd: T(n) = O(n”log_b a).
Example: Solve T(n) = 2T(n/2) + O(n) using the master theorem.
o Here,a=2,b=2,d=1.
o a=b"d, so the time complexity is O(n log n).
Space Complexity of Recursive Algorithms:

« In addition to time complexity, recursive algorithms also consume memory
for storing intermediate function calls in the call stack.
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« The space complexity is determined by the depth of recursion, which
corresponds to the maximum number of recursive calls that can be active
at the same time.

« Space Complexity Example: For a recursive algorithm with depth log(n),
the space complexity would be O(log n), as each recursive call uses a new
frame in the stack.

Examples of Recursive Algorithm Analysis:
1. Factorial Algorithm:

o Recurrence Relation: T(n)=T(n-1)+0(1)T(n) = T(n-1) +
O(1)T(n)=T(n-1)+0(1) Each recursive call reduces the problem size by
1.

o Time Complexity: The depth of recursion is n, and at each level,
constant work is done, so the total time complexity is O(n).

2. Binary Search Algorithm:

o Recurrence Relation: T(n)=T(n/2)+0(1)T(n) = T(n/2) +
0O(1)T(n)=T(n/2)+0(1) The problem size is halved at each recursive
step.

o Time Complexity: The recursion depth is log n, and constant work is
done at each level, so the total time complexity is O(log n).

3. Merge Sort Algorithm:

o Recurrence Relation: T(n)=2T(n/2)+0(n)T(n) = 2T(n/2) +
O(n)T(n)=2T(n/2)+0(n) Two recursive calls are made, each of size
n/2, and O(n) work is done to merge the results.

o Time Complexity: O(n log n) using the recursion tree or master
theorem.

Conclusion:

Analyzing recursive algorithms is essential for understanding their efficiency in
terms of time and space complexity. By using techniques like recurrence relations,
recursion trees, and the master theorem, we can derive the overall complexity of
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a recursive algorithm and optimize it if necessary. Understanding how recursion
scales with problem size allows us to make informed decisions about when
recursion is appropriate and when an iterative solution might be more efficient.

UNIT 3

Stacks, Queues, and Double-Ended Queues (Deques) are essential data structures
in computer science that organize elements for specific types of operations. Each
has unique characteristics in how they allow access to their elements, which
makes them suitable for different kinds of problems.

Stacks, Queues, and Deques

1. Stacks

Definition:

A stack is a linear data structure that follows the Last In, First Out (LIFO) principle.

The last element added to the stack is the first one to be removed. Think of it like
a stack of plates where you can only take the top plate off or add a new one to
the top.

Basic Operations:
« Push: Add an element to the top of the stack.
« Pop: Remove the top element from the stack.
« Peek/Top: Retrieve the top element without removing it.
« IsEmpty: Check whether the stack is empty.
« Size: Get the current size of the stack.

Real-Life Analogy:
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Consider a stack of books. You can only access the top book, and when you
remove the top one, the next one becomes accessible. Similarly, in programming,
a stack limits access to the most recently added item.

Applications:

« Function Calls: In programming, a stack is used to keep track of function
calls. When a function is called, it’s pushed onto the stack. When the
function returns, it’s popped off the stack.

« Undo Mechanism: Many applications (e.g., text editors) use stacks to
implement the undo feature. Each action is pushed onto the stack, and an
undo operation pops the last action.

« Expression Evaluation: Stacks are used to evaluate arithmetic expressions
written in postfix notation (Reverse Polish Notation) or to convert from
infix to postfix.

Time Complexity:

« Push, Pop, Peek: O(1), as these operations involve accessing or modifying
the top element only.

2. Queues
Definition:

A queue is a linear data structure that follows the First In, First Out (FIFO)
principle. The first element added to the queue is the first one to be removed. It's
like standing in line for a service where the person who comes first gets served
first.

Basic Operations:
« Enqueue: Add an element to the rear of the queue.
« Dequeue: Remove an element from the front of the queue.
« Front/Peek: Retrieve the front element without removing it.

« IsEmpty: Check whether the queue is empty.
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« Size: Get the current size of the queue.
Real-Life Analogy:

Imagine a line at a movie theater. People enter the line from the back and are
served in the order they arrived, starting from the front.

Applications:

o Scheduling Tasks: Queues are used in operating systems to manage
processes and tasks (e.g., scheduling jobs, handling requests in a web
server).

« Breadth-First Search (BFS): In graph and tree traversal, queues are used to
explore nodes level by level, ensuring that the oldest nodes are processed
first.

« Buffering: Queues are used in scenarios like 10 buffering, where data
comes in and goes out in a sequential manner.

Types of Queues:

« Circular Queue: A queue where the last position is connected to the first,
forming a circle. It is used to optimize space usage when the queue is
implemented using an array.

Time Complexity:

« Enqueue, Dequeue, Peek: O(1), as these operations affect only the front or
rear of the queue.

3. Double-Ended Queues (Deques)
Definition:

A double-ended queue (deque) is a generalized version of a queue where
elements can be added or removed from both the front and the rear. This makes
the deque a more flexible data structure compared to a standard queue, which
only allows insertion at the rear and deletion from the front.

Basic Operations:
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« AddFront (PushFront): Add an element to the front of the deque.
« AddRear (PushBack): Add an element to the rear of the deque.
« RemoveFront (PopFront): Remove an element from the front.
« RemoveRear (PopBack): Remove an element from the rear.
« Front/PeekFront: Retrieve the front element without removing it.
. Rear/PeekRear: Retrieve the rear element without removing it.
« IsEmpty: Check whether the deque is empty.
« Size: Get the current size of the deque.
Real-Life Analogy:

Think of a double-ended checkout line at a store where customers can both enter
and leave from either end.

Applications:

« Sliding Window Problems: Deques are used in algorithms that require
maintaining a subset of items (e.g., finding the maximum or minimum value
in a sliding window over an array).

« Palindrome Checker: Since a deque allows access to both ends, it can be
used to check if a string is a palindrome by comparing characters from the
front and rear.

« Job Scheduling: In some cases, deques are used for scheduling tasks where
priorities might change, requiring dynamic insertion or removal from either
end of the queue.

Types of Deques:

« Input-Restricted Deque: In this variation, insertion is allowed only at one
end, but deletion can occur at both ends.

« Output-Restricted Deque: Here, deletion is allowed at one end, but
insertion can occur at both ends.

Time Complexity:



Feature Stack Queue Deque
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Access LIFO (Last In, FIFO (First In, First Out) | Can insert/remove
Principle First Out) from both ends
Insertion Top Rear Both front and rear
Deletion Top Front Both front and rear
Use Case Function calls, | Task scheduling, BFS, Sliding windows,
Undo features | 1/0O buffers Palindrome check
Time 0O(1) for 0(1) for 0O(1) for Add/Remove
Complexity | Push/Pop Enqueue/Dequeue from front/rear

« AddFront, AddRear, RemoveFront, RemoveRear: O(1), as these operations
involve only the front or rear end of the deque.

Comparison of Stacks, Queues, and Deques:

Conclusion:

« Stacks are ideal for problems that require tracking the last accessed
elements first.

« Queues are suited for scheduling and sequential processing tasks.

« Deques offer greater flexibility by supporting insertion and deletion from
both ends, making them suitable for a broader range of problems where
access from both ends is required.

Understanding these data structures and their properties is critical for solving a
wide variety of computational problems efficiently.
Linked Lists

A Linked List is a linear data structure consisting of nodes, where each
node contains two parts:
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1. Data: The actual data element stored in the node.
2. Pointer/Link: A reference (or pointer) to the next node in the sequence.

Unlike arrays, linked lists do not require contiguous memory locations.
Each node is dynamically allocated and linked using pointers. There are
three common types of linked lists: Singly Linked Lists, Circularly Linked
Lists, and Doubly Linked Lists.

1. Singly Linked Lists

Definition:

A Singly Linked List is a type of linked list where each node points to
the next node in the list, but there is no way to go back to the previous
node. It follows a unidirectional structure, meaning traversal can only
happen in one direction — from the first node (head) to the last node
(tail).

Structure:

Each node in a singly linked list consists of:

« Data: The information the node stores.
« Next Pointer: A reference to the next node in the sequence.

The last node in the list points to NULL, indicating the end of the list.
Basic Operations:

« Insertion: Adding a new node at the beginning, middle, or end of the list.
o Inserting at the head: O(1)
o Inserting at the end: O(n) (traverse the list to find the last node)
« Deletion: Removing a node from the list.
o Deleting the head node: O(1)
o Deleting a specific node: O(n)
« Traversal: Visiting each node in the list to access or search for data.
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o Time complexity: O(n)
« Search: Finding a specific element in the list.
o Time complexity: O(n)

Real-Life Analogy:

Imagine a chain of people holding hands, where each person only
knows the next person in the sequence. You cannot go backward or
skip directly to a person further down the chain.

Applications:

« Dynamic memory allocation: Linked lists are used when memory size is not
known in advance.

« Implementation of stacks and queues: Singly linked lists can be used to
implement stacks and queues, providing dynamic memory management.

« File systems: Many file systems use linked lists to manage file blocks, with
each block pointing to the next one in sequence.

2. Circularly Linked Lists

Definition:

A Circularly Linked List is a variation of the singly linked list where the
last node points back to the first node, forming a circular loop. There is
no NULL value at the end of the list because the list is circular, meaning
traversal can go back to the head from the last node.

Structure:
Each node in a circularly linked list consists of:

« Data: The information stored in the node.
« Next Pointer: A reference to the next node in the list.

The next pointer of the last node points to the first node (head) rather
than nuLL.
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Basic Operations:

« Insertion: Adding a node can occur at the beginning, end, or between
nodes. Inserting at the end requires updating the last node to point back to
the first.

« Deletion: Removing a node requires careful updates to ensure that the
circular structure is maintained.

« Traversal: Since the list is circular, traversal can continue infinitely unless
stopped. A common practice is to traverse until the starting node is
reached again.

o Time complexity: O(n)

Real-Life Analogy:

Consider a carousel where each horse (node) is linked to the next, and
after the last horse, you return to the first one. You can keep moving in
circles.

Applications:

« Round-robin scheduling: Circular linked lists are used in operating systems
to manage processes in a round-robin fashion.

« Multiplayer games: Circular linked lists can manage player turns where the
last player is followed by the first player.

« Buffer management: Circular linked lists are often used to implement
buffers (e.g., circular buffers) that manage data in a circular fashion.

3. Doubly Linked Lists

Definition:

A Doubly Linked List is a type of linked list where each node contains
two pointers: one pointing to the next node and one pointing to the
previous node. This allows for traversal in both directions (forward and
backward).
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Structure:

Each node in a doubly linked list contains:

« Data: The information the node stores.
« Next Pointer: A reference to the next node in the list.
« Previous Pointer: A reference to the previous node in the list.

Both the first node’s previous pointer and the last node’s next pointer
point to NULL.

Basic Operations:

« Insertion: Nodes can be inserted at the beginning, middle, or end of the list.
o Time complexity: O(1) for head insertion, O(n) for tail insertion or
middle insertion.
« Deletion: Removing a node is more efficient than in singly linked lists since
you have access to both the previous and next nodes.
o Time complexity: O(1) for head deletion, O(n) for other nodes.
« Traversal: You can traverse the list from the head to the tail (forward) or
from the tail to the head (backward).
o Time complexity: O(n) for forward or backward traversal.
« Search: Searching for a node can be done in either direction, depending on
where the node is expected to be found.
o Time complexity: O(n)

Real-Life Analogy:

Imagine a two-way street where you can move in either direction. In a
doubly linked list, you can move forward or backward between nodes
easily, just like driving on a street where traffic flows both ways.

Applications:

« Undo/Redo functionality: Doubly linked lists are often used to implement
the undo/redo feature in applications like text editors, where you can move
back to previous states and forward again.

34

« Navigation systems: Doubly linked lists can be used to store and navigate
web page histories or file system directories where both forward and
backward movement is required.

« Deque implementation: Doubly linked lists are the underlying structure for
implementing double-ended queues (deques) where you can insert and
delete from both ends.

Advantages of Doubly Linked Lists:

« Bidirectional traversal: You can traverse in both directions, which makes it
easier to reverse the list or implement certain algorithms.

« Efficient deletion: Deletion of a node is more efficient as there’s no need to
traverse from the head to find the previous node.

Disadvantages of Doubly Linked Lists:

« More memory: Each node requires extra memory for the additional pointer
(previous pointer).

« Complexity: Managing two pointers (next and previous) increases the
complexity of insertion and deletion operations

Comparison of Singly, Circularly, and Doubly Linked Lists

Feature Singly Linked List = Circularly Linked Doubly Linked List
List
Direction of Only forward Only forward (but | Forward and backward
traversal circular)
Last node points NULL First node NULL (next) and
to previous node
Memory usage Requires memory Requires memory | Requires memory for
for one pointer for one pointer two pointers

Insertion at end 0o(n) 0o(n) O(n)
Deletion of node | O(n) 0o(n) 0(1)
Efficient for No Yes No

circular traversal?
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Example Stacks, queues Round-robin Undo/Redo, doubly-
applications scheduling ended queues (deque)
Conclusion:

« Singly Linked Lists are simple and effective when one-way traversal is
sufficient.

« Circularly Linked Lists are ideal for applications requiring continuous
looping, like round-robin scheduling.

« Doubly Linked Lists offer flexibility by allowing movement in both
directions, making them useful for more complex applications such as
undo/redo functionality.

Each type of linked list has its own advantages and is suited to different
types of problems based on the operations required. Understanding
their structure and applications is essential for efficient problem-solving
in data structures.

Trees

A tree is a hierarchical data structure that consists of nodes connected by edges.
Each node stores data and has zero or more child nodes, forming a parent-child
relationship. A tree is an abstract model of hierarchical structures, with the
following characteristics:

« Root: The top node of the tree.

« Children: Nodes directly connected to another node going downward.
« Parent: A node connected to its child.

« Leaf: A node that has no children.

« Depth: The level of a node relative to the root.

o Height: The length of the longest path from the node to a leaf.

« Subtree: A tree formed by any node and its descendants.

1. General Trees
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Definition:

A general tree is a tree in which each node can have any number of child nodes.
Unlike binary trees, which restrict each node to a maximum of two children,
general trees impose no such restriction.

Key Properties:
« Root: The root is the topmost node of the tree.

« Parent and Children: A node can have multiple children but only one
parent.

« Subtrees: Any node along with its descendants forms a subtree, which itself
is a tree.

In a general tree, nodes can represent a variety of relationships, making it useful
for real-world hierarchical data representation.

Real-Life Analogy:

A company’s organizational structure is a general tree where the CEQ is the root,
and each department (nodes) may have a variable number of employees
(children).

Applications:

« File systems: Folders can contain any number of subfolders and files,
resembling a general tree structure.

« Hierarchical databases: Many databases store information in a general tree
format to represent complex relationships.

« Gaming Al: Decision-making processes in games often use trees to
represent possible moves.

2. Binary Trees

Definition:
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A binary tree is a tree in which each node has at most two children, commonly
referred to as the left child and the right child. This structure makes binary trees
more specific and easier to implement than general trees.

Key Properties:
« Node: Each node has data and at most two pointers (left and right child).
« Left Subtree and Right Subtree: Each node is connected to two subtrees.

« Recursive Nature: Every binary tree is composed of a root and two
subtrees, which are themselves binary trees.

Types of Binary Trees:
1. Full Binary Tree: Every node has either 0 or 2 children.

2. Complete Binary Tree: All levels, except possibly the last, are completely
filled, and all nodes are as far left as possible.

3. Perfect Binary Tree: A binary tree in which all interior nodes have two
children, and all leaves are at the same level.

4. Balanced Binary Tree: The height of the left and right subtrees of every
node differs by at most one.

5. Degenerate (Skewed) Tree: Every parent node has only one child, resulting
in a structure similar to a linked list.

Real-Life Analogy:

Think of a binary tree like a family tree where each person (node) has two
children, representing left and right subtrees.

Applications:

« Binary Search Trees (BSTs): Used for quick lookups, insertions, and
deletions, often employed in databases and file systems.

« Heaps: A type of binary tree used in priority queues and for sorting
algorithms.

« Expression Trees: Binary trees are used to represent expressions, where
each leaf node is an operand and each internal node is an operator.
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3. Implementing Trees
Definition:

To implement a tree, a node structure and methods for tree manipulation (such
as insertion, deletion, and traversal) are required. Each node in a tree typically
contains:

« Data: The value stored in the node.

« Left and Right Pointers: References to the node’s children (for binary
trees).

Basic Node Structure in C-like Pseudocode:
class TreeNode:
def __init__(self, data):
self.data = data
self.left = None
self.right = NoneCommon Tree Operations:

1. Insertion: Adding nodes to the tree, either to the left or right child (for
binary trees).

2. Deletion: Removing a node and maintaining tree properties.
3. Search: Finding an element in the tree, often with binary search trees.

4. Traversal: Visiting nodes in a specific order (e.g., pre-order, in-order, post-
order).

Tree Representation:
« Linked Structure: Each node contains pointers to its children.

« Array Representation: For a complete binary tree, nodes can be stored in
an array, where for a node atindex i:

o Leftchild:2i+1
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o Right child: 2i + 2
o Parent:(i-1)/2
Applications:

« Implementing abstract syntax trees: Used in compilers and interpreters to
represent the structure of code.

« Routing algorithms: Trees are used in networks for routing paths.

4. Tree Traversal Algorithms

Tree traversal refers to the process of visiting all nodes in a tree. Different
traversal algorithms visit nodes in different orders, and there are three common
methods: pre-order, in-order, and post-order traversal.

Tree Traversal Types:
1. Pre-order Traversal:

o Definition: The nodes are visited in this order: root, left subtree, right
subtree.

o Algorithm:
= Visit the root node.
= Traverse the left subtree.
= Traverse the right subtree.

o Use Case: Used when you want to explore root nodes before
inspecting leaves.

o Example: For a tree:

/\
B C
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2./
DE

Pre-order traversal: A, B, D, E, C.

3. In-order Traversal:

o

/\
B C

/
DE

Definition: The nodes are visited in this order: left subtree, root, right
subtree.

Algorithm:
= Traverse the left subtree.
= Visit the root node.
= Traverse the right subtree.

Use Case: Commonly used in binary search trees (BST) to retrieve
elements in sorted order.

Example: For a tree:

In-order traversal: D, B, E, A, C.

4.

5. Post-order Traversal:

o

o

Definition: The nodes are visited in this order: left subtree, right
subtree, root.

Algorithm:

= Traverse the left subtree.
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= Traverse the right subtree.
= Visit the root node.

o Use Case: Useful when you need to delete or free nodes from

memory, as it ensures children are processed before their parents.

o Example: For a tree:

A
/\
B C

6. /
DE

7. mathematica
8.
9. Post-order traversal: D, E, B, C, A.
Level-order Traversal (Breadth-First Search):
« Definition: Visits nodes level by level from left to right.
o Algorithm:
o Start at the root node.

o Visit all nodes at the current level before moving to the next level.

« Use Case: Often used in algorithms like shortest path search in unweighted

graphs.

Summary

« General Trees: Allow multiple children per node and represent hierarchical

relationships without restriction.
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Binary Trees: Restrict nodes to two children, leading to efficient algorithms
for searching, insertion, and deletion.

Implementing Trees: Requires designing a node structure and traversal
methods to navigate and manipulate tree data efficiently.

Tree Traversal Algorithms: Involve systematically visiting nodes in pre-
order, in-order, post-order, or level-order to perform operations or extract
information from the tree.

Understanding the types and traversal methods of trees is critical in many fields
of computer science, such as database indexing, artificial intelligence (decision-
making trees), and hierarchical data representation.

UNIT 4

Priority Queues

A priority queue is an abstract data type that operates similarly to a regular
queue but with an added feature: each element in the priority queue has a
priority level associated with it. Elements are removed from the priority queue
based on their priority rather than their order in the queue. Higher priority
elements are processed before lower priority ones.

1. Priority Queue Abstract Data Type

Definition:

A priority queue (PQ) is an abstract data type where each element is assigned a
priority. In a priority queue:

Elements with higher priority are dequeued before those with lower
priority.

If two elements have the same priority, they may be dequeued according to
their order of insertion (this behavior depends on the implementation).
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Key Operations: python
« Insert (enqueue): Adds an element with an associated priority to the import heapq
priority queue. class PriorityQueue:
« Remove (dequeue): Removes and returns the element with the highest def _init_ (self):

priority (or lowest, depending on the implementation). self.elements = []

« Peek (or front): Returns the highest priority element without removing it def is_empty(self):

from the queue.
return not self.elements

o IsEmpty: Checks if the priority queue is empty. def put(self, item, priority):

Use Cases: # Use a tuple (priority, item) to maintain the heap property

« Task scheduling: In operating systems, processes may have different heapq.heappush(self.elements, (priority, item))

priorities, and higher priority tasks are executed first. def get(self):

« Graph algorithms: Dijkstra's and Prim's algorithms use priority queues to

# Returns the item with the highest priority (lowest numerical value)
manage vertices by their weights or distances.

return heapq.heappop(self.elements)[1]

« Event simulation: In simulations, events can be scheduled based on their
def peek(self):

time of occurrence.
# Peek at the highest priority item without removing it

return self.elements[0][ 1] if self.elements else None
2. Implementing a Priority Queue
Explanation:
There are several ways to implement a priority queue, including using: . L ) o ) )
« put(item, priority): Adds an item to the priority queue with an associated
« Unsorted Arrays or Linked Lists: Simple but inefficient for dequeue priority.

operations. ) ) ) o
« get(): Removes and returns the item with the highest priority.
« Sorted Arrays or Linked Lists: Ensures the highest priority element is at the

front, but insertions are costly (O(n)). « peek(): Returns the item with the highest priority without removing it.

« Heaps: Provide efficient insertions and removals, making them the most 3. Heaps
common implementation for priority queues. Definition:
Example Implementation Using a Min-Heap in Python: A heap is a specialized tree-based data structure that satisfies the heap property:
Here is an implementation of a priority queue using Python's heapq library, which « Max Heap: For any given node, its value is greater than or equal to the

provides an efficient way to manage a heap. values of its children. The highest value is at the root.
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« Min Heap: For any given node, its value is less than or equal to the values
of its children. The lowest value is at the root.

Key Properties:

« Aheapis acomplete binary tree, meaning all levels are fully filled except
possibly for the last level, which is filled from left to right.

« The heap can be efficiently implemented using an array, where the parent-
child relationships are represented by indices:

o Foranodeatindexi:
= Leftchildisat2i+1
= Right childisat 2i + 2
= Parentisat(i-1)//2

Use Cases:

« Heap Sort: An efficient sorting algorithm that uses a heap to sort elements.

« Implementing priority queues: Heaps allow efficient insertions and
removals.

4. Sorting with a Priority Queue

Sorting with a priority queue can be achieved through a process known as Heap
Sort. The algorithm works as follows:

Heap Sort Algorithm:

1. Build a Heap: Convert the array into a heap. For a max heap, the largest
element will be at the root.

2. Sort the Array:

o Remove the root (largest element) and place it at the end of the
array.

o Reduce the size of the heap by one.

o Restore the heap property by re-heapifying the remaining elements.
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o Repeat until all elements are sorted.
Pseudocode:
function heapSort(array):
buildMaxHeap(array)
for i from length(array) - 1 to 1:
swap(array[0], array[i]) // Move current root to end
heapify(array, index 0, size reduced by 1)
Time Complexity:

« The time complexity of heap sort is O(n log n) for both average and worst
cases, making it efficient for large datasets. The space complexity is O(1) if
performed in-place.

Advantages:
« In-place: Requires only a constant amount of additional space.
« Not stable: The relative order of equal elements may change.
Use Cases:

« Useful when dealing with large datasets and needing a guaranteed O(n log
n) time complexity.
Summary
« Priority Queue Abstract Data Type: Operates on the principle of priority,

enabling efficient retrieval of elements based on priority rather than
insertion order.

« Implementing a Priority Queue: Can be done using various methods, with
heaps being the most efficient.

« Heaps: A complete binary tree that maintains a specific ordering property,
supporting efficient insertions and deletions.

« Sorting with a Priority Queue: Heap sort utilizes a priority queue to sort
elements efficiently, achieving O(n log n) time complexity.



47

Understanding priority queues, their implementation, and their use in sorting
algorithms is crucial in designing efficient data structures and algorithms for real-
world applications.

Maps, Hash Tables, and Skip Lists

Maps, hash tables, and skip lists are important data structures that provide
efficient ways to store and retrieve key-value pairs. Each of these structures has
unique characteristics and use cases.

1. Maps and Dictionaries
Definition:

A map (or dictionary) is an abstract data type that represents a collection of key-
value pairs, allowing efficient retrieval of values based on their associated keys.
Maps enable users to quickly access, insert, and delete elements using keys.

Key Characteristics:
« Keys: Unique identifiers used to access values in the map.
« Values: The data associated with each key.

« No duplicate keys: Each key in a map must be unique; however, multiple
keys can have the same value.

Common Operations:
« Insert (put): Adds a key-value pair to the map.
« Remove (delete): Removes a key-value pair by key.
« Retrieve (get): Fetches the value associated with a given key.
« Contains: Checks if a key exists in the map.

Implementations:
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Maps can be implemented using various data structures:

« Hash Tables: Use hashing to map keys to values.

« Balanced Trees: Maintain keys in a sorted order for efficient retrieval.
Example in Python:
In Python, dictionaries are implemented as maps:

python

my_dict= {}

my_dict['keyl'] = 'valuel’
print(my_dict['keyl']) # Output: valuel

2. Hash Tables
Definition:

A hash table is a data structure that implements a map using a hash function to
compute an index into an array of buckets or slots. This allows for efficient
storage and retrieval of key-value pairs.

Key Characteristics:

« Hash Function: A function that takes a key as input and produces an index
(hash code) to store or retrieve the corresponding value. A good hash
function minimizes collisions.

« Collision Handling: When two keys hash to the same index, a collision
occurs. Common strategies for handling collisions include:

o Chaining: Each index in the array points to a linked list (or another
data structure) containing all key-value pairs that hash to the same
index.

o Open Addressing: If a collision occurs, the algorithm probes for the
next available slot in the array.

Common Operations:
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« Insert (put): O(1) on average, O(n) in the worst case.
« Remove (delete): O(1) on average, O(n) in the worst case.
« Retrieve (get): O(1) on average, O(n) in the worst case.
Example in Python:
Python dictionaries are implemented using hash tables:

python
hash table = {}

hash_table['keyl'] = 'valuel’
print(hash_table['keyl']) # Output: valuel
3. Sorted Maps
Definition:

A sorted map is a data structure that maintains its entries in sorted order based
on the keys. This allows for efficient range queries and ordered traversal of the
keys.

Key Characteristics:

« Sorted Order: Entries are automatically sorted based on the key. The
sorting can be done using a natural ordering (e.g., ascending) or a custom
comparator.

« Balanced Trees: Sorted maps are often implemented using balanced binary
search trees, such as:

o Red-Black Trees
o AVLTrees
Common Operations:
« Insert (put): O(log n)

« Remove (delete): O(log n)
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« Retrieve (get): O(log n)
« Range Queries: Efficiently retrieve all entries within a specified key range.
Example in Python:

While Python doesn't have a built-in sorted map, the sortedcontainers library can
be used:

python
from sortedcontainers import SortedDict
sorted_map = SortedDict()
sorted map['keyl'] = 'valuel'
sorted map['key2'] = 'value2'
for key, value in sorted map.items():
print(key, value)
4. Skip Lists
Definition:

A skip list is a probabilistic data structure that allows for efficient search,
insertion, and deletion operations. It consists of multiple levels of linked lists,
where each higher level acts as an "express lane" for the lower levels.

Key Characteristics:

o Multi-Level Linked List: Each element in the skip list has multiple pointers
to elements in the next level. The bottom level is a standard sorted linked
list, while higher levels provide shortcuts for faster traversal.

« Probabilistic Balancing: The number of pointers for each element is
determined probabilistically, typically using a coin flip. This ensures that the
skip list remains balanced on average.
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Common Operations:
« Search: O(log n) on average, O(n) in the worst case.
« Insert: O(log n) on average, O(n) in the worst case.
« Delete: O(log n) on average, O(n) in the worst case.
Example:
python
class SkipListNode:
def _init  (self, value, level):
self.value = value
self.forward = [None] * (level + 1)
class SkipList:
def init (self):
self.max_level = 16 # Maximum levels
self.-header = SkipListNode(None, self.max _level)
self.level =0 # Current level

def insert(self, value):

# Insert value into the skip list (implementation details omitted)

pass

def search(self, value):

# Search for value in the skip list (implementation details omitted)

pass

Advantages:

« Simplicity: Easier to implement than balanced trees.

« Dynamic Size: Can grow or shrink as needed without rebalancing.

Use Cases:
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« Skip lists are used in applications requiring frequent insertions and
deletions while maintaining sorted order, such as in databases or memory
management.

Summary

« Maps and Dictionaries: Abstract data types for storing key-value pairs with
efficient access.

« Hash Tables: Implement maps using hash functions for efficient key-value
storage and retrieval.

« Sorted Maps: Maintain entries in sorted order for efficient range queries,
typically implemented using balanced trees.

« Skip Lists: Probabilistic data structures that provide efficient search and
insertion, using multiple levels of linked lists.

These data structures play a crucial role in various applications, offering different
trade-offs in terms of efficiency, complexity, and ease of use.

Sets, Multisets, and Multimaps

Sets, multisets, and multimaps are fundamental abstract data types that allow for
the storage and management of collections of elements. Each type has distinct
characteristics, operations, and use cases.

1. Sets
Definition:

A set is a collection of distinct elements where duplicates are not allowed. Sets
can be defined mathematically as a well-defined collection of objects. In
programming, sets are used to store unique values without any particular order.

Key Characteristics:

« Uniqueness: Each element in a set is unique; duplicate elements are
automatically ignored.

« Unordered: The elements in a set do not have a defined order, meaning the
same elements can appear in different arrangements without affecting the
set's identity.
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Dynamic Size: Sets can grow or shrink dynamically as elements are added
or removed.

Common Operations:

Insert: Adds an element to the set if it is not already present.
Delete: Removes an element from the set if it exists.
Contains: Checks if an element is present in the set.

Union: Combines two sets to form a new set containing all unique elements
from both.

Intersection: Creates a new set containing only the elements common to
both sets.

Difference: Creates a new set containing elements present in one set but
not in another.

Implementations:

Sets can be implemented using various data structures:

Hash Tables: For efficient O(1) average-time complexity for insertions,
deletions, and lookups.

Balanced Trees: For ordered sets, where elements are kept in a sorted
manner.

Example in Python:

python

my_set= {1, 2,3}

my_set.add(4)  # Insert
my_set.add(2)  # Duplicate, ignored
print(my _set)  # Output: {1, 2, 3, 4}

print(2 in my_set) # Output: True

2. Multisets

Definition:
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A multiset (or bag) is a generalized version of a set that allows for multiple
occurrences of the same element. Unlike sets, multisets can have duplicate
elements, making them useful for counting frequencies of items.

Key Characteristics:
« Duplicates Allowed: Elements can appear multiple times in a multiset.

« Dynamic Size: The size of a multiset can change as elements are added or
removed, similar to sets.

« Counting: Multisets can be used to keep track of the count of each
element, allowing efficient retrieval of frequencies.

Common Operations:
« Insert: Adds an element to the multiset and increments its count.

« Delete: Decreases the count of an element; if the count reaches zero, the
element is removed from the multiset.

« Count: Returns the number of occurrences of a specific element.
« Union: Combines two multisets, summing the counts of each element.

« Intersection: Creates a new multiset containing the minimum counts of
each element present in both multisets.

« Difference: Creates a new multiset with counts that represent the first
multiset minus the second.

Implementations:
Multisets can be implemented using:

« Hash Tables: Where keys represent elements and values represent their
counts.

« Sorted Lists: If ordering is required.
Example in Python:

Python's collections module includes a Counter class that can be used to create
multisets:
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python

from collections import Counter

my_multiset = Counter()

my_multiset.update(['apple’, 'banana’, 'apple']) # Insert elements
print(my_multiset) # Output: Counter({'apple": 2, 'banana’: 1})
my_multiset['apple'] -= 1 # Decrease count

print(my_multiset) # Output: Counter({'apple": 1, 'banana": 1})

3. Multimaps
Definition:

A multimap is an extension of the map (or dictionary) data structure that allows
multiple values to be associated with a single key. This means that the same key
can appear multiple times, each with different corresponding values.

Key Characteristics:

« Key-Value Pairs: Like maps, multimaps consist of key-value pairs, but keys
can be associated with multiple values.

« Dynamic Size: Multimaps can grow and shrink as elements are added or
removed.

« Ordering: Multimaps can maintain the order of keys, especially if
implemented with a sorted structure.

Common Operations:
« Insert: Adds a value to the list of values associated with a key.

« Remove: Removes a specific value associated with a key; if the last value is
removed, the key may also be removed from the multimap.
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« Retrieve: Returns all values associated with a specific key.
« Contains: Checks if a key exists in the multimap.
Implementations:
Multimaps can be implemented using:
« Hash Tables: Where keys map to lists of values.

« Balanced Trees: For ordered multimaps, where keys are maintained in a
sorted order.

Example in Python:

Python does not have a built-in multimap, but a similar structure can be
implemented using defaultdict from the collections module:

python

from collections import defaultdict
my_multimap = defaultdict(list)

my_ multimap['keyl'].append(‘valuel")
my_ multimap['keyl'].append(‘value2')
my_multimap['key2'].append('value3')

print(my_multimap) # Output: defaultdict(<class 'list™, {'keyl": ['valuel’',
'value2'], 'key2": ['value3']})

Summary

« Sets: Collections of unique elements, allowing operations like union and
intersection, implemented using hash tables or balanced trees.

« Multisets: Collections of elements that allow duplicates, maintaining counts

for each element, useful for frequency-based applications.

« Multimaps: Maps that allow multiple values for the same key,
implemented using lists or balanced trees for storing key-value pairs.

These data structures provide efficient ways to manage collections of data, each
catering to specific requirements in various applications.
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UNIT 5

Search Trees

Search trees are data structures that facilitate efficient searching, insertion, and
deletion of data. They maintain a sorted order of elements, allowing for quick
access based on keys. Among the various types of search trees, Binary Search
Trees (BSTs), Balanced Search Trees, AVL Trees, and Splay Trees are notable.
Below, we’ll explore each of these tree structures in detail.

1. Binary Search Trees (BST)
Definition:

A Binary Search Tree (BST) is a binary tree in which each node has at most two
children. It maintains the property that for every node:

« The left subtree contains only nodes with values less than the node’s value.

« The right subtree contains only nodes with values greater than the node’s
value.

Key Characteristics:

« Sorted Structure: The in-order traversal of a BST results in a sorted
sequence of values.

« Efficiency: Searching, insertion, and deletion operations can be performed
in O(h) time complexity, where h is the height of the tree.

Operations:

« Insertion: To insert a value, start from the root and recursively traverse the

left or right subtree based on the value until a suitable empty spot is found.

« Deletion: Three cases arise during deletion:
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1. Node to be deleted is a leaf: simply remove it.
2. Node has one child: bypass the node.

3. Node has two children: find the in-order predecessor (max value in
the left subtree) or in-order successor (min value in the right subtree)
to replace it.

« Searching: Compare the target value with the current node's value and
decide to traverse left or right accordingly.

Example:
plaintext

5

/\

37

/\ A\

2 48
Limitations:

« Unbalanced Trees: If elements are inserted in sorted order, the BST can
become unbalanced, resembling a linked list, leading to O(n) time
complexity for operations.

2. Balanced Search Trees
Definition:

Balanced Search Trees are binary search trees that maintain a balance criterion to
ensure that the height of the tree remains logarithmic relative to the number of
nodes. This guarantees efficient operations even in the worst case.

Key Characteristics:

« Height Balance: The difference in heights between the left and right
subtrees of any node is kept within a specified limit (e.g., -1, 0, or 1 for AVL
trees).
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« Guaranteed Logarithmic Height: This balance ensures that operations such
as search, insertion, and deletion remain O(log n) in time complexity.

Common Types:

1. AVLTrees

2. Red-Black Trees
3. AVL Trees
Definition:

An AVL Tree is a type of self-balancing binary search tree where the difference in
heights between the left and right subtrees (balance factor) for any node is at
most 1.

Key Characteristics:

« Balance Factor: For each node, the balance factor is defined as the height
of the left subtree minus the height of the right subtree (-1, 0, or 1).

« Rotations: To maintain balance, AVL trees may require rotations during
insertion and deletion:

o Single Rotation: Right or left rotations can be applied.

o Double Rotation: A combination of two rotations (left-right or right-
left).

Operations:

« Insertion: Insert like a regular BST, then check and restore balance through
rotations if needed.

« Deletion: Similar to insertion, check for balance after deletion and perform
rotations to restore balance.

Example:
plaintext

30
/\
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20 40

/\
10 25

Performance:

« All basic operations (search, insert, delete) are O(log n) due to the height
being logarithmic.

4. Splay Trees
Definition:

A Splay Tree is a type of binary search tree that self-adjusts through a process
called "splaying," which moves accessed nodes to the root of the tree.

Key Characteristics:

« Self-Adjusting: Frequently accessed nodes are brought closer to the root,
improving access times for recently accessed elements.

« No Strict Balance: Splay trees do not maintain strict balance like AVL trees
but tend to perform well for sequences of operations with locality of
reference.

Operations:

Splaying: When accessing a node, the tree is adjusted (or splayed) to make
that node the new root using three operations:

1. Zig: A single rotation when the node is a child of the root.

2. Zig-Zig: Double rotation when the node is a left (or right) child of a
left (or right) child.

3. Zig-Zag: Double rotation when the node is a right child of a left child
(or vice versa).

« Insertion: Insert as in a normal BST, then splay the newly inserted node.

« Deletion: Splay the node to be deleted, then remove it.
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Performance: 1. Merge Sort

o The amortized time complexity for operations is O(log n), making them Definition:

efficient for certain access patterns. Merge Sort is a divide-and-conquer algorithm that splits the input array into two

Example: halves, sorts them independently, and then merges the sorted halves back
plaintext together.
30 Key Characteristics:
N\ « Stable Sort: Maintains the relative order of equal elements.
20 40 « Time Complexity: O(n log n) in all cases (worst, average, best).
\ « Space Complexity: O(n) due to the additional array used for merging.
10 25 How it Works:

1. Divide: Recursively split the array into two halves until each subarray

If 25 is accessed, it becomes the root after splaying. ; ]
contains a single element (base case).

2. Conquer: Merge the sorted subarrays back together in a sorted order.

Summary . . . .
3. Combine: Repeat the merge process until the entire array is sorted.

« Binary Search Trees (BSTs) provide a simple structure for dynamic sets but
. . . . Example:
can become unbalanced, leading to inefficient operations.

« Balanced Search Trees ensure logarithmic height, enabling efficient Consider the array [38, 27, 43, 3, 9, 82, 10].

operations through structures like AVL Trees and Red-Black Trees. « Divide:
« AVL Trees maintain strict balance, while Splay Trees prioritize recently o [38,27,43]and[3,9, 82, 10]
accessed elements, improving access patterns without requiring strict

o Further divide [38, 27, 43] into [38] and [27, 43], and [27, 43] into
balance. [27] and [43].

These search trees provide various ways to manage and access data dynamically, . Merge:

each with strengths and weaknesses suited to different applications.

. . o Merge [27] and [43] to get [27, 43], then merge [38] with [27, 43] to

Sorting and Selection get [27, 38, 43].

Sorting an.d s?lectlon algorithms are fundamenta! |.n computer SC|.e.nce, facilitating o Merge [3,9, 82, 10] similarly, resulting in [3, 9, 10, 82].
the organization of data and the retrieval of specific elements efficiently. Below,
we delve into Merge Sort, Quick Sort, Sorting through an Algorithmic Lens, and o Finally, merge [27, 38, 43] and [3, 9, 10, 82] to get the sorted array (3,

Comparing and Selection in detail. 9,10, 27, 38, 43, 82].
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Advantages:
«  Works well for large datasets and linked lists.
« Consistent O(n log n) performance.
Disadvantages:

« Requires additional memory for the temporary array, making it less space-
efficient.

2. Quick Sort
Definition:

Quick Sort is a highly efficient sorting algorithm that uses the divide-and-conquer

strategy by selecting a 'pivot' element and partitioning the array around the pivot.

Key Characteristics:

« In-Place Sort: Requires only a small, constant amount of additional storage
space.

« Average Time Complexity: O(n log n), but worst-case is O(n?) (occurs when
the smallest or largest element is always chosen as the pivot).

« Space Complexity: O(log n) due to recursive stack space.
How it Works:

1. Choose a Pivot: Select an element from the array as the pivot (common
choices include the first, last, or a random element).

2. Partition: Rearrange the array so that all elements less than the pivot are
on its left and all greater elements are on its right.

3. Recursively Sort: Apply the same process to the left and right subarrays.
Example:
Consider the array [10, 80, 30, 90, 40, 50, 70].

« Choose Pivot: Let's select 50 as the pivot.

« Partition:
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o Rearrange to get [10, 30, 40, 50, 80, 90, 70].

« Recursively Sort: Sort the left subarray [10, 30, 40] and the right subarray
[80, 90, 70] using the same steps.

Final sorted array: [10, 30, 40, 50, 70, 80, 90].
Advantages:

« Generally faster than other O(n log n) algorithms due to lower constant
factors.

«  Works well with large datasets and is highly efficient in practice.
Disadvantages:

« Worst-case performance is poor if the pivot is poorly chosen (though this
can be mitigated by using techniques like randomized pivoting).

3. Sorting through an Algorithmic Lens
Definition:

This concept involves analyzing sorting algorithms not only based on their
efficiency but also by understanding their design choices, applications, and
limitations through the lens of algorithmic principles.

Key Considerations:

« Complexity Analysis: Evaluate time and space complexity to understand
performance.

« Stability: Determine whether the algorithm preserves the order of equal
elements.

¢ In-Place vs. Not In-Place: Assess memory usage; in-place algorithms require
less additional memory.

« Adaptability: Some sorting algorithms are more adaptable to specific types
of data or partially sorted data.

Common Sorting Algorithms:
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1. Bubble Sort: Simple, O(n?) performance, not suitable for large datasets.

2. Insertion Sort: Efficient for small or nearly sorted arrays, O(n?) in the worst
case.

3. Selection Sort: O(n?) performance, minimal memory usage, but not
efficient for large lists.

4. Radix Sort: Non-comparison-based, suitable for integers, O(nk) complexity.
Choosing an Algorithm:
The choice of sorting algorithm often depends on:
« Size of the dataset.
« Nature of the data (random, nearly sorted, etc.).
« Memory constraints.
4. Comparing and Selection
Definition:

This concept refers to the methodology of evaluating sorting algorithms by
comparing their characteristics and performance metrics to select the most
appropriate algorithm for a given task.

Key Criteria for Comparison:
1. Time Complexity: Analyze best, average, and worst-case scenarios.
2. Space Complexity: Assess memory requirements during execution.

3. Stability: Determine whether the algorithm maintains the relative order of
equal elements.

4. Adaptability: Some algorithms perform better on specific data types or
arrangements.

Selection Process:

« Benchmarking: Run different sorting algorithms on the same dataset and
measure execution time.
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« Empirical Analysis: Consider real-world performance and edge cases.

« Theoretical Analysis: Evaluate based on time and space complexities.
Examples of Selection:

« Use Merge Sort for stable sorting of linked lists.

« Choose Quick Sort for general-purpose sorting when memory space is a
concern.

« Opt for Insertion Sort when dealing with small or nearly sorted datasets
due to its efficiency in such cases.

Summary

« Merge Sort and Quick Sort are two of the most commonly used sorting
algorithms, each with unique characteristics and performance metrics.

« Understanding sorting through an algorithmic lens allows for a deeper
appreciation of algorithm design and implementation.

« Comparing sorting algorithms based on their criteria helps in selecting the
most appropriate algorithm for specific tasks, optimizing performance, and
resource utilization.

By mastering these sorting and selection concepts, one can significantly enhance
their ability to manage and manipulate data efficiently.

Graph Algorithms

Graph algorithms are essential for solving problems involving relationships and
connections between data. They encompass various concepts, including the
representation of graphs, traversal techniques, and sorting methods. Below, we
explore Graphs, Data Structures for Graphs, Graph Sorting Algorithms, and
Selection in detail.

1. Graphs

Definition:
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A graph is a collection of nodes (or vertices) and edges (connections) that
represent relationships between pairs of nodes. Graphs can be directed (where
edges have a direction) or undirected (where edges have no direction).

Types of Graphs:

« Directed Graph (Digraph): Edges have a direction, indicating a one-way
relationship.

« Undirected Graph: Edges represent a two-way relationship.

« Weighted Graph: Edges have weights or costs associated with them, used
to represent distances or costs.

« Unweighted Graph: All edges are treated equally, without weights.

« Cyclic Graph: Contains at least one cycle (a path that starts and ends at the
same vertex).

« Acyclic Graph: Does not contain cycles.
« Connected Graph: There is a path between every pair of vertices.

« Disconnected Graph: At least one pair of vertices does not have a path
connecting them.

Graph Representation:
Graphs can be represented using:

1. Adjacency Matrix: A 2D array where rows and columns represent vertices.
The entry at (i, j) indicates the presence (and possibly the weight) of an
edge between vertex i and vertex j.

2. Adjacency List: An array of lists where each list corresponds to a vertex and
contains a list of adjacent vertices.

Applications of Graphs:
« Social networks (relationships between users).
« Transportation networks (routes and distances).

« Computer networks (connections between devices).
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« Recommendation systems (connections between items).
2. Data Structures for Graphs
Graph Representation Structures:

1. Adjacency Matrix:

o Definition: A square matrix used to represent a graph. If there is an
edge from vertex iii to vertex jjj, then the matrix entry matrix[i][j] is
set to 1 (or the weight of the edge); otherwise, it is set to 0.

o Pros:
= Easy to implement and use for dense graphs.

= Quick to check for the presence of an edge between two
vertices.

o Cons:

= Inefficient in terms of space for sparse graphs, as it requires
0O(V2)O(V~2)0O(V2) space, where VVV is the number of vertices.

2. Adjacency List:

o Definition: A collection of lists or arrays where each list represents a
vertex and contains a list of its adjacent vertices.

o Pros:

= More space-efficient for sparse graphs, requiring O(V+E)O(V +
E)O(V+E) space, where EEE is the number of edges.

= Easier to iterate through neighbors of a vertex.
o Cons:

= Slower for checking the presence of an edge compared to an
adjacency matrix.

3. Edge List:

o Definition: A simple list of all edges in the graph, where each edge is
represented as a pair (or triplet for weighted edges) of vertices.
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o Pros:
= Simple and memory-efficient for sparse graphs.
o Cons:

= Not efficient for searching edges; checking for connections
between vertices requires linear time.

Other Graph Data Structures:

« Incidence Matrix: A matrix representation that indicates the relationship
between vertices and edges.

« Edge Map: A hashmap/dictionary where keys represent vertices and values
are lists of edges connected to those vertices.

3. Graph Sorting Algorithms

Graph sorting algorithms help in ordering the vertices of a graph based on specific
criteria or dependencies. The most common sorting algorithm in the context of
graphs is Topological Sorting.

Topological Sorting:

« Definition: An ordering of the vertices in a directed acyclic graph (DAG)
such that for every directed edge uvuvuv from vertex uuu to vertex vvv,
uuu comes before vvv in the ordering.

« Use Cases: Task scheduling, course prerequisite structures, and resolving
symbol dependencies in programming languages.

Topological Sorting Algorithms:
1. Kahn’s Algorithm:
o Maintain a list of vertices with no incoming edges (in-degree of zero).

o Repeatedly remove a vertex from this list, add it to the topological
order, and decrease the in-degrees of its adjacent vertices. If any
adjacent vertex’s in-degree becomes zero, add it to the list.

o Repeat until all vertices are processed.
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2. Depth-First Search (DFS) Based:
o Perform a DFS traversal of the graph.

o On completing the traversal of a vertex, push it onto a stack. Once all
vertices are processed, pop the stack to obtain the topological order.

Complexity:

« Both algorithms have a time complexity of O(V+E)O(V + E)O(V+E), where
VVV is the number of vertices and EEE is the number of edges.

4. Selection

Graph selection algorithms focus on identifying specific vertices or edges based
on certain criteria. Here are a few types of selection techniques in graph
algorithms:

Minimum Spanning Tree (MST):

« Definition: A subset of the edges in a weighted graph that connects all
vertices together without cycles and with the minimum possible total edge
weight.

« Common Algorithms:

o Kruskal’s Algorithm: Sorts all edges and adds them one by one to the
MST, ensuring no cycles are formed.

o Prim’s Algorithm: Starts with a single vertex and grows the MST by
adding the cheapest edge from the tree to a vertex not yet in the
tree.

Shortest Path Selection:
« Definition: Finding the shortest path between two vertices in a graph.
« Common Algorithms:

o Dijkstra’s Algorithm: Uses a priority queue to iteratively select the
closest vertex and update the distances to its neighbors.

o Bellman-Ford Algorithm: Handles graphs with negative weight
edges, relaxing all edges repeatedly to find the shortest path.
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Graph Traversal:

Graph traversal algorithms are essential for selection tasks, allowing for the
exploration of vertices or edges in specific orders:

« Breadth-First Search (BFS): Explores all neighbors at the present depth
prior to moving on to nodes at the next depth level. Used for unweighted
graphs.

« Depth-First Search (DFS): Explores as far as possible along each branch

before backtracking. Useful for cycle detection and connected components.

Summary

Understanding graphs, their data structures, and associated algorithms is
fundamental for tackling a wide range of problems in computer science. Graphs
provide a flexible representation for relationships between data, while various
traversal, sorting, and selection algorithms enable efficient manipulation and
retrieval of information. Mastering these concepts is crucial for developing
efficient algorithms and solving complex problems in fields such as computer
networking, social network analysis, and route optimization.

Graph Traversals: Shortest Paths and Minimum Spanning Trees

Graph traversals are essential algorithms used to explore the vertices and edges
of a graph systematically. Two important concepts in graph traversals are
Shortest Paths and Minimum Spanning Trees (MST). Each serves different
purposes in the analysis and manipulation of graphs.

1. Shortest Paths
Definition:

The Shortest Path Problem involves finding the shortest path from a source
vertex to one or more destination vertices in a graph. This path minimizes the
sum of the weights of the edges traversed.

Applications:
« Navigation systems (finding the shortest route on a map).

« Network routing (optimal data transmission paths).
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» Robotics (path planning for autonomous robots).

« Transportation (optimizing travel time or cost).
Common Algorithms:

1. Dijkstra's Algorithm:

o Overview: Efficiently finds the shortest path from a single source
vertex to all other vertices in a graph with non-negative edge
weights.

o Procedure:

1. Initialize distances from the source to all vertices as infinity,
except the source vertex itself, which is set to 0.

2. Use a priority queue to repeatedly extract the vertex with the
smallest distance.

3. Update the distances to its adjacent vertices if a shorter path is
found.

4. Repeat until all vertices have been processed.

o Time Complexity: O((V+E)log V)O((V + E) \log V)O((V+E)logV) using a
priority queue, where VVV is the number of vertices and EEE is the
number of edges.

b

14

2. Bellman-Ford Algorithm:
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o Overview: Computes the shortest path from a single source to all
vertices in a graph, capable of handling negative weight edges but
not negative weight cycles.
o Procedure:
1. Initialize distances from the source to all vertices as infinity,
except the source, which is set to 0.
2. For each vertex, relax all edges up to V-1V-1V-1 times (where
VVV is the number of vertices).
3. If a shorter path is found, update the distance.
4. Check for negative weight cycles by performing one more
relaxation; if an update occurs, a negative cycle exists.
o Time Complexity: O(V-E)O(V \cdot E)O(V-E).
3. Floyd-Warshall Algorithm:
o Overview: A dynamic programming algorithm for finding shortest
paths between all pairs of vertices.
o Procedure:
1. Create a distance matrix initialized with the weights of the
edges (or infinity if no edge exists).
2. lteratively update the matrix by checking if a path through an
intermediate vertex provides a shorter distance.
o Time Complexity: O(V3)O(VA3)O(V3).
Summary:

The shortest path algorithms are crucial for various applications that require
efficient routing and optimization of travel paths in weighted graphs.

2. Minimum Spanning Trees (MST)

Definition:
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A Minimum Spanning Tree of a weighted, undirected graph is a subgraph that
connects all the vertices together without cycles and with the minimum possible
total edge weight.

Applications:
« Designing network layouts (like computer networks, electrical circuits).
« Road network construction (minimizing costs).
o Cluster analysis in data science.
Common Algorithms:
1. Kruskal's Algorithm:

o Overview: A greedy algorithm that builds the MST by adding edges in
order of increasing weight, ensuring no cycles are formed.

o Procedure:
1. Sort all edges in non-decreasing order of their weight.
2. Initialize a forest where each vertex is a separate tree.

3. Iterate through the sorted edges and add the edge to the
forest if it connects two different trees (using a union-find data
structure to check).

4. Stop when there are V-1V-1V-1 edges in the MST.

o Time Complexity: O(Elog E)O(E \log E)O(ElogE), primarily due to
sorting.

2. Prim's Algorithm:

o Overview: Another greedy algorithm that grows the MST from an
initial vertex by adding the smallest edge that connects a vertex in
the MST to a vertex outside it.

o Procedure:
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5.

. Initialize a priority queue to keep track of the minimum edge

weights.

Start from an arbitrary vertex, marking it as part of the MST.

. Add all its adjacent edges to the priority queue.

. Continuously extract the minimum edge from the queue that

connects to a new vertex, marking it and updating the queue
with its adjacent edges.

Repeat until all vertices are included in the MST.

o Time Complexity: O((V+E)log V)O((V + E) \log V)O((V+E)logV) when
using a priority queue.

Summary:

Minimum Spanning Trees are vital for minimizing costs in various network and
design problems, enabling efficient connectivity while avoiding cycles.

Conclusion

Understanding Shortest Paths and Minimum Spanning Trees is essential in graph
theory and algorithm design. These algorithms have diverse applications across
fields such as transportation, networking, and resource management, making
them indispensable tools in computer science and engineering.



