
1 
 

DSA 
Unit-1 

Abstract Data Types: Introduction - Date Abstract Data Type - Bags - Iterators. 
Arrays: Array Structure - Python List - Two Dimensional Arrays - Matrix Abstract 
Data Type. Sets, Maps: Sets - Maps - Multi - Dimensional Arrays. 

Unit-II 

Algorithm Analysis: Experimental Studies - Seven Functions - Asymptotic Analysis. 
Recursion: Illustrative Examples - Analyzing Recursive Algorithms - Linear 
Recursion - Binary Recursion - Multiple Recursion. 

Unit-III 

Stacks, Queues, and Deques: Stacks - Queues - Double - Ended Queues Linked. 
Lists: Singly Linked Lists - Circularly Linked Lists - Doubly Linked Lists. Trees: 
General Trees -Binary Trees Implementing Trees - Tree Traversal Algorithms 

Unit-IV 

Priority Queues: Priority Queue Abstract Data Type - Implementing a Priority 
Queue - Heaps - Sorting with a Priority Queue. Maps, Hash Tables, and Skip Lists: 
Maps and Dictionaries - Hash Tables - Sorted Maps - Skip Lists - Sets, Multisets, 
and Multimaps. 

Unit-V 

Search Trees: Binary Search Trees - Balanced Search Trees - AVL Trees - Splay 
Trees. Sorting and Selection: Merge sort Quick sort - Sorting through an 
Algorithmic Lens - Comparing Sorting Algorithms - Selection. Graph Algorithms: 
Graphs - Data Structures for Graphs - Graph Traversals - Shortest Paths - 
Minimum Spanning Trees  

2 
 

UNIT 1 
 

Abstract Data Type (ADT): Introduction 

An Abstract Data Type (ADT) is a type of data structure that encapsulates data 
and the operations that can be performed on it, while hiding the implementation 
details. It defines a set of values and a set of operations that can be performed on 
the values. ADTs allow the user to focus on what operations can be performed 
without worrying about how they are implemented. 

 Examples include lists, stacks, queues, sets, and more. 

 ADTs provide modularity and flexibility in program design by abstracting 
the underlying details. 

Date Abstract Data Type 

A Date Abstract Data Type is an ADT designed to store and manipulate dates. It 
typically includes: 

 Operations for setting, getting, and comparing dates (e.g., setDate, 
getDate, compareDate). 

 Support for date arithmetic, such as adding or subtracting days. 

 Methods for formatting and printing dates in various formats (e.g., 
printDate). 

Bags (or Multisets) 

A Bag is an ADT that represents an unordered collection of elements where 
duplicates are allowed. Unlike sets, bags do not enforce uniqueness. 

 Operations on bags include: 

o Add: Insert an item into the bag. 

o Remove: Remove an item from the bag (may remove one occurrence 
or all). 
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o Count: Count the number of occurrences of an item. 

o Size: Return the total number of items in the bag. 

Bags are used in situations where the frequency of elements is important, but the 
order of elements is not. 

Iterators 

An Iterator is a design pattern used to traverse through a collection, such as a list, 
set, or bag. It provides a way to access elements sequentially without exposing 
the underlying representation of the collection. 

 Basic operations of iterators include: 

o hasNext(): Checks if there are more elements to iterate. 

o next(): Returns the next element in the collection. 

o remove(): Removes the last element returned by the iterator 
(optional operation). 

Iterators are crucial for allowing easy access and manipulation of elements in a 
collection, one at a time. 

Array: Array Structure 

An array is a data structure that holds a fixed number of elements, typically of the 
same data type, in a contiguous block of memory. Arrays provide efficient access 
to elements using an index, with each element being accessed in constant time 
(O(1)). 

 Characteristics: 

o Fixed size, determined at the time of creation. 

o All elements are of the same type. 

o Efficient indexing and retrieval of elements. 

o Typically used when the number of elements is known and constant. 

Python List 

4 
 

In Python, the equivalent of an array is called a list. However, Python lists are 
more flexible than traditional arrays because: 

 Dynamic size: Python lists can grow and shrink dynamically, allowing 
insertion and deletion of elements. 

 Heterogeneous: They can store elements of different data types. 

 Methods: Python lists come with many built-in methods, such as append(), 
remove(), pop(), sort(), and reverse(). 

Example: 

my_list = [1, 2, 3, 'hello', 5.6] 

Python lists are very versatile and can be used to simulate traditional 
arrays. 

Two-Dimensional Array 

A two-dimensional array (2D array) is an array of arrays, where each 
element is itself an array. It is used to represent tabular data or a matrix, where 
data is stored in rows and columns. 

 Structure: 

o 2D arrays are often visualized as grids. 

o Each element in a 2D array is accessed using two indices: one for the 
row and one for the column. 

In Python, a 2D array can be represented using lists of lists: 

matrix = [ 
    [1, 2, 3], 
    [4, 5, 6], 
    [7, 8, 9]] 
print(matrix[1][2])  # Output: 6 
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Matrix Abstract Data Type 

A Matrix ADT is a special type of two-dimensional array that is used to 

represent mathematical matrices. It consists of rows and columns of data, often 

numbers, and supports various operations commonly used in mathematics, such 

as: 

 Addition/Subtraction: Adding or subtracting corresponding elements. 

 Multiplication: Matrix multiplication follows special rules where rows of 

the first matrix are multiplied by columns of the second. 

 Transpose: Reversing rows and columns. 

 Determinant and Inverse: Advanced operations for square matrices. 

In Python, the NumPy library provides a powerful way to work with 

matrices: 

 

import numpy as np 

matrix = np.array([[1, 2], [3, 4]]) 

transpose = matrix.T 

Sets 

A Set is an abstract data type that represents a collection of unique 

elements, meaning no duplicates are allowed. Sets are used when the presence of 

an element is more important than the frequency or order. 

 Key Characteristics: 

o Unordered: Elements in a set have no specific order. 

o No duplicates: A set automatically removes duplicate elements. 
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o Efficient operations: Operations like insertion, deletion, and 

membership testing are typically efficient (average O(1) time 

complexity in many implementations). 

In Python, sets can be created using the set() function or with curly braces 

{}: 

my_set = {1, 2, 3, 4} 

my_set.add(5) 

print(my_set)  # Output: {1, 2, 3, 4, 5} 

 

Common set operations include union, intersection, difference, and 

symmetric difference. 

Maps 

A Map (also known as a Dictionary in Python or HashMap in other 

languages) is a data structure that stores key-value pairs, where each key is 

unique, and it maps to a corresponding value. 

 Key Characteristics: 

o Key-value pairs: Each element in a map consists of a unique key 

associated with a specific value. 

o Efficient lookups: Maps allow efficient retrieval, insertion, and 

deletion based on the key. 

o Flexible keys: In many implementations, keys can be of various data 

types (numbers, strings, tuples, etc.). 

In Python, maps are represented using dictionaries (dict): 

my_map = {'name': 'John', 'age': 25} 

print(my_map['name'])  # Output: John 
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my_map['age'] = 26 

print(my_map)  # Output: {'name': 'John', 'age': 26} 

 

Multidimensional Arrays 

A Multidimensional Array is an array with more than one dimension. It is 

often used to represent data in multiple dimensions, such as matrices (2D arrays), 

or higher-dimensional spaces. 

 Key Characteristics: 

o Multiple indices: A multidimensional array is accessed using multiple 

indices (e.g., two indices for a 2D array, three for a 3D array). 

o Fixed size: The size of each dimension is fixed upon creation. 

o Efficient access: Accessing an element is efficient, as elements are 

stored contiguously in memory. 

In Python, a multidimensional array can be created using lists of lists (for 2D 

arrays) or libraries like NumPy for higher dimensions: 

# Creating a 2D array (matrix) 

matrix = [ 

    [1, 2, 3], 

    [4, 5, 6], 

    [7, 8, 9] 

] 

print(matrix[1][2])  # Output: 6 

 

# Using NumPy for multidimensional arrays 

import numpy as np 
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array_3d = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) 

print(array_3d[1][0][1])  # Output: 6 

 

UNIT 2 
1. Experimental Studies in Algorithm Analysis 

Experimental studies involve empirical testing to evaluate the 
performance of algorithms based on actual running times. The process 
includes implementing the algorithm, selecting input data, and 
observing the behavior during execution. 

Key steps in experimental studies: 

 Implementation: The algorithm is coded in a specific programming 
language. 

 Input Selection: A range of inputs is chosen, from best-case (smallest) to 
worst-case (largest or most complex) scenarios. 

 Execution: The algorithm is run on each set of inputs. 
 Data Collection: Metrics like time (execution time) and space (memory 

usage) are recorded. 
 Analysis: Performance is analyzed by plotting graphs (e.g., time vs. input 

size) to detect patterns. 

Benefits: 

 Real-world applicability: Provides insights into actual performance rather 
than theoretical limits. 

 Comprehensive testing: Can test various conditions, from optimal to edge 
cases. 

Drawbacks: 

 Machine dependency: Results vary depending on hardware, operating 
system, and environment. 
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 Input specificity: It only evaluates performance based on chosen inputs, 
which may not be representative of all scenarios. 

Experimental studies measure an algorithm’s performance through real 
execution on chosen inputs. Key steps include coding, input selection, 
execution, and data collection. This method gives real-world 
performance but is machine-dependent and limited by input specificity. 

2. Seven Functions in Algorithm Analysis 

The seven mathematical functions are commonly used to describe the running 
time complexity of algorithms. These functions represent different growth rates, 
ranging from constant time to exponential time, and are essential in 
understanding how the performance of an algorithm scales as the input size 
increases. 

1. Constant Function – O(1) 

 Description: The running time does not depend on the input size. The 
algorithm performs a fixed number of operations regardless of how large 
the input is. 

 Example: Accessing an element from an array by index. 

 Growth Rate: No growth – the time remains constant. 

2. Logarithmic Function – O(log n) 

 Description: The running time grows logarithmically as the input size 
increases. Typically occurs in algorithms that repeatedly divide the input 
size by some factor. 

 Example: Binary search on a sorted array. 

 Growth Rate: Increases slowly even with large inputs; if input size doubles, 
the time increases by a constant factor. 

3. Linear Function – O(n) 

 Description: The running time increases directly in proportion to the input 
size. Every element is processed at least once. 
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 Example: Simple loops that iterate through all elements, like finding the 
maximum value in an array. 

 Growth Rate: The time grows linearly as the input size increases. 

4. Linearithmic Function – O(n log n) 

 Description: A combination of linear and logarithmic growth. Commonly 
found in efficient sorting algorithms. 

 Example: Merge sort, quicksort (average case). 

 Growth Rate: More efficient than quadratic but slower than linear 
algorithms. 

5. Quadratic Function – O(n²) 

 Description: The running time grows proportionally to the square of the 
input size. Typically found in algorithms with nested loops. 

 Example: Bubble sort, selection sort. 

 Growth Rate: Increases significantly with input size – if the input size 
doubles, the time quadruples. 

6. Cubic Function – O(n³) 

 Description: The running time grows proportionally to the cube of the input 
size. Occurs in algorithms with triple nested loops. 

 Example: Matrix multiplication using naive methods. 

 Growth Rate: Even more significant increase compared to quadratic. Rarely 
efficient for large inputs. 

7. Exponential Function – O(2^n) 

 Description: The running time doubles with each additional element in the 
input. Found in algorithms that solve problems through exhaustive search 
or brute force methods. 

 Example: Solving the traveling salesman problem using brute force, 
recursive algorithms like the naive Fibonacci calculation. 
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 Growth Rate: Extremely rapid growth, making these algorithms impractical 
for large inputs. 

Why These Functions Matter: 

These functions represent the complexity classes that allow us to predict the 
scalability of algorithms. Lower complexity (O(1), O(log n)) is preferred for 
efficiency, while higher complexity (O(n²), O(2^n)) may become impractical for 
large inputs. 

Common Use Cases: 

 O(1): Ideal for lookups or basic operations like pushing or popping in data 
structures (e.g., stacks, queues). 

 O(log n): Searching in sorted datasets, such as binary search trees. 

 O(n): Algorithms that require linear scans, such as finding elements in 
unsorted arrays. 

 O(n log n): Sorting algorithms used in real-world applications. 

 O(n²): Simple algorithms on small datasets, like basic sorting methods. 

Understanding these functions helps developers choose the best algorithms 
based on performance needs and input size. 

3. Asymptotic Analysis 

Asymptotic analysis is a fundamental concept in algorithm analysis that focuses 
on evaluating the performance of algorithms in terms of their input size, 
especially when the input becomes very large. It provides a way to describe the 
running time or space requirements of an algorithm in a general, machine-
independent manner. 

Definition: 

 Asymptotic analysis describes the behavior of an algorithm as the input size 
approaches infinity. Instead of calculating exact runtimes, it estimates the 
growth of the algorithm's time or space complexity in terms of the input 
size, denoted as "n." 
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 The key idea is to ignore constant factors and smaller terms, focusing only 
on the dominant term that influences the growth of complexity as input 
size increases. 

Purpose: 

 To classify algorithms according to their efficiency. 

 To predict the scalability of algorithms for large inputs. 

 To abstract away hardware and environmental factors, offering a more 
generalized performance measure. 

Key Asymptotic Notations: 

1. Big O Notation (O): 

o Definition: Describes the upper bound of the running time of an 
algorithm. It represents the worst-case scenario, meaning the 
maximum time the algorithm will take as the input size grows. 

o Example: An algorithm with time complexity O(n) will take time 
proportional to the input size, meaning if the input size doubles, the 
running time will double. 

o Usage: It provides a guarantee that the algorithm will not exceed this 
time, which is useful in predicting worst-case performance. 

2. Omega Notation (Ω): 

o Definition: Describes the lower bound of the running time. It 
represents the best-case scenario, meaning the minimum time an 
algorithm will take. 

o Example: An algorithm with Ω(n) means that at least n operations 
are required in the best case. 

o Usage: Used to understand the least time complexity an algorithm 
can achieve. 

3. Theta Notation (Θ): 
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o Definition: Describes the tight bound of the running time. It provides 
both an upper and lower bound, meaning the algorithm’s 
performance will grow at a rate bounded by this function in both 
best and worst cases. 

o Example: An algorithm with Θ(n) has its running time directly 
proportional to n in both best and worst scenarios. 

o Usage: It’s used when the growth rate of an algorithm is known to be 
exactly proportional to a certain function. 

Steps in Asymptotic Analysis: 

1. Express the Running Time as a Function of Input Size (n): 

o The first step is to identify the algorithm's running time as a function 
of input size. This could involve counting operations (e.g., 
comparisons, assignments) or using mathematical formulas to 
represent time complexity. 

2. Find the Dominant Term: 

o Once the function is expressed, focus on the term that grows the 
fastest as n increases. This is called the dominant term. 

o For example, in the function f(n)=3n2+2n+5f(n) = 3n^2 + 2n + 
5f(n)=3n2+2n+5, the term 3n23n^23n2 grows the fastest as n 
increases, so this term dominates the running time. 

3. Drop Constant Factors: 

o In asymptotic analysis, constant factors and lower-order terms are 
ignored because they have minimal impact on the growth rate as n 
becomes large. 

o Using the previous example, f(n)=3n2+2n+5f(n) = 3n^2 + 2n + 
5f(n)=3n2+2n+5 simplifies to O(n2)O(n^2)O(n2), as constants like 3 
and lower-order terms like 2n are disregarded. 

4. Apply the Appropriate Notation: 
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o Based on the analysis, use the correct asymptotic notation (O, Ω, or 
Θ) to describe the algorithm's growth rate. 

Why Asymptotic Analysis is Important: 

 Scalability: It helps to predict how algorithms will perform with increasing 
input size, making it easier to choose the most efficient algorithm for large 
datasets. 

 Machine Independence: It abstracts away factors like processor speed or 
system architecture, focusing only on the algorithm's efficiency. 

 Comparison: Asymptotic analysis provides a standardized way to compare 
different algorithms based on their time and space complexities. 

Examples of Asymptotic Behavior: 

1. Constant Time – O(1): Algorithms that perform a fixed number of 
operations regardless of input size. Example: Accessing an element in an 
array. 

2. Logarithmic Time – O(log n): Algorithms that reduce the problem size 
exponentially at each step, like binary search. 

3. Linear Time – O(n): Algorithms that perform a fixed number of operations 
per input element, like scanning an array. 

4. Quadratic Time – O(n²): Algorithms that involve nested loops, like bubble 
sort. 

5. Exponential Time – O(2^n): Algorithms that grow very quickly, like 
recursive algorithms solving the traveling salesman problem using brute 
force. 

Limitations of Asymptotic Analysis: 

 Ignores Constants: In some cases, constant factors can have a significant 
impact, especially when input sizes are small. 

 Doesn't Consider Practical Constraints: Asymptotic analysis focuses on 
large inputs, but real-world constraints like memory limits or specific 
hardware characteristics might not be factored in. 
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Summary: 

Asymptotic analysis provides a theoretical framework to analyze and predict the 
efficiency of algorithms by focusing on the growth of their running time or space 
usage with increasing input size. It uses notations like Big O, Omega, and Theta to 
represent the upper, lower, and tight bounds of the complexity. This allows for 
standardized comparisons and understanding of an algorithm's scalability. 

 

4. Recursion 

Recursion is a powerful programming technique in which a function calls itself 
either directly or indirectly to solve smaller instances of the same problem. A 
recursive function typically includes: 

1. Base Case: A condition that stops the recursion and returns a result without 
further recursive calls. 

2. Recursive Case: A part of the function where the function calls itself with 
modified arguments. 

Recursion is particularly useful for problems that can be divided into smaller 
subproblems of the same type, such as searching, sorting, and mathematical 
problems like calculating factorials or the Fibonacci sequence. 

Key Components of Recursion: 

 Base Case: Prevents infinite recursion by providing a terminating condition. 

 Recursive Call: Function calls itself with a smaller or simpler version of the 
original problem. 

There are different types of recursion based on how the recursive calls are made, 
including Linear Recursion, Binary Recursion, and Multiple Recursion. 

4.1. Linear Recursion 

Definition: 

 Linear recursion occurs when a recursive function makes at most one 
recursive call at each step. Each recursive call reduces the size of the 
problem and eventually reaches the base case. 
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How It Works: 

 The problem is broken down into smaller parts until the base case is 
reached, and then the solution is gradually built up by combining the 
results from the recursive calls. 

Structure of Linear Recursion: 

1. Base Case: The simplest case that terminates the recursion. 

2. Recursive Case: The function calls itself with a smaller or reduced input. 

Example: 

 A simple example is calculating the factorial of a number: 

def factorial(n): 

    if n == 0:  # Base case 

        return 1 

    else: 

        return n * factorial(n - 1)  # Recursive case 

 

Here, each call to factorial($n) calls factorial($n-1) until n becomes 0, at which 
point it returns 1 and unwinds the recursive calls. 

Applications: 

 Problems like finding the sum of a list, Fibonacci series, and simple tree 
traversals often use linear recursion. 

4.2. Binary Recursion 

Definition: 

 Binary recursion occurs when a recursive function makes two recursive calls 
at each step. This is often used in problems where the solution depends on 
solving two subproblems. 

How It Works: 
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 At each step, the function calls itself twice, and the results of these two 
calls are combined. This type of recursion often leads to a binary tree 
structure of function calls. 

Structure of Binary Recursion: 

1. Base Case: Terminates when the simplest case is reached. 

2. Recursive Case: The function makes two recursive calls. 

Example: 

 A classic example is the Fibonacci sequence: 

def fibonacci(n): 

    if n <= 1:  # Base case 

        return n 

    else: 

        return fibonacci(n - 1) + fibonacci(n - 2)  # Two recursive callsIn  

this example, for each fibonacci($n), the function calls itself twice: once with n-1 
and once with n-2. This forms a binary recursion tree, where each node makes 
two recursive calls. 

Applications: 

 Binary recursion is common in divide-and-conquer algorithms like 
mergesort, quicksort, and certain dynamic programming problems. 

 It is also used in problems that can naturally be divided into two 
subproblems, such as tree traversals. 

Drawbacks: 

 Binary recursion can lead to overlapping subproblems, resulting in 
redundant computations. This inefficiency is often handled using 
memoization or dynamic programming. 

4.3. Multiple Recursion 

Definition: 
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 Multiple recursion occurs when a recursive function makes more than two 
recursive calls at each step. This is a more generalized form of recursion 
where each call can spawn multiple subcalls. 

How It Works: 

 The problem is broken down into several smaller subproblems, and 
multiple recursive calls are made. The results of all the recursive calls are 
then combined to produce the final solution. 

Structure of Multiple Recursion: 

1. Base Case: Terminates the recursion when the smallest subproblem is 
reached. 

2. Recursive Case: The function makes several recursive calls, each dealing 
with a different part of the problem. 

Example: 

 A typical example of multiple recursion is the Towers of Hanoi problem: 

 

 

def fibonacci(n): 

    if n <= 1:  # Base case 

        return n 

    else: 

        return fibonacci(n - 1) + fibonacci(n - 2)  # Two recursive calls 

In this example, the function makes multiple recursive calls (two calls for moving 
disks between pegs). Each move breaks down the problem into smaller 
subproblems involving fewer disks. 

Applications: 
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 Problems involving multiple recursive branches or multiple 
subcomponents, such as graph traversals, combinatorial problems, and 
puzzles like the Towers of Hanoi. 

Drawbacks: 

 Multiple recursion can quickly lead to high time complexity because of the 
exponential number of recursive calls. 

 Like binary recursion, it may require optimizations like dynamic 
programming or memoization to avoid redundant calculations. 

Key Differences Between the Types of Recursion: 

1. Linear Recursion: 

o One recursive call at each step. 

o Straightforward and simple. 

o Example: Factorial, Fibonacci (iterative). 

2. Binary Recursion: 

o Two recursive calls at each step. 

o Forms a binary tree structure. 

o Example: Fibonacci (recursive), tree traversal algorithms. 

3. Multiple Recursion: 

o More than two recursive calls at each step. 

o Complex, with branching recursion trees. 

o Example: Towers of Hanoi, combinatorial problems. 

Advantages of Recursion: 

 Simplicity: Recursion can simplify the code for problems that have a natural 
recursive structure. 

 Problem Decomposition: It breaks down complex problems into smaller 
subproblems, which can be easier to solve. 
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Disadvantages of Recursion: 

 Memory Overhead: Each recursive call consumes stack space, and deep 
recursion can lead to stack overflow. 

 Efficiency: Recursive algorithms can sometimes be inefficient, especially 
with overlapping subproblems, unless optimized with techniques like 
memoization. 

Conclusion: 

Recursion is a versatile tool in algorithm design, enabling solutions to complex 
problems by dividing them into smaller, more manageable subproblems. Linear, 
binary, and multiple recursion each apply to different problem types, allowing 
algorithms to be crafted based on the nature of the problem at hand. However, 
efficiency and memory usage should always be considered when using recursion. 

  

Analyzing Recursive Algorithms 

Analyzing recursive algorithms involves understanding their behavior in terms of 
time complexity and space complexity, and how the recursive calls break down a 
problem into subproblems. The main goal of analyzing recursive algorithms is to 
determine the number of recursive calls, the depth of recursion, and how much 
work is done at each recursive level. 

Key Factors in Analyzing Recursive Algorithms: 

1. Number of Recursive Calls: The number of times the recursive function 
calls itself. This affects the depth of the recursion tree and the total number 
of computations. 

2. Work Done at Each Level: At each level of recursion, there may be some 
work done in addition to the recursive call itself. This can include 
operations like merging arrays, adding numbers, or copying data. 

3. Base Case: The condition that stops recursion. It’s essential to identify 
when recursion terminates to prevent infinite recursion and stack overflow. 

Steps in Analyzing Recursive Algorithms: 
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1. Identify the Recurrence Relation: 

o The recurrence relation describes how the problem size decreases 
with each recursive call. It provides a formula for the time complexity 
of the algorithm. 

o Recurrence relations are expressed in the form: 
T(n) = aT(f(n)) + g(n) 

 T(n): The time complexity for solving a problem of size n. 

 a: The number of recursive calls made by the algorithm. 

 f(n): The size of the subproblem in each recursive call. 

 g(n): The work done outside of the recursive calls (usually in 
the form of loops or arithmetic operations). 

Example: Consider the time complexity of the merge sort algorithm: 

o T(n) = 2T(n/2) + O(n), where: 

 2T(n/2): Two recursive calls are made, each on a subproblem 
of size n/2. 

 O(n): The work done at each level to merge the results is O(n). 

2. Construct the Recursion Tree: 

o A recursion tree is a visual representation of the recursive calls. Each 
node in the tree represents a function call, and the children of that 
node represent the recursive calls made by the function. 

o The root of the tree represents the original function call with 
problem size n. Each level of the tree represents the recursive calls 
made at each depth, and the leaves represent the base cases. 

Example: Merge Sort Recursion Tree: 

o The top level has T(n). 

o The next level has two subproblems, each of size n/2. 
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o This continues until the base case is reached (when the subproblem 
size is 1). 

3. Analyze the Depth of Recursion: 

o The depth of the recursion tree is the number of levels in the tree, 
which determines how many recursive calls are made before the 
base case is reached. 

o For divide-and-conquer algorithms like merge sort, the depth is 
typically log(n) because the problem size is halved at each level (e.g., 
n → n/2 → n/4 → ... → 1). 

4. Calculate the Work Done at Each Level: 

o After identifying the depth of the recursion, the next step is to 
calculate the work done at each level of the recursion tree. 

o In many recursive algorithms, the amount of work done at each level 
is O(n), as in the case of merge sort, where merging the two halves 
takes O(n) time. 

5. Summing the Work Across All Levels: 

o To compute the total time complexity, sum the work done at each 
level of the recursion tree. 

o If the recursion depth is log(n) and O(n) work is done at each level, 
the total time complexity is: T(n)=O(n)+O(n)+...+O(n)=O(n⋅log n)T(n) 
= O(n) + O(n) + ... + O(n) = O(n \cdot \log 
n)T(n)=O(n)+O(n)+...+O(n)=O(n⋅logn) This gives the total time 
complexity of the recursive algorithm. 

Methods for Solving Recurrence Relations: 

Several techniques can be used to solve recurrence relations and determine the 
time complexity of recursive algorithms: 

1. Substitution Method: 

o Involves making a guess for the solution and then proving that the 
guess is correct by using mathematical induction. 
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o Example: Solve T(n) = 2T(n/2) + n. 

 Guess: T(n) = O(n log n). 

 Prove by induction that this guess satisfies the recurrence 
relation. 

2. Recursion Tree Method: 

o Visualize the recursive calls as a tree and calculate the total work 
done at each level, then sum across all levels to get the total time 
complexity. 

o Example: For T(n) = 2T(n/2) + O(n), the recursion tree shows that 
each level has O(n) work, and there are log(n) levels, so the total 
complexity is O(n log n). 

3. Master Theorem: 

o Provides a shortcut for solving recurrences of the form T(n) = aT(n/b) 
+ O(n^d). 

o Based on the values of a, b, and d, it gives the time complexity in 
three cases: 

1. If a < b^d: T(n) = O(n^d). 

2. If a = b^d: T(n) = O(n^d log n). 

3. If a > b^d: T(n) = O(n^log_b a). 

Example: Solve T(n) = 2T(n/2) + O(n) using the master theorem. 

o Here, a = 2, b = 2, d = 1. 

o a = b^d, so the time complexity is O(n log n). 

Space Complexity of Recursive Algorithms: 

 In addition to time complexity, recursive algorithms also consume memory 
for storing intermediate function calls in the call stack. 

24 
 

 The space complexity is determined by the depth of recursion, which 
corresponds to the maximum number of recursive calls that can be active 
at the same time. 

 Space Complexity Example: For a recursive algorithm with depth log(n), 
the space complexity would be O(log n), as each recursive call uses a new 
frame in the stack. 

Examples of Recursive Algorithm Analysis: 

1. Factorial Algorithm: 

o Recurrence Relation: T(n)=T(n−1)+O(1)T(n) = T(n-1) + 
O(1)T(n)=T(n−1)+O(1) Each recursive call reduces the problem size by 
1. 

o Time Complexity: The depth of recursion is n, and at each level, 
constant work is done, so the total time complexity is O(n). 

2. Binary Search Algorithm: 

o Recurrence Relation: T(n)=T(n/2)+O(1)T(n) = T(n/2) + 
O(1)T(n)=T(n/2)+O(1) The problem size is halved at each recursive 
step. 

o Time Complexity: The recursion depth is log n, and constant work is 
done at each level, so the total time complexity is O(log n). 

3. Merge Sort Algorithm: 

o Recurrence Relation: T(n)=2T(n/2)+O(n)T(n) = 2T(n/2) + 
O(n)T(n)=2T(n/2)+O(n) Two recursive calls are made, each of size 
n/2, and O(n) work is done to merge the results. 

o Time Complexity: O(n log n) using the recursion tree or master 
theorem. 

Conclusion: 

Analyzing recursive algorithms is essential for understanding their efficiency in 
terms of time and space complexity. By using techniques like recurrence relations, 
recursion trees, and the master theorem, we can derive the overall complexity of 
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a recursive algorithm and optimize it if necessary. Understanding how recursion 
scales with problem size allows us to make informed decisions about when 
recursion is appropriate and when an iterative solution might be more efficient. 

 

UNIT 3 
Stacks, Queues, and Deques 

Stacks, Queues, and Double-Ended Queues (Deques) are essential data structures 
in computer science that organize elements for specific types of operations. Each 
has unique characteristics in how they allow access to their elements, which 
makes them suitable for different kinds of problems. 

 

1. Stacks 

Definition: 

A stack is a linear data structure that follows the Last In, First Out (LIFO) principle. 
The last element added to the stack is the first one to be removed. Think of it like 
a stack of plates where you can only take the top plate off or add a new one to 
the top. 

Basic Operations: 

 Push: Add an element to the top of the stack. 

 Pop: Remove the top element from the stack. 

 Peek/Top: Retrieve the top element without removing it. 

 IsEmpty: Check whether the stack is empty. 

 Size: Get the current size of the stack. 

Real-Life Analogy: 
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Consider a stack of books. You can only access the top book, and when you 
remove the top one, the next one becomes accessible. Similarly, in programming, 
a stack limits access to the most recently added item. 

Applications: 

 Function Calls: In programming, a stack is used to keep track of function 
calls. When a function is called, it’s pushed onto the stack. When the 
function returns, it’s popped off the stack. 

 Undo Mechanism: Many applications (e.g., text editors) use stacks to 
implement the undo feature. Each action is pushed onto the stack, and an 
undo operation pops the last action. 

 Expression Evaluation: Stacks are used to evaluate arithmetic expressions 
written in postfix notation (Reverse Polish Notation) or to convert from 
infix to postfix. 

Time Complexity: 

 Push, Pop, Peek: O(1), as these operations involve accessing or modifying 
the top element only. 

 

2. Queues 

Definition: 

A queue is a linear data structure that follows the First In, First Out (FIFO) 
principle. The first element added to the queue is the first one to be removed. It's 
like standing in line for a service where the person who comes first gets served 
first. 

Basic Operations: 

 Enqueue: Add an element to the rear of the queue. 

 Dequeue: Remove an element from the front of the queue. 

 Front/Peek: Retrieve the front element without removing it. 

 IsEmpty: Check whether the queue is empty. 
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 Size: Get the current size of the queue. 

Real-Life Analogy: 

Imagine a line at a movie theater. People enter the line from the back and are 
served in the order they arrived, starting from the front. 

Applications: 

 Scheduling Tasks: Queues are used in operating systems to manage 
processes and tasks (e.g., scheduling jobs, handling requests in a web 
server). 

 Breadth-First Search (BFS): In graph and tree traversal, queues are used to 
explore nodes level by level, ensuring that the oldest nodes are processed 
first. 

 Buffering: Queues are used in scenarios like IO buffering, where data 
comes in and goes out in a sequential manner. 

Types of Queues: 

 Circular Queue: A queue where the last position is connected to the first, 
forming a circle. It is used to optimize space usage when the queue is 
implemented using an array. 

Time Complexity: 

 Enqueue, Dequeue, Peek: O(1), as these operations affect only the front or 
rear of the queue. 

 

3. Double-Ended Queues (Deques) 

Definition: 

A double-ended queue (deque) is a generalized version of a queue where 
elements can be added or removed from both the front and the rear. This makes 
the deque a more flexible data structure compared to a standard queue, which 
only allows insertion at the rear and deletion from the front. 

Basic Operations: 
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 AddFront (PushFront): Add an element to the front of the deque. 

 AddRear (PushBack): Add an element to the rear of the deque. 

 RemoveFront (PopFront): Remove an element from the front. 

 RemoveRear (PopBack): Remove an element from the rear. 

 Front/PeekFront: Retrieve the front element without removing it. 

 Rear/PeekRear: Retrieve the rear element without removing it. 

 IsEmpty: Check whether the deque is empty. 

 Size: Get the current size of the deque. 

Real-Life Analogy: 

Think of a double-ended checkout line at a store where customers can both enter 
and leave from either end. 

Applications: 

 Sliding Window Problems: Deques are used in algorithms that require 
maintaining a subset of items (e.g., finding the maximum or minimum value 
in a sliding window over an array). 

 Palindrome Checker: Since a deque allows access to both ends, it can be 
used to check if a string is a palindrome by comparing characters from the 
front and rear. 

 Job Scheduling: In some cases, deques are used for scheduling tasks where 
priorities might change, requiring dynamic insertion or removal from either 
end of the queue. 

Types of Deques: 

 Input-Restricted Deque: In this variation, insertion is allowed only at one 
end, but deletion can occur at both ends. 

 Output-Restricted Deque: Here, deletion is allowed at one end, but 
insertion can occur at both ends. 

Time Complexity: 
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 AddFront, AddRear, RemoveFront, RemoveRear: O(1), as these operations 
involve only the front or rear end of the deque. 

 

 

Comparison of Stacks, Queues, and Deques: 

 

Conclusion: 

 Stacks are ideal for problems that require tracking the last accessed 
elements first. 

 Queues are suited for scheduling and sequential processing tasks. 

 Deques offer greater flexibility by supporting insertion and deletion from 
both ends, making them suitable for a broader range of problems where 
access from both ends is required. 

Understanding these data structures and their properties is critical for solving a 
wide variety of computational problems efficiently. 

 

Linked Lists 

A Linked List is a linear data structure consisting of nodes, where each 
node contains two parts: 

Feature Stack Queue Deque 

Access 
Principle 

LIFO (Last In, 
First Out) 

FIFO (First In, First Out) Can insert/remove 
from both ends 

Insertion Top Rear Both front and rear 

Deletion Top Front Both front and rear 

Use Case Function calls, 
Undo features 

Task scheduling, BFS, 
I/O buffers 

Sliding windows, 
Palindrome check 

Time 
Complexity 

O(1) for 
Push/Pop 

O(1) for 
Enqueue/Dequeue 

O(1) for Add/Remove 
from front/rear 
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1. Data: The actual data element stored in the node. 
2. Pointer/Link: A reference (or pointer) to the next node in the sequence. 

Unlike arrays, linked lists do not require contiguous memory locations. 
Each node is dynamically allocated and linked using pointers. There are 
three common types of linked lists: Singly Linked Lists, Circularly Linked 
Lists, and Doubly Linked Lists. 

 

1. Singly Linked Lists 
Definition: 

A Singly Linked List is a type of linked list where each node points to 
the next node in the list, but there is no way to go back to the previous 
node. It follows a unidirectional structure, meaning traversal can only 
happen in one direction — from the first node (head) to the last node 
(tail). 

Structure: 

Each node in a singly linked list consists of: 

 Data: The information the node stores. 
 Next Pointer: A reference to the next node in the sequence. 

The last node in the list points to NULL, indicating the end of the list. 

Basic Operations: 

 Insertion: Adding a new node at the beginning, middle, or end of the list. 
o Inserting at the head: O(1) 
o Inserting at the end: O(n) (traverse the list to find the last node) 

 Deletion: Removing a node from the list. 
o Deleting the head node: O(1) 
o Deleting a specific node: O(n) 

 Traversal: Visiting each node in the list to access or search for data. 
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o Time complexity: O(n) 
 Search: Finding a specific element in the list. 

o Time complexity: O(n) 

Real-Life Analogy: 

Imagine a chain of people holding hands, where each person only 
knows the next person in the sequence. You cannot go backward or 
skip directly to a person further down the chain. 

Applications: 

 Dynamic memory allocation: Linked lists are used when memory size is not 
known in advance. 

 Implementation of stacks and queues: Singly linked lists can be used to 
implement stacks and queues, providing dynamic memory management. 

 File systems: Many file systems use linked lists to manage file blocks, with 
each block pointing to the next one in sequence. 

 
2. Circularly Linked Lists 
Definition: 

A Circularly Linked List is a variation of the singly linked list where the 
last node points back to the first node, forming a circular loop. There is 
no NULL value at the end of the list because the list is circular, meaning 
traversal can go back to the head from the last node. 

Structure: 

Each node in a circularly linked list consists of: 

 Data: The information stored in the node. 
 Next Pointer: A reference to the next node in the list. 

The next pointer of the last node points to the first node (head) rather 
than NULL. 
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Basic Operations: 

 Insertion: Adding a node can occur at the beginning, end, or between 
nodes. Inserting at the end requires updating the last node to point back to 
the first. 

 Deletion: Removing a node requires careful updates to ensure that the 
circular structure is maintained. 

 Traversal: Since the list is circular, traversal can continue infinitely unless 
stopped. A common practice is to traverse until the starting node is 
reached again. 

o Time complexity: O(n) 

Real-Life Analogy: 

Consider a carousel where each horse (node) is linked to the next, and 
after the last horse, you return to the first one. You can keep moving in 
circles. 

Applications: 

 Round-robin scheduling: Circular linked lists are used in operating systems 
to manage processes in a round-robin fashion. 

 Multiplayer games: Circular linked lists can manage player turns where the 
last player is followed by the first player. 

 Buffer management: Circular linked lists are often used to implement 
buffers (e.g., circular buffers) that manage data in a circular fashion. 

 

3. Doubly Linked Lists 
Definition: 

A Doubly Linked List is a type of linked list where each node contains 
two pointers: one pointing to the next node and one pointing to the 
previous node. This allows for traversal in both directions (forward and 
backward). 
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Structure: 

Each node in a doubly linked list contains: 

 Data: The information the node stores. 
 Next Pointer: A reference to the next node in the list. 
 Previous Pointer: A reference to the previous node in the list. 

Both the first node’s previous pointer and the last node’s next pointer 
point to NULL. 

Basic Operations: 

 Insertion: Nodes can be inserted at the beginning, middle, or end of the list. 
o Time complexity: O(1) for head insertion, O(n) for tail insertion or 

middle insertion. 
 Deletion: Removing a node is more efficient than in singly linked lists since 

you have access to both the previous and next nodes. 
o Time complexity: O(1) for head deletion, O(n) for other nodes. 

 Traversal: You can traverse the list from the head to the tail (forward) or 
from the tail to the head (backward). 

o Time complexity: O(n) for forward or backward traversal. 
 Search: Searching for a node can be done in either direction, depending on 

where the node is expected to be found. 
o Time complexity: O(n) 

Real-Life Analogy: 

Imagine a two-way street where you can move in either direction. In a 
doubly linked list, you can move forward or backward between nodes 
easily, just like driving on a street where traffic flows both ways. 

Applications: 

 Undo/Redo functionality: Doubly linked lists are often used to implement 
the undo/redo feature in applications like text editors, where you can move 
back to previous states and forward again. 

34 
 

 Navigation systems: Doubly linked lists can be used to store and navigate 
web page histories or file system directories where both forward and 
backward movement is required. 

 Deque implementation: Doubly linked lists are the underlying structure for 
implementing double-ended queues (deques) where you can insert and 
delete from both ends. 

Advantages of Doubly Linked Lists: 

 Bidirectional traversal: You can traverse in both directions, which makes it 
easier to reverse the list or implement certain algorithms. 

 Efficient deletion: Deletion of a node is more efficient as there’s no need to 
traverse from the head to find the previous node. 

Disadvantages of Doubly Linked Lists: 

 More memory: Each node requires extra memory for the additional pointer 
(previous pointer). 

 Complexity: Managing two pointers (next and previous) increases the 
complexity of insertion and deletion operations 

Comparison of Singly, Circularly, and Doubly Linked Lists 

Feature Singly Linked List Circularly Linked 
List 

Doubly Linked List 

Direction of 
traversal 

Only forward Only forward (but 
circular) 

Forward and backward 

Last node points 
to 

NULL First node NULL (next) and 
previous node 

Memory usage Requires memory 
for one pointer 

Requires memory 
for one pointer 

Requires memory for 
two pointers 

Insertion at end O(n) O(n) O(n) 
Deletion of node O(n) O(n) O(1) 
Efficient for 
circular traversal? 

No Yes No 
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Conclusion: 

 Singly Linked Lists are simple and effective when one-way traversal is 
sufficient. 

 Circularly Linked Lists are ideal for applications requiring continuous 
looping, like round-robin scheduling. 

 Doubly Linked Lists offer flexibility by allowing movement in both 
directions, making them useful for more complex applications such as 
undo/redo functionality. 

Each type of linked list has its own advantages and is suited to different 
types of problems based on the operations required. Understanding 
their structure and applications is essential for efficient problem-solving 
in data structures. 

Trees 

A tree is a hierarchical data structure that consists of nodes connected by edges. 
Each node stores data and has zero or more child nodes, forming a parent-child 
relationship. A tree is an abstract model of hierarchical structures, with the 
following characteristics: 

 Root: The top node of the tree. 

 Children: Nodes directly connected to another node going downward. 

 Parent: A node connected to its child. 

 Leaf: A node that has no children. 

 Depth: The level of a node relative to the root. 

 Height: The length of the longest path from the node to a leaf. 

 Subtree: A tree formed by any node and its descendants. 

 

1. General Trees 

Example 
applications 

Stacks, queues Round-robin 
scheduling 

Undo/Redo, doubly-
ended queues (deque) 
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Definition: 

A general tree is a tree in which each node can have any number of child nodes. 
Unlike binary trees, which restrict each node to a maximum of two children, 
general trees impose no such restriction. 

Key Properties: 

 Root: The root is the topmost node of the tree. 

 Parent and Children: A node can have multiple children but only one 
parent. 

 Subtrees: Any node along with its descendants forms a subtree, which itself 
is a tree. 

In a general tree, nodes can represent a variety of relationships, making it useful 
for real-world hierarchical data representation. 

Real-Life Analogy: 

A company’s organizational structure is a general tree where the CEO is the root, 
and each department (nodes) may have a variable number of employees 
(children). 

Applications: 

 File systems: Folders can contain any number of subfolders and files, 
resembling a general tree structure. 

 Hierarchical databases: Many databases store information in a general tree 
format to represent complex relationships. 

 Gaming AI: Decision-making processes in games often use trees to 
represent possible moves. 

 

2. Binary Trees 

Definition: 
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A binary tree is a tree in which each node has at most two children, commonly 
referred to as the left child and the right child. This structure makes binary trees 
more specific and easier to implement than general trees. 

Key Properties: 

 Node: Each node has data and at most two pointers (left and right child). 

 Left Subtree and Right Subtree: Each node is connected to two subtrees. 

 Recursive Nature: Every binary tree is composed of a root and two 
subtrees, which are themselves binary trees. 

Types of Binary Trees: 

1. Full Binary Tree: Every node has either 0 or 2 children. 

2. Complete Binary Tree: All levels, except possibly the last, are completely 
filled, and all nodes are as far left as possible. 

3. Perfect Binary Tree: A binary tree in which all interior nodes have two 
children, and all leaves are at the same level. 

4. Balanced Binary Tree: The height of the left and right subtrees of every 
node differs by at most one. 

5. Degenerate (Skewed) Tree: Every parent node has only one child, resulting 
in a structure similar to a linked list. 

Real-Life Analogy: 

Think of a binary tree like a family tree where each person (node) has two 
children, representing left and right subtrees. 

Applications: 

 Binary Search Trees (BSTs): Used for quick lookups, insertions, and 
deletions, often employed in databases and file systems. 

 Heaps: A type of binary tree used in priority queues and for sorting 
algorithms. 

 Expression Trees: Binary trees are used to represent expressions, where 
each leaf node is an operand and each internal node is an operator. 
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3. Implementing Trees 

Definition: 

To implement a tree, a node structure and methods for tree manipulation (such 
as insertion, deletion, and traversal) are required. Each node in a tree typically 
contains: 

 Data: The value stored in the node. 

 Left and Right Pointers: References to the node’s children (for binary 
trees). 

Basic Node Structure in C-like Pseudocode: 

class TreeNode: 

    def __init__(self, data): 

        self.data = data 

        self.left = None 

        self.right = NoneCommon Tree Operations: 

1. Insertion: Adding nodes to the tree, either to the left or right child (for 
binary trees). 

2. Deletion: Removing a node and maintaining tree properties. 

3. Search: Finding an element in the tree, often with binary search trees. 

4. Traversal: Visiting nodes in a specific order (e.g., pre-order, in-order, post-
order). 

Tree Representation: 

 Linked Structure: Each node contains pointers to its children. 

 Array Representation: For a complete binary tree, nodes can be stored in 
an array, where for a node at index i: 

o Left child: 2i + 1 
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o Right child: 2i + 2 

o Parent: (i - 1) / 2 

Applications: 

 Implementing abstract syntax trees: Used in compilers and interpreters to 
represent the structure of code. 

 Routing algorithms: Trees are used in networks for routing paths. 

 

4. Tree Traversal Algorithms 

Tree traversal refers to the process of visiting all nodes in a tree. Different 
traversal algorithms visit nodes in different orders, and there are three common 
methods: pre-order, in-order, and post-order traversal. 

Tree Traversal Types: 

1. Pre-order Traversal: 

o Definition: The nodes are visited in this order: root, left subtree, right 
subtree. 

o Algorithm: 

 Visit the root node. 

 Traverse the left subtree. 

 Traverse the right subtree. 

o Use Case: Used when you want to explore root nodes before 
inspecting leaves. 

o Example: For a tree: 

  A 

 / \ 

B   C 
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2. / 
D E 

Pre-order traversal: A, B, D, E, C. 

 

3. In-order Traversal: 

o Definition: The nodes are visited in this order: left subtree, root, right 
subtree. 

o Algorithm: 

 Traverse the left subtree. 

 Visit the root node. 

 Traverse the right subtree. 

o Use Case: Commonly used in binary search trees (BST) to retrieve 
elements in sorted order. 

o Example: For a tree: 

  A 

 / \ 

B   C 

/ 
D E 

In-order traversal: D, B, E, A, C. 

4.  

5. Post-order Traversal: 

o Definition: The nodes are visited in this order: left subtree, right 
subtree, root. 

o Algorithm: 

 Traverse the left subtree. 
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 Traverse the right subtree. 

 Visit the root node. 

o Use Case: Useful when you need to delete or free nodes from 
memory, as it ensures children are processed before their parents. 

o Example: For a tree: 

  

 A 

 / \ 

B   C 

6. / 
D E 

7. mathematica 

8.  

9. Post-order traversal: D, E, B, C, A. 

Level-order Traversal (Breadth-First Search): 

 Definition: Visits nodes level by level from left to right. 

 Algorithm: 

o Start at the root node. 

o Visit all nodes at the current level before moving to the next level. 

 Use Case: Often used in algorithms like shortest path search in unweighted 
graphs. 

 

Summary 

 General Trees: Allow multiple children per node and represent hierarchical 
relationships without restriction. 
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 Binary Trees: Restrict nodes to two children, leading to efficient algorithms 
for searching, insertion, and deletion. 

 Implementing Trees: Requires designing a node structure and traversal 
methods to navigate and manipulate tree data efficiently. 

 Tree Traversal Algorithms: Involve systematically visiting nodes in pre-
order, in-order, post-order, or level-order to perform operations or extract 
information from the tree. 

Understanding the types and traversal methods of trees is critical in many fields 
of computer science, such as database indexing, artificial intelligence (decision-
making trees), and hierarchical data representation. 

 

UNIT 4 
 

Priority Queues 

A priority queue is an abstract data type that operates similarly to a regular 
queue but with an added feature: each element in the priority queue has a 
priority level associated with it. Elements are removed from the priority queue 
based on their priority rather than their order in the queue. Higher priority 
elements are processed before lower priority ones. 

1. Priority Queue Abstract Data Type 

Definition: 

A priority queue (PQ) is an abstract data type where each element is assigned a 
priority. In a priority queue: 

 Elements with higher priority are dequeued before those with lower 
priority. 

 If two elements have the same priority, they may be dequeued according to 
their order of insertion (this behavior depends on the implementation). 
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Key Operations: 

 Insert (enqueue): Adds an element with an associated priority to the 
priority queue. 

 Remove (dequeue): Removes and returns the element with the highest 
priority (or lowest, depending on the implementation). 

 Peek (or front): Returns the highest priority element without removing it 
from the queue. 

 IsEmpty: Checks if the priority queue is empty. 

Use Cases: 

 Task scheduling: In operating systems, processes may have different 
priorities, and higher priority tasks are executed first. 

 Graph algorithms: Dijkstra's and Prim's algorithms use priority queues to 
manage vertices by their weights or distances. 

 Event simulation: In simulations, events can be scheduled based on their 
time of occurrence. 

 

2. Implementing a Priority Queue 

There are several ways to implement a priority queue, including using: 

 Unsorted Arrays or Linked Lists: Simple but inefficient for dequeue 
operations. 

 Sorted Arrays or Linked Lists: Ensures the highest priority element is at the 
front, but insertions are costly (O(n)). 

 Heaps: Provide efficient insertions and removals, making them the most 
common implementation for priority queues. 

Example Implementation Using a Min-Heap in Python: 

Here is an implementation of a priority queue using Python's heapq library, which 
provides an efficient way to manage a heap. 
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python 

import heapq 

class PriorityQueue: 

    def __init__(self): 

        self.elements = [] 

    def is_empty(self): 

        return not self.elements 

    def put(self, item, priority): 

        # Use a tuple (priority, item) to maintain the heap property 

        heapq.heappush(self.elements, (priority, item)) 

    def get(self): 

        # Returns the item with the highest priority (lowest numerical value) 

        return heapq.heappop(self.elements)[1] 

    def peek(self): 

        # Peek at the highest priority item without removing it 

        return self.elements[0][1] if self.elements else None 

Explanation: 

 put(item, priority): Adds an item to the priority queue with an associated 
priority. 

 get(): Removes and returns the item with the highest priority. 

 peek(): Returns the item with the highest priority without removing it. 

3. Heaps 

Definition: 

A heap is a specialized tree-based data structure that satisfies the heap property: 

 Max Heap: For any given node, its value is greater than or equal to the 
values of its children. The highest value is at the root. 
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 Min Heap: For any given node, its value is less than or equal to the values 
of its children. The lowest value is at the root. 

Key Properties: 

 A heap is a complete binary tree, meaning all levels are fully filled except 
possibly for the last level, which is filled from left to right. 

 The heap can be efficiently implemented using an array, where the parent-
child relationships are represented by indices: 

o For a node at index i: 

 Left child is at 2i + 1 

 Right child is at 2i + 2 

 Parent is at (i - 1) // 2 

Use Cases: 

 Heap Sort: An efficient sorting algorithm that uses a heap to sort elements. 

 Implementing priority queues: Heaps allow efficient insertions and 
removals. 

4. Sorting with a Priority Queue 

Sorting with a priority queue can be achieved through a process known as Heap 
Sort. The algorithm works as follows: 

Heap Sort Algorithm: 

1. Build a Heap: Convert the array into a heap. For a max heap, the largest 
element will be at the root. 

2. Sort the Array: 

o Remove the root (largest element) and place it at the end of the 
array. 

o Reduce the size of the heap by one. 

o Restore the heap property by re-heapifying the remaining elements. 
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o Repeat until all elements are sorted. 

Pseudocode: 

function heapSort(array): 

    buildMaxHeap(array) 

    for i from length(array) - 1 to 1: 

        swap(array[0], array[i])  // Move current root to end 

        heapify(array, index 0, size reduced by 1) 

Time Complexity: 

 The time complexity of heap sort is O(n log n) for both average and worst 
cases, making it efficient for large datasets. The space complexity is O(1) if 
performed in-place. 

Advantages: 

 In-place: Requires only a constant amount of additional space. 

 Not stable: The relative order of equal elements may change. 

Use Cases: 

 Useful when dealing with large datasets and needing a guaranteed O(n log 
n) time complexity. 

Summary 

 Priority Queue Abstract Data Type: Operates on the principle of priority, 
enabling efficient retrieval of elements based on priority rather than 
insertion order. 

 Implementing a Priority Queue: Can be done using various methods, with 
heaps being the most efficient. 

 Heaps: A complete binary tree that maintains a specific ordering property, 
supporting efficient insertions and deletions. 

 Sorting with a Priority Queue: Heap sort utilizes a priority queue to sort 
elements efficiently, achieving O(n log n) time complexity. 
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Understanding priority queues, their implementation, and their use in sorting 
algorithms is crucial in designing efficient data structures and algorithms for real-
world applications. 

 

 

 

Maps, Hash Tables, and Skip Lists 

Maps, hash tables, and skip lists are important data structures that provide 
efficient ways to store and retrieve key-value pairs. Each of these structures has 
unique characteristics and use cases. 

1. Maps and Dictionaries 

Definition: 

A map (or dictionary) is an abstract data type that represents a collection of key-
value pairs, allowing efficient retrieval of values based on their associated keys. 
Maps enable users to quickly access, insert, and delete elements using keys. 

Key Characteristics: 

 Keys: Unique identifiers used to access values in the map. 

 Values: The data associated with each key. 

 No duplicate keys: Each key in a map must be unique; however, multiple 
keys can have the same value. 

Common Operations: 

 Insert (put): Adds a key-value pair to the map. 

 Remove (delete): Removes a key-value pair by key. 

 Retrieve (get): Fetches the value associated with a given key. 

 Contains: Checks if a key exists in the map. 

Implementations: 

48 
 

Maps can be implemented using various data structures: 

 Hash Tables: Use hashing to map keys to values. 

 Balanced Trees: Maintain keys in a sorted order for efficient retrieval. 

Example in Python: 

In Python, dictionaries are implemented as maps: 

python 

my_dict = {} 

my_dict['key1'] = 'value1' 

print(my_dict['key1'])  # Output: value1 

 

2. Hash Tables 

Definition: 

A hash table is a data structure that implements a map using a hash function to 
compute an index into an array of buckets or slots. This allows for efficient 
storage and retrieval of key-value pairs. 

Key Characteristics: 

 Hash Function: A function that takes a key as input and produces an index 
(hash code) to store or retrieve the corresponding value. A good hash 
function minimizes collisions. 

 Collision Handling: When two keys hash to the same index, a collision 
occurs. Common strategies for handling collisions include: 

o Chaining: Each index in the array points to a linked list (or another 
data structure) containing all key-value pairs that hash to the same 
index. 

o Open Addressing: If a collision occurs, the algorithm probes for the 
next available slot in the array. 

Common Operations: 
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 Insert (put): O(1) on average, O(n) in the worst case. 

 Remove (delete): O(1) on average, O(n) in the worst case. 

 Retrieve (get): O(1) on average, O(n) in the worst case. 

Example in Python: 

Python dictionaries are implemented using hash tables: 

python 

hash_table = {} 

hash_table['key1'] = 'value1' 

print(hash_table['key1'])  # Output: value1 

3. Sorted Maps 

Definition: 

A sorted map is a data structure that maintains its entries in sorted order based 
on the keys. This allows for efficient range queries and ordered traversal of the 
keys. 

 

Key Characteristics: 

 Sorted Order: Entries are automatically sorted based on the key. The 
sorting can be done using a natural ordering (e.g., ascending) or a custom 
comparator. 

 Balanced Trees: Sorted maps are often implemented using balanced binary 
search trees, such as: 

o Red-Black Trees 

o AVL Trees 

Common Operations: 

 Insert (put): O(log n) 

 Remove (delete): O(log n) 
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 Retrieve (get): O(log n) 

 Range Queries: Efficiently retrieve all entries within a specified key range. 

Example in Python: 

While Python doesn't have a built-in sorted map, the sortedcontainers library can 
be used: 

python 

from sortedcontainers import SortedDict 

sorted_map = SortedDict() 

sorted_map['key1'] = 'value1' 

sorted_map['key2'] = 'value2' 

for key, value in sorted_map.items(): 

    print(key, value) 

4. Skip Lists 

Definition: 

A skip list is a probabilistic data structure that allows for efficient search, 
insertion, and deletion operations. It consists of multiple levels of linked lists, 
where each higher level acts as an "express lane" for the lower levels. 

 

 

 

Key Characteristics: 

 Multi-Level Linked List: Each element in the skip list has multiple pointers 
to elements in the next level. The bottom level is a standard sorted linked 
list, while higher levels provide shortcuts for faster traversal. 

 Probabilistic Balancing: The number of pointers for each element is 
determined probabilistically, typically using a coin flip. This ensures that the 
skip list remains balanced on average. 
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Common Operations: 

 Search: O(log n) on average, O(n) in the worst case. 

 Insert: O(log n) on average, O(n) in the worst case. 

 Delete: O(log n) on average, O(n) in the worst case. 

Example: 

python 

class SkipListNode: 

    def __init__(self, value, level): 

        self.value = value 

        self.forward = [None] * (level + 1) 

class SkipList: 

    def __init__(self): 

        self.max_level = 16  # Maximum levels 

        self.header = SkipListNode(None, self.max_level) 

        self.level = 0  # Current level 

    def insert(self, value): 

        # Insert value into the skip list (implementation details omitted) 

        pass 

    def search(self, value): 

        # Search for value in the skip list (implementation details omitted) 

        pass 

 

Advantages: 

 Simplicity: Easier to implement than balanced trees. 

 Dynamic Size: Can grow or shrink as needed without rebalancing. 

Use Cases: 
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 Skip lists are used in applications requiring frequent insertions and 
deletions while maintaining sorted order, such as in databases or memory 
management. 

Summary 

 Maps and Dictionaries: Abstract data types for storing key-value pairs with 
efficient access. 

 Hash Tables: Implement maps using hash functions for efficient key-value 
storage and retrieval. 

 Sorted Maps: Maintain entries in sorted order for efficient range queries, 
typically implemented using balanced trees. 

 Skip Lists: Probabilistic data structures that provide efficient search and 
insertion, using multiple levels of linked lists. 

These data structures play a crucial role in various applications, offering different 
trade-offs in terms of efficiency, complexity, and ease of use. 

Sets, Multisets, and Multimaps 

Sets, multisets, and multimaps are fundamental abstract data types that allow for 
the storage and management of collections of elements. Each type has distinct 
characteristics, operations, and use cases. 

1. Sets 

Definition: 

A set is a collection of distinct elements where duplicates are not allowed. Sets 
can be defined mathematically as a well-defined collection of objects. In 
programming, sets are used to store unique values without any particular order. 

Key Characteristics: 

 Uniqueness: Each element in a set is unique; duplicate elements are 
automatically ignored. 

 Unordered: The elements in a set do not have a defined order, meaning the 
same elements can appear in different arrangements without affecting the 
set's identity. 
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 Dynamic Size: Sets can grow or shrink dynamically as elements are added 
or removed. 

Common Operations: 

 Insert: Adds an element to the set if it is not already present. 

 Delete: Removes an element from the set if it exists. 

 Contains: Checks if an element is present in the set. 

 Union: Combines two sets to form a new set containing all unique elements 
from both. 

 Intersection: Creates a new set containing only the elements common to 
both sets. 

 Difference: Creates a new set containing elements present in one set but 
not in another. 

Implementations: 

Sets can be implemented using various data structures: 

 Hash Tables: For efficient O(1) average-time complexity for insertions, 
deletions, and lookups. 

 Balanced Trees: For ordered sets, where elements are kept in a sorted 
manner. 

Example in Python: 

python 

my_set = {1, 2, 3} 

my_set.add(4)       # Insert 

my_set.add(2)       # Duplicate, ignored 

print(my_set)       # Output: {1, 2, 3, 4} 

print(2 in my_set)  # Output: True 

2. Multisets 

Definition: 

54 
 

A multiset (or bag) is a generalized version of a set that allows for multiple 
occurrences of the same element. Unlike sets, multisets can have duplicate 
elements, making them useful for counting frequencies of items. 

Key Characteristics: 

 Duplicates Allowed: Elements can appear multiple times in a multiset. 

 Dynamic Size: The size of a multiset can change as elements are added or 
removed, similar to sets. 

 Counting: Multisets can be used to keep track of the count of each 
element, allowing efficient retrieval of frequencies. 

Common Operations: 

 Insert: Adds an element to the multiset and increments its count. 

 Delete: Decreases the count of an element; if the count reaches zero, the 
element is removed from the multiset. 

 Count: Returns the number of occurrences of a specific element. 

 Union: Combines two multisets, summing the counts of each element. 

 Intersection: Creates a new multiset containing the minimum counts of 
each element present in both multisets. 

 Difference: Creates a new multiset with counts that represent the first 
multiset minus the second. 

Implementations: 

Multisets can be implemented using: 

 Hash Tables: Where keys represent elements and values represent their 
counts. 

 Sorted Lists: If ordering is required. 

Example in Python: 

Python's collections module includes a Counter class that can be used to create 
multisets: 
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python 

from collections import Counter 

my_multiset = Counter() 

my_multiset.update(['apple', 'banana', 'apple'])  # Insert elements 

print(my_multiset)  # Output: Counter({'apple': 2, 'banana': 1}) 

my_multiset['apple'] -= 1  # Decrease count 

print(my_multiset)  # Output: Counter({'apple': 1, 'banana': 1}) 

 

 

 

 

3. Multimaps 

Definition: 

A multimap is an extension of the map (or dictionary) data structure that allows 
multiple values to be associated with a single key. This means that the same key 
can appear multiple times, each with different corresponding values. 

Key Characteristics: 

 Key-Value Pairs: Like maps, multimaps consist of key-value pairs, but keys 
can be associated with multiple values. 

 Dynamic Size: Multimaps can grow and shrink as elements are added or 
removed. 

 Ordering: Multimaps can maintain the order of keys, especially if 
implemented with a sorted structure. 

Common Operations: 

 Insert: Adds a value to the list of values associated with a key. 

 Remove: Removes a specific value associated with a key; if the last value is 
removed, the key may also be removed from the multimap. 
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 Retrieve: Returns all values associated with a specific key. 

 Contains: Checks if a key exists in the multimap. 

Implementations: 

Multimaps can be implemented using: 

 Hash Tables: Where keys map to lists of values. 

 Balanced Trees: For ordered multimaps, where keys are maintained in a 
sorted order. 

Example in Python: 

Python does not have a built-in multimap, but a similar structure can be 
implemented using defaultdict from the collections module: 

python 

from collections import defaultdict 

my_multimap = defaultdict(list) 

my_multimap['key1'].append('value1') 

my_multimap['key1'].append('value2') 

my_multimap['key2'].append('value3') 

print(my_multimap)  # Output: defaultdict(<class 'list'>, {'key1': ['value1', 
'value2'], 'key2': ['value3']}) 

Summary 

 Sets: Collections of unique elements, allowing operations like union and 
intersection, implemented using hash tables or balanced trees. 

 Multisets: Collections of elements that allow duplicates, maintaining counts 
for each element, useful for frequency-based applications. 

 Multimaps: Maps that allow multiple values for the same key, 
implemented using lists or balanced trees for storing key-value pairs. 

These data structures provide efficient ways to manage collections of data, each 
catering to specific requirements in various applications. 
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UNIT 5 
 

Search Trees 

Search trees are data structures that facilitate efficient searching, insertion, and 
deletion of data. They maintain a sorted order of elements, allowing for quick 
access based on keys. Among the various types of search trees, Binary Search 
Trees (BSTs), Balanced Search Trees, AVL Trees, and Splay Trees are notable. 
Below, we’ll explore each of these tree structures in detail. 

1. Binary Search Trees (BST) 

Definition: 

A Binary Search Tree (BST) is a binary tree in which each node has at most two 
children. It maintains the property that for every node: 

 The left subtree contains only nodes with values less than the node’s value. 

 The right subtree contains only nodes with values greater than the node’s 
value. 

Key Characteristics: 

 Sorted Structure: The in-order traversal of a BST results in a sorted 
sequence of values. 

 Efficiency: Searching, insertion, and deletion operations can be performed 
in O(h) time complexity, where h is the height of the tree. 

Operations: 

 Insertion: To insert a value, start from the root and recursively traverse the 
left or right subtree based on the value until a suitable empty spot is found. 

 Deletion: Three cases arise during deletion: 
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1. Node to be deleted is a leaf: simply remove it. 

2. Node has one child: bypass the node. 

3. Node has two children: find the in-order predecessor (max value in 
the left subtree) or in-order successor (min value in the right subtree) 
to replace it. 

 Searching: Compare the target value with the current node's value and 
decide to traverse left or right accordingly. 

Example: 

plaintext 

      5 

     / \ 

    3   7 

   / \   \ 

  2   4   8 

Limitations: 

 Unbalanced Trees: If elements are inserted in sorted order, the BST can 
become unbalanced, resembling a linked list, leading to O(n) time 
complexity for operations. 

2. Balanced Search Trees 

Definition: 

Balanced Search Trees are binary search trees that maintain a balance criterion to 
ensure that the height of the tree remains logarithmic relative to the number of 
nodes. This guarantees efficient operations even in the worst case. 

Key Characteristics: 

 Height Balance: The difference in heights between the left and right 
subtrees of any node is kept within a specified limit (e.g., -1, 0, or 1 for AVL 
trees). 
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 Guaranteed Logarithmic Height: This balance ensures that operations such 
as search, insertion, and deletion remain O(log n) in time complexity. 

Common Types: 

1. AVL Trees 

2. Red-Black Trees 

3. AVL Trees 

Definition: 

An AVL Tree is a type of self-balancing binary search tree where the difference in 
heights between the left and right subtrees (balance factor) for any node is at 
most 1. 

Key Characteristics: 

 Balance Factor: For each node, the balance factor is defined as the height 
of the left subtree minus the height of the right subtree (-1, 0, or 1). 

 Rotations: To maintain balance, AVL trees may require rotations during 
insertion and deletion: 

o Single Rotation: Right or left rotations can be applied. 

o Double Rotation: A combination of two rotations (left-right or right-
left). 

Operations: 

 Insertion: Insert like a regular BST, then check and restore balance through 
rotations if needed. 

 Deletion: Similar to insertion, check for balance after deletion and perform 
rotations to restore balance. 

Example: 

plaintext 

       30 

      /  \ 
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    20   40 

   / \ 

  10  25 

 

Performance: 

 All basic operations (search, insert, delete) are O(log n) due to the height 
being logarithmic. 

4. Splay Trees 

Definition: 

A Splay Tree is a type of binary search tree that self-adjusts through a process 
called "splaying," which moves accessed nodes to the root of the tree. 

Key Characteristics: 

 Self-Adjusting: Frequently accessed nodes are brought closer to the root, 
improving access times for recently accessed elements. 

 No Strict Balance: Splay trees do not maintain strict balance like AVL trees 
but tend to perform well for sequences of operations with locality of 
reference. 

Operations: 

 Splaying: When accessing a node, the tree is adjusted (or splayed) to make 
that node the new root using three operations: 

1. Zig: A single rotation when the node is a child of the root. 

2. Zig-Zig: Double rotation when the node is a left (or right) child of a 
left (or right) child. 

3. Zig-Zag: Double rotation when the node is a right child of a left child 
(or vice versa). 

 Insertion: Insert as in a normal BST, then splay the newly inserted node. 

 Deletion: Splay the node to be deleted, then remove it. 
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Performance: 

 The amortized time complexity for operations is O(log n), making them 
efficient for certain access patterns. 

Example: 

plaintext 

      30 

     /  \ 

   20   40 

   / \ 

  10  25 

If 25 is accessed, it becomes the root after splaying. 

 

Summary 

 Binary Search Trees (BSTs) provide a simple structure for dynamic sets but 
can become unbalanced, leading to inefficient operations. 

 Balanced Search Trees ensure logarithmic height, enabling efficient 
operations through structures like AVL Trees and Red-Black Trees. 

 AVL Trees maintain strict balance, while Splay Trees prioritize recently 
accessed elements, improving access patterns without requiring strict 
balance. 

These search trees provide various ways to manage and access data dynamically, 
each with strengths and weaknesses suited to different applications. 

Sorting and Selection 

Sorting and selection algorithms are fundamental in computer science, facilitating 
the organization of data and the retrieval of specific elements efficiently. Below, 
we delve into Merge Sort, Quick Sort, Sorting through an Algorithmic Lens, and 
Comparing and Selection in detail. 
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1. Merge Sort 

Definition: 

Merge Sort is a divide-and-conquer algorithm that splits the input array into two 
halves, sorts them independently, and then merges the sorted halves back 
together. 

Key Characteristics: 

 Stable Sort: Maintains the relative order of equal elements. 

 Time Complexity: O(n log n) in all cases (worst, average, best). 

 Space Complexity: O(n) due to the additional array used for merging. 

How it Works: 

1. Divide: Recursively split the array into two halves until each subarray 
contains a single element (base case). 

2. Conquer: Merge the sorted subarrays back together in a sorted order. 

3. Combine: Repeat the merge process until the entire array is sorted. 

Example: 

Consider the array [38, 27, 43, 3, 9, 82, 10]. 

 Divide: 

o [38, 27, 43] and [3, 9, 82, 10] 

o Further divide [38, 27, 43] into [38] and [27, 43], and [27, 43] into 
[27] and [43]. 

 Merge: 

o Merge [27] and [43] to get [27, 43], then merge [38] with [27, 43] to 
get [27, 38, 43]. 

o Merge [3, 9, 82, 10] similarly, resulting in [3, 9, 10, 82]. 

o Finally, merge [27, 38, 43] and [3, 9, 10, 82] to get the sorted array [3, 
9, 10, 27, 38, 43, 82]. 
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Advantages: 

 Works well for large datasets and linked lists. 

 Consistent O(n log n) performance. 

Disadvantages: 

 Requires additional memory for the temporary array, making it less space-
efficient. 

2. Quick Sort 

Definition: 

Quick Sort is a highly efficient sorting algorithm that uses the divide-and-conquer 
strategy by selecting a 'pivot' element and partitioning the array around the pivot. 

Key Characteristics: 

 In-Place Sort: Requires only a small, constant amount of additional storage 
space. 

 Average Time Complexity: O(n log n), but worst-case is O(n²) (occurs when 
the smallest or largest element is always chosen as the pivot). 

 Space Complexity: O(log n) due to recursive stack space. 

How it Works: 

1. Choose a Pivot: Select an element from the array as the pivot (common 
choices include the first, last, or a random element). 

2. Partition: Rearrange the array so that all elements less than the pivot are 
on its left and all greater elements are on its right. 

3. Recursively Sort: Apply the same process to the left and right subarrays. 

Example: 

Consider the array [10, 80, 30, 90, 40, 50, 70]. 

 Choose Pivot: Let's select 50 as the pivot. 

 Partition: 
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o Rearrange to get [10, 30, 40, 50, 80, 90, 70]. 

 Recursively Sort: Sort the left subarray [10, 30, 40] and the right subarray 
[80, 90, 70] using the same steps. 

Final sorted array: [10, 30, 40, 50, 70, 80, 90]. 

Advantages: 

 Generally faster than other O(n log n) algorithms due to lower constant 
factors. 

 Works well with large datasets and is highly efficient in practice. 

Disadvantages: 

 Worst-case performance is poor if the pivot is poorly chosen (though this 
can be mitigated by using techniques like randomized pivoting). 

 

3. Sorting through an Algorithmic Lens 

Definition: 

This concept involves analyzing sorting algorithms not only based on their 
efficiency but also by understanding their design choices, applications, and 
limitations through the lens of algorithmic principles. 

Key Considerations: 

 Complexity Analysis: Evaluate time and space complexity to understand 
performance. 

 Stability: Determine whether the algorithm preserves the order of equal 
elements. 

 In-Place vs. Not In-Place: Assess memory usage; in-place algorithms require 
less additional memory. 

 Adaptability: Some sorting algorithms are more adaptable to specific types 
of data or partially sorted data. 

Common Sorting Algorithms: 
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1. Bubble Sort: Simple, O(n²) performance, not suitable for large datasets. 

2. Insertion Sort: Efficient for small or nearly sorted arrays, O(n²) in the worst 
case. 

3. Selection Sort: O(n²) performance, minimal memory usage, but not 
efficient for large lists. 

4. Radix Sort: Non-comparison-based, suitable for integers, O(nk) complexity. 

Choosing an Algorithm: 

The choice of sorting algorithm often depends on: 

 Size of the dataset. 

 Nature of the data (random, nearly sorted, etc.). 

 Memory constraints. 

4. Comparing and Selection 

Definition: 

This concept refers to the methodology of evaluating sorting algorithms by 
comparing their characteristics and performance metrics to select the most 
appropriate algorithm for a given task. 

Key Criteria for Comparison: 

1. Time Complexity: Analyze best, average, and worst-case scenarios. 

2. Space Complexity: Assess memory requirements during execution. 

3. Stability: Determine whether the algorithm maintains the relative order of 
equal elements. 

4. Adaptability: Some algorithms perform better on specific data types or 
arrangements. 

Selection Process: 

 Benchmarking: Run different sorting algorithms on the same dataset and 
measure execution time. 
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 Empirical Analysis: Consider real-world performance and edge cases. 

 Theoretical Analysis: Evaluate based on time and space complexities. 

Examples of Selection: 

 Use Merge Sort for stable sorting of linked lists. 

 Choose Quick Sort for general-purpose sorting when memory space is a 
concern. 

 Opt for Insertion Sort when dealing with small or nearly sorted datasets 
due to its efficiency in such cases. 

Summary 

 Merge Sort and Quick Sort are two of the most commonly used sorting 
algorithms, each with unique characteristics and performance metrics. 

 Understanding sorting through an algorithmic lens allows for a deeper 
appreciation of algorithm design and implementation. 

 Comparing sorting algorithms based on their criteria helps in selecting the 
most appropriate algorithm for specific tasks, optimizing performance, and 
resource utilization. 

By mastering these sorting and selection concepts, one can significantly enhance 
their ability to manage and manipulate data efficiently. 

Graph Algorithms 

Graph algorithms are essential for solving problems involving relationships and 
connections between data. They encompass various concepts, including the 
representation of graphs, traversal techniques, and sorting methods. Below, we 
explore Graphs, Data Structures for Graphs, Graph Sorting Algorithms, and 
Selection in detail. 

1. Graphs 

Definition: 



67 
 

A graph is a collection of nodes (or vertices) and edges (connections) that 
represent relationships between pairs of nodes. Graphs can be directed (where 
edges have a direction) or undirected (where edges have no direction). 

Types of Graphs: 

 Directed Graph (Digraph): Edges have a direction, indicating a one-way 
relationship. 

 Undirected Graph: Edges represent a two-way relationship. 

 Weighted Graph: Edges have weights or costs associated with them, used 
to represent distances or costs. 

 Unweighted Graph: All edges are treated equally, without weights. 

 Cyclic Graph: Contains at least one cycle (a path that starts and ends at the 
same vertex). 

 Acyclic Graph: Does not contain cycles. 

 Connected Graph: There is a path between every pair of vertices. 

 Disconnected Graph: At least one pair of vertices does not have a path 
connecting them. 

Graph Representation: 

Graphs can be represented using: 

1. Adjacency Matrix: A 2D array where rows and columns represent vertices. 
The entry at (i, j) indicates the presence (and possibly the weight) of an 
edge between vertex i and vertex j. 

2. Adjacency List: An array of lists where each list corresponds to a vertex and 
contains a list of adjacent vertices. 

Applications of Graphs: 

 Social networks (relationships between users). 

 Transportation networks (routes and distances). 

 Computer networks (connections between devices). 
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 Recommendation systems (connections between items). 

2. Data Structures for Graphs 

Graph Representation Structures: 

1. Adjacency Matrix: 

o Definition: A square matrix used to represent a graph. If there is an 
edge from vertex iii to vertex jjj, then the matrix entry matrix[i][j] is 
set to 1 (or the weight of the edge); otherwise, it is set to 0. 

o Pros: 

 Easy to implement and use for dense graphs. 

 Quick to check for the presence of an edge between two 
vertices. 

o Cons: 

 Inefficient in terms of space for sparse graphs, as it requires 
O(V2)O(V^2)O(V2) space, where VVV is the number of vertices. 

2. Adjacency List: 

o Definition: A collection of lists or arrays where each list represents a 
vertex and contains a list of its adjacent vertices. 

o Pros: 

 More space-efficient for sparse graphs, requiring O(V+E)O(V + 
E)O(V+E) space, where EEE is the number of edges. 

 Easier to iterate through neighbors of a vertex. 

o Cons: 

 Slower for checking the presence of an edge compared to an 
adjacency matrix. 

3. Edge List: 

o Definition: A simple list of all edges in the graph, where each edge is 
represented as a pair (or triplet for weighted edges) of vertices. 
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o Pros: 

 Simple and memory-efficient for sparse graphs. 

o Cons: 

 Not efficient for searching edges; checking for connections 
between vertices requires linear time. 

Other Graph Data Structures: 

 Incidence Matrix: A matrix representation that indicates the relationship 
between vertices and edges. 

 Edge Map: A hashmap/dictionary where keys represent vertices and values 
are lists of edges connected to those vertices. 

3. Graph Sorting Algorithms 

Graph sorting algorithms help in ordering the vertices of a graph based on specific 
criteria or dependencies. The most common sorting algorithm in the context of 
graphs is Topological Sorting. 

Topological Sorting: 

 Definition: An ordering of the vertices in a directed acyclic graph (DAG) 
such that for every directed edge uvuvuv from vertex uuu to vertex vvv, 
uuu comes before vvv in the ordering. 

 Use Cases: Task scheduling, course prerequisite structures, and resolving 
symbol dependencies in programming languages. 

Topological Sorting Algorithms: 

1. Kahn’s Algorithm: 

o Maintain a list of vertices with no incoming edges (in-degree of zero). 

o Repeatedly remove a vertex from this list, add it to the topological 
order, and decrease the in-degrees of its adjacent vertices. If any 
adjacent vertex’s in-degree becomes zero, add it to the list. 

o Repeat until all vertices are processed. 
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2. Depth-First Search (DFS) Based: 

o Perform a DFS traversal of the graph. 

o On completing the traversal of a vertex, push it onto a stack. Once all 
vertices are processed, pop the stack to obtain the topological order. 

Complexity: 

 Both algorithms have a time complexity of O(V+E)O(V + E)O(V+E), where 
VVV is the number of vertices and EEE is the number of edges. 

4. Selection 

Graph selection algorithms focus on identifying specific vertices or edges based 
on certain criteria. Here are a few types of selection techniques in graph 
algorithms: 

Minimum Spanning Tree (MST): 

 Definition: A subset of the edges in a weighted graph that connects all 
vertices together without cycles and with the minimum possible total edge 
weight. 

 Common Algorithms: 

o Kruskal’s Algorithm: Sorts all edges and adds them one by one to the 
MST, ensuring no cycles are formed. 

o Prim’s Algorithm: Starts with a single vertex and grows the MST by 
adding the cheapest edge from the tree to a vertex not yet in the 
tree. 

Shortest Path Selection: 

 Definition: Finding the shortest path between two vertices in a graph. 

 Common Algorithms: 

o Dijkstra’s Algorithm: Uses a priority queue to iteratively select the 
closest vertex and update the distances to its neighbors. 

o Bellman-Ford Algorithm: Handles graphs with negative weight 
edges, relaxing all edges repeatedly to find the shortest path. 
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Graph Traversal: 

Graph traversal algorithms are essential for selection tasks, allowing for the 
exploration of vertices or edges in specific orders: 

 Breadth-First Search (BFS): Explores all neighbors at the present depth 
prior to moving on to nodes at the next depth level. Used for unweighted 
graphs. 

 Depth-First Search (DFS): Explores as far as possible along each branch 
before backtracking. Useful for cycle detection and connected components. 

Summary 

Understanding graphs, their data structures, and associated algorithms is 
fundamental for tackling a wide range of problems in computer science. Graphs 
provide a flexible representation for relationships between data, while various 
traversal, sorting, and selection algorithms enable efficient manipulation and 
retrieval of information. Mastering these concepts is crucial for developing 
efficient algorithms and solving complex problems in fields such as computer 
networking, social network analysis, and route optimization. 

Graph Traversals: Shortest Paths and Minimum Spanning Trees 

Graph traversals are essential algorithms used to explore the vertices and edges 
of a graph systematically. Two important concepts in graph traversals are 
Shortest Paths and Minimum Spanning Trees (MST). Each serves different 
purposes in the analysis and manipulation of graphs. 

1. Shortest Paths 

Definition: 

The Shortest Path Problem involves finding the shortest path from a source 
vertex to one or more destination vertices in a graph. This path minimizes the 
sum of the weights of the edges traversed. 

Applications: 

 Navigation systems (finding the shortest route on a map). 

 Network routing (optimal data transmission paths). 
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 Robotics (path planning for autonomous robots). 

 Transportation (optimizing travel time or cost). 

Common Algorithms: 

1. Dijkstra's Algorithm: 

o Overview: Efficiently finds the shortest path from a single source 
vertex to all other vertices in a graph with non-negative edge 
weights. 

o Procedure: 

1. Initialize distances from the source to all vertices as infinity, 
except the source vertex itself, which is set to 0. 

2. Use a priority queue to repeatedly extract the vertex with the 
smallest distance. 

3. Update the distances to its adjacent vertices if a shorter path is 
found. 

4. Repeat until all vertices have been processed. 

o Time Complexity: O((V+E)log V)O((V + E) \log V)O((V+E)logV) using a 
priority queue, where VVV is the number of vertices and EEE is the 
number of edges. 

 

2. Bellman-Ford Algorithm: 
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o Overview: Computes the shortest path from a single source to all 
vertices in a graph, capable of handling negative weight edges but 
not negative weight cycles. 

o Procedure: 

1. Initialize distances from the source to all vertices as infinity, 
except the source, which is set to 0. 

2. For each vertex, relax all edges up to V−1V-1V−1 Ɵmes (where 
VVV is the number of vertices). 

3. If a shorter path is found, update the distance. 

4. Check for negative weight cycles by performing one more 
relaxation; if an update occurs, a negative cycle exists. 

o Time Complexity: O(V⋅E)O(V \cdot E)O(V⋅E). 

3. Floyd-Warshall Algorithm: 

o Overview: A dynamic programming algorithm for finding shortest 
paths between all pairs of vertices. 

o Procedure: 

1. Create a distance matrix initialized with the weights of the 
edges (or infinity if no edge exists). 

2. Iteratively update the matrix by checking if a path through an 
intermediate vertex provides a shorter distance. 

o Time Complexity: O(V3)O(V^3)O(V3). 

Summary: 

The shortest path algorithms are crucial for various applications that require 
efficient routing and optimization of travel paths in weighted graphs. 

2. Minimum Spanning Trees (MST) 

Definition: 
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A Minimum Spanning Tree of a weighted, undirected graph is a subgraph that 
connects all the vertices together without cycles and with the minimum possible 
total edge weight. 

Applications: 

 Designing network layouts (like computer networks, electrical circuits). 

 Road network construction (minimizing costs). 

 Cluster analysis in data science. 

Common Algorithms: 

1. Kruskal's Algorithm: 

o Overview: A greedy algorithm that builds the MST by adding edges in 
order of increasing weight, ensuring no cycles are formed. 

o Procedure: 

1. Sort all edges in non-decreasing order of their weight. 

2. Initialize a forest where each vertex is a separate tree. 

3. Iterate through the sorted edges and add the edge to the 
forest if it connects two different trees (using a union-find data 
structure to check). 

4. Stop when there are V−1V-1V−1 edges in the MST. 

o Time Complexity: O(Elog E)O(E \log E)O(ElogE), primarily due to 
sorting. 

 

2. Prim's Algorithm: 

o Overview: Another greedy algorithm that grows the MST from an 
initial vertex by adding the smallest edge that connects a vertex in 
the MST to a vertex outside it. 

o Procedure: 
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1. Initialize a priority queue to keep track of the minimum edge 
weights. 

2. Start from an arbitrary vertex, marking it as part of the MST. 

3. Add all its adjacent edges to the priority queue. 

4. Continuously extract the minimum edge from the queue that 
connects to a new vertex, marking it and updating the queue 
with its adjacent edges. 

5. Repeat until all vertices are included in the MST. 

o Time Complexity: O((V+E)log V)O((V + E) \log V)O((V+E)logV) when 
using a priority queue. 

 

Summary: 

Minimum Spanning Trees are vital for minimizing costs in various network and 
design problems, enabling efficient connectivity while avoiding cycles. 

Conclusion 

Understanding Shortest Paths and Minimum Spanning Trees is essential in graph 
theory and algorithm design. These algorithms have diverse applications across 
fields such as transportation, networking, and resource management, making 
them indispensable tools in computer science and engineering. 


