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Introduction

Learning Chjectives

+ Scope of soft computing, * An overview of fuzzy logic,
* Various components under soft computing. * A note on genetic algorichm.
* Description on artificial neural perworks * The theory of hybrid sysrems.

with its advantages and applications.

L1.1 Neural-Networks

A neural nerwork is a processing device, eicher an algorithm or an actual hardware, whose design was
inspired by the design and functioning of animal brains and components thereof. The computing world
has a lot to gain from neural nerworks, also known as areificial neural networks or neural net. The neu-

ral networks have the abiliu‘_lga_m_bpcxampie_whlch makes them very flexible and powerfil:
newral networks, there is no need o devise an algorichm to_perform a specific wask; ‘th’;tr‘lrth'e'fé"xf no

need to understand the internal mechanisms of that task. These networks arc also well suited ToF Tl
time systenis because of their fast response and computational times which are because of their parallel
architecrure.

Before discussing artificial neural newworks, lec us understand how the human brain works, The human
brain is an amazing processor. Its exact workings are stll a mystery. The most basic element of the
human brain is a specific type of cell, known as neuron, which doesn’t regenerace. Because neurons aren’t
slowly replaced, it is assumed char they provide us with our abilities to remember, think and apply pre-
vious experiences to our every accion. The human brain comprises about 100 billion nearons. Each
neuron can connect with up to 200,000 other neurons, although 1,000—10,000 interconnections are
typical.

The .power of the human mind comes from the sheer numbers of neurons and their multiple
interconnections. It also comes from genetic programming and learning. There are over 100 different
classes of newrons, The individual neurons are complicated. They have a myriad of parts, subsystems
and control mechanisms. They convey information via a host of electrochemical pathways. Together
these neurens and their connections form a pracess which is not binary, not suble, and nor syn-
chronous. In shory, it is nothing like the carrently available electronic computers, or even arificial neural
networks.
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I 1.1.1 Artificial Neural Network: Definition

An artificial neural necwork (ANN)} may be defined as an information-processing model that is inspired by
the way biological nervous systems, such as the brain, process information. This model tri€s to replicate only
the most basic functions of thz brain, The key element of ANN is the novel structure of its information
processing system. An ANN is composed of a large number of highly interconnected processing elements
(neurons) working in unison to solve specific problems.

Artificial neural necworks, like people, learn by example. An ANN is conftgured for 2 specific application,
such as pattern recognition or dara classification through a learning process. In biological systems, learning
involves adjustments to the synaptic connections that exist beoween the neurons, ANNs undergo a similar
change thar occurs when the concepr on which they are builc leaves the academic environment and is thrown
into the harsher world of users who simply want to get a job done on computers accurately all the time.
Many neural networks now being designed are staristically quite accurate, buc they sl leave their users with
a bad taste as they falter when it comes to solving problems accurarely. They might be 85—90% accurate.
Unfortunarely, few applications tolerate that Jevel of error.

I 1.1.2 Advantages of Neural Networks

Neural networks, with their remarkable ability to derive meaning from complicared or imprecise data, could
be used ro extract parrerns and detece trends thar are too complex to be noticed by either humans or other
computer techniques. A trained neural network could be thought of as an “expert” in a partcular cat-
egory of information it has been given to analyze. This experc could be used to provide projections in

new sitwarions of interest and answer “what i’ questions. Other advantages of working with an ANN
include:

L. Adaptive learning. An ANN is endowed with the ability to0 learn how to do rasks based on the dara given
for training or initial experience.

2. Self-organization: An ANN can create its own organization or representartion of che informarion it receives
during learning time.

3. Real-time operarion: ANN compurations may be carried out in parallel. Special hardware devices are being
designed and manufacrured to rake advantage of this capabilicy of ANNs.

4. Fault tolerance via redundant information coding  Partial destruction of a neural network leads to the

corresponding, degradation of performance. However, sogg_m;mo_rk capabilizies.may. be rerained even

after major network damage.
,_/.-f»"'_—-._"'—_'_‘

Currently, neural nerworks can't funcrion as a user interface which translates spoken words into instructions
for a machine, but someday they would have chis skifl.. Then VCRs, home security systems, CD players, and
ward processors would simply be activated by voice. Touch screen and voice editing would replace the word
processors of today. Besides, spreadsheets and databases would be imparred such level of usability char would
be pleasing to everyone. But for now, neural networks are only entering the markerplace in niche areas where
their statistical accuracy is valuable.

Many of these niches indeed involve applications where answers provided by the software programs are not
accurate but vague, Loan approval is one such area. Financial institutions make more money if they succeed in
having the lowest bad loan rare. For these institutions, installing systems that are “90% accurate” in selecting
the genuine loan applicancs might be an improvement over their current selection process. Indeed, some banks
have proved that the failure rate on loans approved by neural networks is lower than those approved by their
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Figure 1-1 The multi-disciplinary point of view of neural nerworks.

best craditional methods. Also, some credit card companies are using neural nerworks in their application

. S
screening process. .

is newest method of looking into the future by analyzing past experiences has generated its own unique
set of problems. One such problem is to provide a reason behind a computer-generated answer, say, as to
why a particular loan application was denied. To explain how a network learned and why it recommends a
particular decision has been difficult. The inner workings of neural nerworks are “black boxes.” Some people
have even called the use of neural networks “voodoo enginecring.” To justify the decision-making process,
several neural network rool makers have provided programs thar explain which inpuc through which node
dominates the decision-making process. From this information, experts in the application may be able to infer
which data plays a major role in decision-making and its importance.

Apart from filling the niche areas, neural network’s work is also progressing in other more promising
application areas. The next section of this chapter goes through some of these areas and briefly desails
the current work. The objective is to make the reader aware of various possibilities where neural necworks
mighe offer solutions, such as language processing, character recognition, image compression, patrern
recognition, etc.

Neural nerworks can be viewed from a multi-disciplinary point of view as shown in Figure 1-1 ,/;
o

~

l 1.2 Application Scope of Neural Networks

The neural neeworks have good scope of being used in the following areas:

L. Air sraffic conrrol could be automared with the location, altitude, direction and speed of each radar blip
taken as input to the necwork. The outpur would be the air traffic controller’s instruction in response to
each blip.

2. Animal behavior, predatoriprey relationships and population cycles may be suitable for analysis by neural
nerworks.

3. Appraisal and valuation of properry, buildings, automobiles, machinery, etc. should be an easy task fora
neural network.
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11.

12.

13.

14,

15.
16.

17.
18.

19.

20,

21
22
23.
24.
25.

26.

- Beting on horse races, stock markets, sporting events, erc. could be based on neural nerwork

predictions.

- Criminal sentencing could be predicred using a large sample of crime details as input and the resulting

Seneences as eutput.

. Comples physical and chemical processes that may involve the interaction of numerous (possibly unknown)

mathemarical formulas could be modeled heuristically using a neural nerwork,

. Dasamining, cleaning and validation could beachieved by determining which records suspiciously diverge

from the pattern of their peers.

- Direct ma! advertisers could use neural nerwork analysis of their databases to decide which customers

should be aargeted, and avoid wasting money on unlikely targers.

. Etho parrerns {rom sonar, radar, seismic and magnetic instruments could be used to predict their vargets.
10.

Econometric modeling based on neural networks should be more realistic than older models based on
classical stacistics.

Emplayee hiring could be optimized if the neural neworks were able ro predict which job applicant would
show the best job performance.

Expert consultants could package their intuitive expercise into a neural nerwork ro automate their
services.

Fraud detection regarding credir cards, insurance or taxes could be automated using 4 neural network
analysis of past incidents.

Handwriting and typewriting could be recognized by imposing a grid over the writing, then each square
of the grid becomes an inpur to the neural necwork. This is called “Oprical Character Recognirion.”

Lnke waser levels could be predicted based upon precipitation parterns and river/dam fows.

Machinery control could be automared by capturing the actions of experienced machine operators into 2
neural network.

Medical diagnosis is an ideal applicacion for neural nerworks.

Medical research relies heavily on classical statistics to analyze research dara. Perhaps a neural newwork
should be included in the tesearcher’s ool kir.

Music comppsition has been wied using neural nerworks. The network is crained to recognize patterns in
the picch and tempo of certain music, and chen the nerwork writes its own music.

Photos and fingerprints could be recognized by imposing a fine grid over the photo. Each square of the
grid becomes an inpur to the neural nerwork.

Recipes and chemical formulations could be oprimized based on the predicred outcome of a formula change.
Retail inventories could be optimized by predicring demand based on past parcerns.

River water levels could be predicted based on upstream reports, and time and locarion of each reporr.
Scheduling of buses, airplanes and elevators could be optimized by predicting demand.

Staff scheduting requirements for restaurants, retail stores, police stations, banks, erc., could be predicred
based on the customer flow, day of week, paydays, holidays, weather, season, ecc.

Strategies for games, business and war can be caprured by analyzing the expert players response to given
stimuli. For example, a football coach must decide whether 1o kick, pass or run on the last down. The
inputs for this decision include score, vime, field locarion, yards to first down, etc.

L R
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27. Traffic flows could be predicred so thar signal timing could be aptimized. The neural network could
recognize “a weekday morning rush hour during a school holiday” or “a typical winter Sunday morning.”

-28. Vaice recognition could be obrained by analyzing the audio oscilloscope pattern, much like a stock marker

graph. I
29. Weather prediction may be possible. Inputs would.include weather reports from sutrounding areas.

Output(s) would be the future weather in specific areas based on the input infotmation. Effects such as
ocean currents and jet streams could be included.

Today, ANN represents a major extension o computation. Different rypes of neural nerworks are available
for various applications. They perform operatichs akin o the human brain though to a limited extent. A rapid
increase is expected in our undetstanding of the ANNs leading to the improved network paradigms and a
host of application opportunities.

I 1.3 Fuzzy Logic

The concept of fuzzy logic (FL) was concetved by Lotfi Zadeh, a Professor at the University of California ac
Berkeley. An organized method for dealing with imprecise data is called fuzzy logic. The data are considered
as fuzzy sets.

Professor Zadeh presented FL not as a coatrol methodology but as a way of processing darta by
allowing partial ser membership rather than crisp ser membership or nonmembership. This approach
to set theory was not applied to conurol systems until the 1970s due to insufficient computer capabil-
ity. Also, earlier the systems were designed only o accepr precise and accurate dara. However. in certain
systems it is not possible to get the accurare dara. Therefore, Professor Zadeh reasoned thac for process-
ing nced nor always require precise and numerical informacion inpur; processing can be performed even
with imprecise inputs. Suitable feedback controllers may be designed to accept noisy, imprecise inpur,
and they would be much more effective and perhaps casier to implement. The processing with impre-
cise inputs led to the growth of Zadeh's FL. Unfortunately, US manufacturers have not been so quick ro
embrace this technology while the Europeans and Japanese have been aggressively building real products
around ir.

Fuzzy logic is a superser of conventional {or Boolean) logic and conrains similarities and differences with
Boolean logic. FL is similar to Boolean logic in thar Boolean logic results are returned by FL operations
when all fuzzy memberships are restricred to 0 and 1. FL differs from Boolean logic in thar it is permissive
of natural language queries and is more like human thinking; it is based on degrees of truth. For exam-
ple, traditional sets include or do not include an individual element; there is no other case than true or
false. However, fuzzy sets allow partial membership. FL is basically a multivalued logic thac allows inter-
mediace values to be defined between conventional evaluarions such as yesfno, truelfake, blackiwhite, exc.
Notions like rather warm or pretty cold can be formulated mathemarically and processed with the com-
puter. In this way, an attempr is made w apply a more human-like way of thinking in the programming of
COmpurers. ‘

Fuzzy logicis a problem-solving control systermn methodelogy thar lends itself wo implementation in systems
ranging from simple, small, embedded microcontroflers to large, networked, multichannel PC or workstadion-
based data acquisition and control systems. It can be implemented in hardware, software or a combination of
both. FL provides a simple way to arrive at a definite conclusion based upon vague, ambiguous, imprecise,
noisy, or missing inpu information. FLs approach to control problems mimics how a person would make
decisions, only much faster.




6

Introduction

' I 1.4 Genetic Algorithm

Genetic algorithm (GA) is reminiscent of sexual reproduction in which the genes of two parents combine
ta form thase of their children. When it is applied to problem solving, the basic premise is thar we can
create an initial popularion of individuals representing possible solutions to a problem we are trying to solve.
Each of these individuals has cermin characreristics that make them more or less fit as members of the
population. The more fic members will have a higher probability of mating and producing offspring thar have
a significant chance of reraining the desirable characteristics of their parents than the less fit members. This
method is very effective at inding optimal or near-optimal solutions to a wide variety of problems because it
does not impose many limitations required by traditional mechods. It is an elegant generate-and-test strategy
that can identify and exploir regularities in the environment; and results in solutions thac are globally oprimal
or nearly so.

Genetic algorithms are adaprive compurarional procedures modeled on the mechanies of natural genetic
systems, They express their ability by efficiently exploiting the historical information to speculate on new
offspring with expected improved performance. GAs are executed iteratively on a ser of coded solutions,
called population, with three basic operators: selection/reproduction, crossover and muration. They use
only the payoff (objective funcrion) information and probabilistic transition rules for moving to the next

iteration. They are different from most of the normal optimizarion and search procedures in the following
four ways:

1. GAs work with the coding of the parameter ser, not with the parameter themselves;
2. GAs work simultaneously with multiple poinrs, not a’single poing

3. GAs search via sampling (a blind search) using only the payaff informarion;

4. GAs search using stochastic operators, not deterministic riles.

Since a GA works simultancously on a set of coded solutions, it has very litde chance to get stuck a
local optima when used as oprimization rechnique. Again, it does not need any sort of auxiliary information,
like derivative of the optimizing function. Moreover, the resolution of the possible search space is increased
by operating on coded (possible) solutions and not on the solucions themselves. Further, this scarch space
need not be continuous. Recently, GAs are finding widespread applications in solving problems requiring
efficient and effective search, in business, scientific and engineering circles like synthesis of neural network

architectures, traveling salesman prablem, graph coloring, scheduling, numerical optimization, and pattern
recognition and image processing.

l1.5 Hybrid Systems

Hybrid systems can be classified into three different systems: Neuro fuzzy hybrid system; neuron genetic
hybrid system; fuzzy genetic hybrid systems. These are discussed in detail in the following sections.

I 1.5.1 Neuro Fuzzy Hybrid Systems

A neuro fuzzy hybrid system is a fuzzy system thac uses a learning algorichm derived from or inspired by neural
necwork theory to determine its parameters {fuzzy sets and Fuzzy rules) by processing dara samples.

In other words, a newro fuzzy hybrid system refers 1o the combination of fuzzy set theory and neural
nerworks having advantages of both which are listed below.

1. It can handle any kind of information {numeric, linguistic, logical, erc.}.

e ——
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. Tt can manage imprecise, partial, vague or imperf;ct informarion.
. It can resolve conflicts by collaboration and aggregation,

- It has self-learning, self-organizing and self-tuning capabilities.

. It doesn't need prior knowledge of relationships of data.

. It can mimic human decision-making process.,

B - Y TN

. It makes compuration fase by using fuzzy number operations.

Neuro fuzzy hybrid systems combine the advantages of fuzzy systems, which deal with explicit knowledge
that can be explained 2nd understood, and neural necworks, which deal with implicic knowledge that can be
acquired by learning. Neural necwork learning provides a good way o adjust the knowledge of the expert {i.e.,
artficial intelligence system) and automarically generate addidonal fuzzy rules and membership functions
to meer cerrain specifications. It helps reduce design time and costs. On the other hand, FL enhances the
generalization capability of a neural network system by providing more reliable outpur when extrapolation is
needed beyond the limics of the training dara.

I 1.5.2 Neuro Genetic Hybrid Systems

Generic algorichms {GAs) have been increasingly applied in ANN design in several ways: topology opri-
mization, genetic training algorithms-and control parameter optimization. In topology optimization, GA
is used to selecr a copology (number of hidden layers, number of hidden nodes, interconnection patzern)
for the ANN which in urn is rrained using some training scheme, most commonly back propagarion.
In genetic training algorithms, the learning of an ANN is formulated as a weight optimization prob-
lem, usually using the inverse mean squared error as a fitness measure. Many of the contral parameters
such as learning rate, momentum rate, tolerance level, etc., can also be optimized using GAs. In addi-
tion, GAs have been used in many other innovative ways, to create new indicacors based on existing ones,

select good indicarors, evolve optimal trading systems and complement other techniques such as fuzzy
logic.

l 1.5.3 Fuzzy Genetic Hybrid Systems

The optimization abilities of GAs are used ro develop the best set of rules o be used by a fuzzy inference
engine, and to oprimize the choice of membership funcrions. A particular use of GAs is in fuzzy classifi-
cation systems, where an object is classified on the basis of the linguistic values of the object attributes.
The most difficult parr of building a system like this is to find the appropriate sec of fuzzy rules. The
most obvious approach is to obtain knowledge from experts and cranslate this into a set of fuzzy rufes. But
this approach is time consuming, Besides, experts may not be able to put their knowledge inta an appro-
priate form of words. A second approach is w obtain the fuzzy rules through machine learning, whereby
the knowledge is aucomatically excracted or deduced from sample cases. A fuzzy GA is a directed random
search over all (discrete) fuzzy subsees of an interval and has features which make it applicable for solving
this problem. It is capable of creating the classificarion rules for a fuzzy system where objects are classi-
fied by linguistic terms. Coding the rules generically enabics the system to deal with multivalue FL and is
more efficient as it is consistent with numeric coding of fuzzy examples. The training darz and randomly
generated rules are combined 1o create the initial population, giving a better starting point for reproduc-

tion, Finally, a fitness Runetion measures the strength of che rules, balancing the quality and diversity of the
populacion.
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I 1.6 Soft Computing

The two major problem-selving technologies include:

1. hard compuring;

2. soft compuring,

Hard compuring deals with precise models where accurate solucions are achieved quickly. On the other
hand, soft computing deals with approximare models and gives solution to complex problems. The oo
problem-solving technologies are shown in Figure 1-2. _ o

Soft compuring is a relatively new concept, the term really entering general circularion in 1994. The term
“soft computing” was introduced by Professor Lotfi Zadeh with the objective of explogtmg the tolerance
for imprecision, uncertainty and partial truth vo achieve tractability, robusmes-s, low solution cost af]d better
rapport with realiry. The ultimate goal is to be able to emulare the human mind as closely as possible. Soft
compuring invelves parcnership of several fields, the most important being neural networlfs, GAsand FL. Als:o
included is the field of probabilistic reasoning, employed for its uncertainty control rechniques. However, this
field is not examined here. o

Soft computing uses a combination of GAs, neural nerworks and FL. A hybrid :ed'nm.que, in fact, would
inheric all the advantages, but won't have the less desirable features of single soft computing components. Ir
has to possess a goad learning capacity, a better learning time than chat of pure GAs and less sensitivity to
the problem of local extremes than neural netwotks. In addition, it has to generate a fuzzy knowledge base,
which has a linguistic representation and a very low degree of computational complexity.

An impotrant thing abour the constituents of soft computing is that they are complementary_, not compet-
itive, offering their own advantages and techniques to partnerships to allow solutions to f)t]jcnwse ?ns?lvable
problems. The constiwents of soft computing are examined in turn, following which existing applications of
partnerships are described.

“Negoriation is the communication pracess of a group of agents in order to reach a mur].la!ly accepted
agreement on some matter.” This definition is typical of the research being done into negotiation and co-
ordination in relation to software agents. I is an obvious necessity thac when muldple agents interact, they
will be required to co-ordinate their efforts and atempt to sort ouc any conflicts of resources or interest.

It is important to appreciace thar agents are owned and controlled by people in order o comlp‘lete tasks on
their behalf. An example of a possible mulriple-agent-based negoriation scenario is the competition berween

HARD COMPUTING SOFT COMPUTING

Precise models

[— Approximate models ]

—

Symbolic Traditional Func}ionzlil
yl?gic numerical Approximate approximation
reasoning .modeling and reasoning and randomized
(traditional Al) 'search search

Figure 1-2 Problem-solving technologies.
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long-distance phone call providers. When the consumer picks up the phonc and dials, an agent will com-
municate on the consumer’s behalf wich all the available network providers. Each provider will make an
offer that the consumer agent can accept or rejecr. ‘A realistic goal would be to select the lowest avail-
able price for the call. However, given the first counid. of offers, network providers may wish ro modify
their offer to make it more competitive. The new offet is then submirted ro the consumer agenr and the
process continues until a conclusion is reached, One advantage of this process is that the provider can
dynamically alter its pricing strategy ro account for changes in demand and competition, therefore max-
imizing revenue. The consumer will obviously benefit from the constant competition between providers.
Best of all, the process is entirely autonompus as the agents embody and acr on the beliefs and con-
straints of the parries they represent. Further changes can be made to the protocol so thae providers
can bid low without being in danger of making a loss. For example, if the consumer chooses to go
with the lowest bid bur pays the second lowest price, this will take away the incentive to underbid or
overbid.

Much of the negotiation theory is based around human behavior models and, as a result, it is often trans-
lated using Distributed Artificial Intelligence techniques. The problems associated with machine negotiation

are as difficult to solve as they are with human negotiation and involve issues such as privacy, securiry and
deceprion.

IJ.T Summary

The computing world has a lot to gain from neural neworks whose ability to learn by example makes them
very flexible and powerful. In case of neural nerworks, there is no need ro devise an algorithm 1o perform a
specific rask, i.e., therc is no need to understand cthe internal mechanisms of that task, Neura! networks are
also well suited for real-time systems because of their fasc response and computational times, which are due
to their parallef architecture,

Neural nerworks also contribute to other areas of research such as neurology and psychology. They are
regularly used to model parts of living organisms and to investigate the internal mechanisms of che brain.
Perhaps the most exciting aspect of neural nerworks is the possibility that someday “conscious” networks
might be produced. Today, many scientists bhelieve that consciousness is a “mechanical” property and that
“conscious” neural networks are a realistic possibiliry.

Fuzzy logic was conceived as a better method for sorting and handling data but has proven to be an excellent
choice for many contro] system applications since it mimics hurman concrol logic. Tt can be built into anything
from small, hand-held products to large, compurerized process control systems. It uses an imprecise but very
descriptive language to deal with input dara more like a human operator. It is robust and often works when
first implemented with little or no tuning,

When applied to optimize ANNs for forecasting and classification problems, GAs can be used to search
for the right combination of inpuc data, the most suitable forecas horizon, the optimal or near-optimal
nerwork interconnection parterns and weights among the neurons, and the congrol parameters (learning reze,
momentum rate, tolerance level, etc.} based on the training data used and the pre-se criteria. Like ANNs,
GAs do not always guarantee you 2 perfect solution, but in many cases, you can arrive atan acceprable solution
without the time and expense of an exhaustive search,

Soft computing is 2 relatively new concepr, the term really entering general cisculation in 1994, coined by
Professor Lotfi Zadeh of the University of California, Berkeley, USA, it encampasses several fields of compur-
ing. The three that have been examined in this chapeer are neural networks, FL and GAs. Neural networks are
important for their ability to adapt and learn, FL for its exploitation of partial rruth and imprecision, and GAs
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for their application to optimization. The field of probabilistic reasoning is also sometimes included under Fhe
soft computing umbrella for ks control of randomness and uncertainty. The imporcance of sofi computing
lies in using these mechodologies in partnership — they all offer their own benefics which are generally not
competitive and can therefore, work together. As a result, several hybrid systems were looked at ~ systems in
which such partnerships exist.

Artificial Neural Netwurk_; |
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An Introduction

t

Learning Objectives

The fundamentals of artificial neural ner-
work,

The evolurion of neural netwarks.

Comparison between biological neuron and
artificial neuron,

Basic models of artificial neural necworks.

The different types of connections of neural
nerworks, learning and activation functions

* Various terminologies and notations used
throughour the text.

* The basic fundamenial neuron model —
McCulloch—Pirs neuron and Hebb nerwork,

* The concept of linear separability o form
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2,1 Fundamental Concept

H b Mo

Neural nerworks are those informarion processing systems, which are constructed and implemented to model
the human brain. The main objective of the neural nerwork research is to develop a compurational device
for modeling the brain to perform various computational tasks at a faster rate than the traditional systems.

~, Amificial neural negworks perform various rasks such as patt@n—m and ‘classification, optimization

d data.clusrering - These tasks are very difficult for traditional

function, approximation, vecror quantizatio
= h - - D R et
<Com purers, Which are Faster iifalgorithimic computational tasks#ndiprecise arithmetic operations. Therefore,

for implemencation of artificial nefratmerworks, high-speed digiral compurers are used, which makes the
T —

simulation of neural processes feasible.

2.1.1 Artificial Neural Network

As already stated in Chapter 1, an arificial neural necwork (ANN) is an efficient information processing
system which resembles in characteristics with a biological neural necwork. ANNs possess large number of
highly interconnected processing elements called nodes or units or newrens, which usually operare in parallel
and are configured in regular architectures. Each neuron is connected with the other by a connection link. Each
connection link is associated with weights which contain information abour the inpur signal. This information
is used by the neuron net 1o solve a parricular problem. ANN' collective behavior is characterized by their
ability to learn, recall and generalzerraimiog-piterns or data similar to that of a human brain. They have the
capability t© model nerworks of oniginal mettoms-as-found in the brain. Thus, the ANN processing elements

are called seuroms or artificial neuro N
O Y
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Flgure 2-1 Architecture of a simple artificial neuron ner.
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Figure 2-2 Neural ner of pure linear equation.

It should be noted that each ncuron has an incernal stare of its own. This internal staré is called the
activation or activity level of neuron, which is the function of the inpurts the neuron receives. The activation
signal of 2 neuron is transmitted to other neurons. Remembef a neuron can send only one signal at a time,
which can be transmitred to several other neurons.

To depict the basic operation of a neural net, consider a set of neurons, say X, and X3, transmiering signals
to another neuron, Y. Here X; and X; are input neurons, which transmi signals, and Y is the outpur neuron,
which receives signals. Inpur neurons X; and X; are connected o the output neuron Y, over a weighted
interconnection links (W) and W3) as shown in Figure 2-1.

For the above simple neuron net architecture, the net inpu bas ro be calculared in the following way:

Yin =t xiw +xoun

where x) and x; ate the activations of the input neurons X and Xy, ie., the oucput of inpur signals. The
outpur’FoF the output neuron Y can be obtained by applying aEtvations over the net input, i.e., the function
of the net input:

¥=F(rin)
Qutput = Function {net input caleulated)

The function to be applied over the net inpu is called activation funetion. There are various activation functions,
which will be discussed in the forthn;)r—n'iPngSCmQTva/_ecalculation of the nec inpuc is similar to the
calculation ofoutan {p = mx). The neural net of a pure linear equation
is as shown in Figure 2-2.

Here, to obrain the output 3, the slope  is directly multiplied with the input signal. This is a linear
equacion. Thus, when slope and input are linearly varied, the output is also linearly varied, as shown in
Figure 2-3. This shows that the weight involved in the ANN is equivalent to the slope of the linear seraight
line.

l 2.1.2 Biological Neural Network

Tt is well-known that the human brain consists of a huge number of neurons, approximately 10!, wich numer-
ous interconnections. A schematic diagram of a biological neuron is shown in Figure 2-4.

Y |
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T . ) Slope = m
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Figure 2-3 Graph for y = mx.

Synapse

Nucleus Cell body \
(Soma)

Dendntes o ‘

Figure 2-4 Schemaric diagram of a blologiml neuron.

The biological neuron depicted in Figure 2-4 consists of three main parts:
1. Soma or cell body — where the cell nucleus is located.
2. Dendrites— where the nerve is connected ro the cell body.

3. Axon — which carries the impulses of the neuron.

Dendrires are tree-like networks made of nerve fiber connected 1o the cell body. An axon is a single, long
connection extending from the cell body and carrying signals from the neuron. The end of the axon splits into

Mﬁ hete are approximately
19* synapses ber neuron ifthe an brain.

es are passed berween the synapse and the dendrites. This type of signal rransmission involves
a chemical process in which specific transmitter substances are released from the sending side of the juncriop,
This resalts in increase or decrease in thm&al inside the body of the recziving cell. If the elecrric
potenial reaches 4 threshald then the receiving cell fires and a prlie or action posential of fixed strength and
duration is sent out theough the axon ro the sypaptic junctions of the other cells. Afrer firing, 2 cell has to wait
for a period of Gme called the @Before it can fire again. The synapses are said to be inhibitory i

they let passing impulses hinde of the receiving cell or exctatory if they let passing impulses cause
the firing of the receiving cell.
iyt ot —_

fine strands. It is found that each strand terminates into a smalk bulb-Jike o ed synapse. It is thro
u@%ﬂﬂﬂtﬁfﬂmﬂaﬂﬂmﬂw The receiving ends of HRESE SyTpses
on neurons can be tound both on the dendrites and on i

cim
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Figure 2-5 Mathematical model of arsificial aeuron.

Table 2-1 Terminology relationships berween
biological and artificial neurons

Biological neuron Artificial neuron

Cell ' Neuron

Dendrices Weights or interconnections
Soma Ner inpur

Axen Quiput

Figure 2-5 shows a mathemarical representarion of the above-discussed chemical processing raking place
int an arcificial neuron,

In this model, the net inpu is elucidated as
n
Yin = xiun txpup e+ X0y = Ex;w,'
i=1

where / represencs the fth processing element. The activation function is applied over it to calculate the
output. The weight represents the strength of synapse connecting the input and the output neurons. A pos-
itive weight corresponds 10 an excitatory synapse, and a negative weight corresponds to an inhibirory
synapse.

The terms associared with the biological neuron and their counterparts in arcificial neuron are presenced
in Table 2-1.

2.1.3 Brain vs. Computer — Comparison Between Biological Neuron and
Artificial Neuron (Brain vs. Computer) :

A comparison could be made berween biclogical and asificial neurons on the basis of the following criteria:

1. Speed: lemwwxw whereas in the case of biolog-
ical neuron it is of a few milliseconds, Hence, the arrificial neuron modeled using a computer is more

faster. = —

J
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2. Propessing: Basically, the biological neuron can perform massive parallel operations simultaneously. The
artificial neuron can also perform several parallel operations simuTRNEoTNYrbrerin general, the ardificial
ncuron neswork process is faster than that of the brain.

3. Size and complexity: The total number of netrons in the brain is about 10" and the toral number of
interconnections is about 10'3. Hence, it can be nioted that the complexity of the brain is comparatively
higher, i.e. the computational work takes places notonly in the brain cell body, but alse in axon, synapse,
erc. On the other hand, the size and complexity of an ANN is based on the chosen application and
the network designer. The size and complexity of 2 biclogical neuron is more than thar'of an ardficial

neuror™"

4. Srorage capacity (memory): The biological neuron stores the information in its interconnections or in
synapse strength but in an artificial neuron it is stored in its contiguous memory locations, Tn amartificial
neuron, the continuous loading of new information may sometimes overload the memory locarions. As a
result, some of the addresses containing older memory locations may be destroyed. Bur in case of the brain,
new information can be added in the interconnections by adjusting the strengch without destroying the
older information. A disadvantage related o brain is that sometimes its memory may fail to recollect the
stored information whereas in an artificial neuron, once che informacion is stored in its memory locations,
it can be retrieved. Owing to these facts, the adaprability is more toward an artificial neuron.

5. Tolerance: The biological neuron possesses fault tolerant capabmcas the artificial neuron has no
fault olerance. The‘ distributed namge of the biological neurons enables to store and retrieve informérion
even when the interconnections in them get disconnecred. Thus biological neurons arefaulerotefant. Bucin
case of arrificial neurons, the information gets CMCCI if the network interconnections are disconnecred.

Biological neurons can accept redundancies, which is not possible in artificial neurons. Even when some
cells die, the human nervous system appears to be performing with the same efficiency.

6. Control mechanism: 1In an artificial neuron modeled using a compucer, there is a conurol unit present in
Central Processing Unic, which can cransfer and control precise scalar values from unit to unit, but there
is no such control unit for monitoring in the brain. The strength ot a neuron in the brain depends on the
active chemicals present and whether neuron connections are strong or weak as a result of structure layer
rather (BatT méradual synapses. However, the ANN possesses simpler interconnections and is fre€ from
chemical actions similar to those taking place in brain {biclogical neuron). Thus, the control mechanism
of an arcificial neuron is very simple compared to that of a biological neuron. -

So, we have gone through a comparison berween ANNs and biological neural networks. In short, we can
say that an ANN possesses the following characteristics:

. Itis a neurally implemented m:t—h;l&fmal_moﬁﬁl\
. Ther@mf Righly interconnected processing elements called neurons in an ANN.

. The interconnections with their weighted linkages hold the informative knowledge.
. The input signals arrive at the processing elemencs through connections and connecting weights.

. The processing elements of the ANN have the ability to learn, recall and generalize from the given data
by suitable assignment or adjustment of weighes.

Y .

6. The compusational power can be demonstrated only by the collective behavior of neurons, and it should
be noted that no single neuron catries specific information.
S

The above-mentioned characteristics make the ANNs as connectionist madels, parallel distributed processing
models, self-organizing systems, neuro-computing systems and neuro-morphic systems.
e £

e —

——
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I 2.2 Evolution of Neural Networks

The evolution of neural nerworks has been facilitated by the rapid developmenc of architectures and algorithms

that are currently being used. The history of the development of neural networks along with che names of
their designers is outlined Table 2-2.

In the lacer years, the discovery of the neural nex resulred in the implementation of optical neural nets,
Boltumann machine, spatiotemporal nes, pulsed neural networks and support vector machines,

Table 2-2 Evolution of neural nerworks

Year Nenral
network

Designer Description

1943 McCullochand McCullochand The arrangemenc of nenrons in this case is a combination of logic
Pins neuron Pirs functions. Unique fearure of this neuron is the concepr of

threshold.

It is based upon the fact thar if two neurons are found to be active

simulraneously then the strength of che connection beoween them
should be increased.

1949 Hebb necwork  Hebb

1958, Perceprron Frank Here the weights on the connection path can be adjusted.
1959, Rosenblate,

1962, - Block, Minsky

1988 and Papert

1960 Adaline Widrow and Here the weights are adjusted to reduce che difference between the

Hoff nec inpu to the output unit and the desired oucpur. The resule
here is very negligible. Mean squared error is obrained.

1972 Kohonen Kohonen The concepe behind this nerwork is thar the inputs are clustered
self-organizing together to obtain a fired outpur neuron. The cluscering is
feature map performed by winner-take all policy.

1982, Hophield John Hopfield  This neural necwork is based on fixed weighes. These nets can also

1984, nenwork and Tank act 4s associalive Memaory ners.

1985,

1986,

1987

1986  Back- Rumelhart, This network is multi-layer with error being propagaced backwards
propagation Hinton and from the cutpur units to the hidden unies.
nerwork Williams

1988  Counrer- Grossberg This nerwork is similar to che Kohonen nerwork; here the learning
propagation occurs for all units in a particular layer, and there exists ne
nerwork competirion among these uniss.

1987— Adapdve Carpenterand ~ The ART network is designed for both binary inputs and analog

1990  Resonance Grossberg valued inputs. Here the input patcerns can be presented in any
Theory (ART) order.

1988  Radial basis Broomhead and  This resembles a back propagation nerwork but the activation
function Lowe funcrion used is a Gaussian functon,
network

1988 Nco cognitron  Fukushima This nerwork is essential for characrer recognicion. The deficiency

oceurred in cognitron network (1975} was corrected by chis
nerwork. :

i 59
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2.3 Basic Models of Artificial Neural' Network

aWﬂm are specified by the three basic entities namely:
1. the model’s synaptic interconnections; - .

2. the training o learning rules adopted for updating aiid adjusting the connection weights;
3. their activation functions.

l2.3.1 Connections

The neurons should be visualized for their arrangements in layers. An ANN consists of a set of highly inter-
connected processing elements (neurons) such that each processing element output is foind tobe connecred
through<weights to the other processing elements or to itself; delay lead and lag-free conniectiops are allowed.
Hence, the arrangements of these processing elements and-tii€ promietry of their interconnectipns are essential
for an ANN. The point where the connection originates and terminates should Be noted, ahd the function

ofEach processing element in an ANN should be specified.
Besides thesimple neuron shown in Figure 22, there exist several ocher cypes of neural network connrections.

The arrangement of neurons i form layers and the connection patern formed within and berween layers is
led the meswark architectiire. There exist five basic types of neuron connection archirectures. They are:

. single-layer feed-forwardnerwork;
. multilayer feed-forward network;
. single node with its own feedback;

. single-layer recurrent nerwork;

Wb tw b o

. mulrilayer recurrent nerwork.

Figures 2-6-2-10 depicr the five types of neural nerwork architectures. Basically, neural nets are cl?.ssiﬁefi
into single-layer or multilayer neural mets. A layer is formed by taking a processing element and combining it
with other processing elements. Practically, a layer implies a stage, going stage by scage, i.e., theinpurstage fmd
the outpur stage are linked with each other. These linked interconnections lead to the formation of various
network architecrures. When a layer of the processing nodes is formed, the inputs can be connected to these

Tnpul Quiput

layer

Input
neurons

Qutput ~
neurons

Figure 2-6 Single-layer feed-forward nerwork
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Input Hidden
layar . layers

Output
neurous

Figure 2-7 Mulilayer feed-forward nerwork.

Qutput

Feedback

0]
Figure 2-8 (A) Single node with own feedback. {B} Compericive necs.

T e e

nodes with vartous weights, resulting in@@w Thus, a single-layer feed-forward
e —— e

nerwark is formed.

A multifayer-féed-forward nerwork (Figure 2-7) is formed by the interconnection of several layers. The
input layer is that which receives the input and this layer has no funcrion except buffering the input signal.
The outpur layer generates the outpu of the netwark. Any layer that is formed bcrwcermlipu:
layers is called hidden layer. This hidden layer is internal to the network and has no direct contact with the
external environment. It should be nored that there may be zero o several hidden fayers in an ANN. More the
number of the hidden layers, more is the complexity of the network. This may, however, provide an efficient

outpur response. In case of afulfy Connected nerwor)every output from one layer is connected to d
every node in the nexc layer. .

A rierwark is said to be a feed-forward nerwork if no neuron in the output layer is an input to a node in
the same layer or in the preceding layer. On the other hand, when ourputs can be directed back as inputs o
same or preceding layer nodes then it results in the formation c@_gg@

If the feedback of the outpur of the processing elements $directed back a§ inpur to the processing

elements in the_same layer then—icivcalledtTarer! fedback. Recurrent nerworks are feedback networks
with clgsed laop. Figure 2-8{A) shows a simple recurrent netral network having a single neuron with

9.3 Basic Mode!s of Antificial Neural Network - 19

Input layer

Figure 2-10 Mulrilayer recurrent network.

feedback to itself. Figure 2-9 shows a single-layer nerwork with a feedback connection in which a processing
element’s output can be directed back to the processing element itself or to the other processing element or
10 both.

The architecture of a competitive layer is shown in Figure 2-8(B), the competitive interconnections having
fixed weights of —e. This net is called Maorer, and will be discussed in the unsupervised learning nctvaork
category. Apart from the network architecrares discussed so far, there also exists another type of architec-

ture with lateral feedback, which is called the an—cm/urM[ inbibirion structwre. In this

————
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structure, each processing neuron receives two different classes of inputs — “excitatory” input from pearby
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processing elements and “inhibitory” inputs from more distandy located progessing elements. This type of
interedRnection is shown in Figure'2:1T: I R

In Figure 2-11, the connections with open circles are excitatory connections and the links with solid con-
nective circles are inhibitory connections, From Figure 2-10, it can be noted thar a processing ¢lement outpur
can be directed back to the nodes in a preceding layer, forming a multilayer recurrent neswork. Also, in these
nerworks, a processing element output can be directed back to the processing element itself and to other pro-
cessing elements in the same layer. Thus, the various network archirectures as discussed from Figures 2-6-2-11
can be suitably used for giving effective solution to a problem by using ANN.

I 2.3.2 Leaming

The main property of an ANN is its capability to learn. Learning or training is a process by means of which a

neural nerwork adapts itself to a stimulus by makingﬁ;)rc)pEp_a_rgmg:c: adjustmengy, resulting in the production
of desired response. Broadly, there are rwo kinds of [earning in ANNs:

). Parameter leaning: It updaces the connecting weights in a neural net.

2. Structure learning:  Itfocusesonthe change in network scructure (which includes the number of processing
elements as well as cheir connection types).

The above two types of learning can be performed simultanecusly or separately. Apart from these rwo categories
of learning, the learning in an ANN can be generally classified into three categories as: supervised learning;
unsupervised fearning; reinforcement learning, Let us discuss these learning rypes in detail.

2.3.2.1 Supervised Learning

The learning here is performed with the help of a teacher. Let us rake the example of the learning process
of a small child. The child doesn't know how to read/write. Hefshe is being raught by the parents at home
and by the teacher in school. The children are trained and molded to recognize the alphabets, numerdls, etc.
Their each and every action is supervised by a teacher. Actually, a child works on the basis of the output that
he/she has to produce. All these real-time events involve supervised learning medhodology. Similarly, in ANNs
following the supervised learning, each input vector requires a cat ding wrpet vector, which represents
the desired output. The input vecror domm%mm
informed precisely about whar should be emitted 25 output. The block d%gm\n:%f‘-igure 2-12 depicts the
working of a supervised leatning network.

During training, the input vector is presented to the nerwork, which results in an output vector. This
output vector is the actual output vector. Then che actual output vector is compared with the desized (targer)
ourput vector. If there exists a difference bevween the two ourput vectors then an error signal is generated by

PR
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Neural )
K network - - Y .
{Input) W - (Actual output)

O

)

5

Error
. Error
D_ 3 - =
S(ign:I)s signal I D
generator (Desired output)

Figure 2-12 Supervised learning.

the necwork, This error signal is used for adjustment of weights until the a =
(target) ourput. In this type of training, a supervisor or teacher is required foerror minimiza ! .
nerwork trained by this method is said to be using supervised training methodologyIn supervised learning,
it is assumed that the correct “target” output values are known for each input patern.

ches.the desired
i Hence, the

2.3.2.2 Unsupervised Learning

The learning here is performed without che help of a teacher. Consider the learning process of 2 tadpolel, it
learns by icself, that is, a child fish learns to swim by itself, it is not raugh by it mother. "_['hus, its l_earmng
process is independent and is not supervised by a teacher. In ANNs following Lfnsupervlsed learning, the
if_F’EEE“E_'?F—Si—nlilM—WPB are grouped without tm@mea& Wch
group looks or :mﬁgm. n the training process, T:“ﬁetw?rk receives the input
patterns and organizes these patterns to form clusters. When a new input patern is applied, the 1.1cural
network gives an ourpur response indicaring.the ¢ which the input patrern belongs. I.F for an input,
a partern class cannot be found the@wmmmf unsupervised learning is
shown in Figure 2-13.

From Figure 2-13 it is clear thar thete is no feedback from the environment to inform whar the outputs
should be or whether the outputs are correct. In this case, the nerwork must iwself discover pastens, Tegu-.
farities, features or caregorics from the input dara and relations for the input data over the output. While
discovering all these features, the netwdrk undeigoes change In its parameters. IRis_Process 1g called self-

organizing in which exact clusters will be formed by discovering similarities and dissimilarities among the
objects.

—

2.8.2.3 Reinforcement Learning

‘This learning process is similar to supervised learning. In the case of supervised learning, the correct target
oueput values are known for each input pattern. But, in some cases, less information might be available.

ANN .
(In);ut) hid (Ach \; lput)
ual oulpu
| I

Figure 2-13 Unsupervised learning.
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Neural
—— nétwork Y
{input) W (Actual output)
Eror Error
signals signal e R
generator (Relnforcament
signal)

Flgure 2-14 Reinforcement learning.

For example, the necowork might be told char its zctual output is only “50% correct” or so. Thus, here only
critic informarion is available, not the exact information. The learning based on this ¢ritic informarion is
called reinforcemnent learning and the feedback sent is called reinforeement signale

The block diagram of reinforcement leamning 15 shown in Figure 2-14. The reinforcement learning is
form of supervis i the necwork receives some feedback from its environment. However, the
feedback obrained here is only evaluative and notinstructive. The external remforcemment signals are processed
in the critic signal generator, and the obtained critic signals are sent to the ANN for adjustment of weights
properly so as to ger berter critic feedback in furure. The reinforcement learning is also called learning with a
critic as opposed to learning with a teacher, which indicares supervised learning, '

So, now you've a fair underseanding of the three generalized learning rules used in the training process of
ANNs,

I 2.3.3 Activation Functions

To better understand the role of the activation funcrion, let us assume a person is performing some work.
To make the wotk more efficient and to obeain exact outpur, some force or activation may be given. This
activarion helps in achieving the exact oucpur. In a similar way, the activation function is applied over the ner

- D S—
inpug to-ealewlate_the outpur of an ANN,
The information processing of a processing element can be viewed as consisting of two major parts: input

and outpuc. An integration function (say f) is associated with the input of a processing element. This function
serves to combine activarion, informarion or evidence from an external source or other pracessing elements
into a fier input to the processing element. The nonlinear activatton NICHGT i Eé’d’t?m’mmga_;eumn's
response is mm:d tesponse of the neuron is conditioned or dampened as a r f
large or small activating stimuli and is thus controllable,

Certain nonlinear Functions are used to achieve the advantages of a multilayer nerwork from a single-layer
nerwork. When a signal is fed through a muldilayer nerwork with linear activation functions, the ourpur
obtained remains same as chat could be cbtained using a single-layer network. Due to this reason, nonlinear
functions are widely used in multilayer networks compared to linear functions.

-
There are several activation functions. Let us discuss a few in this section: ¢ y
. , s . . W
1. Identity funciion: Tt is a linear function and can be defined as o oo
fE)=x forallx B e
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The output here remains the same as inpue. The input layer uses the identity activation function.
2. Binary step function: This function can be defined as

- [1 ifx=0
f(")={0 if x< 8

where 8 represents the threshold value. This function is most widely used in single-layer nets to convert
the net inpur to an outpur that is a binary (1 or 0).

3. Bipolar step fumction: 'This function can be defined as

: 1 ifx20
f(")=[-1 if x< 8

where 6 represents the threshold value. This funcrion is also used in single-layer nets to convert the net
input to an outpu that is bipolar (+1 or —1).

4. Sigmoidal functions. The sigmoidal functions are widely used in back-propagation nets because of t.hc
relationship between the value of the functions at a point and the value of the derivative at that point

which reduces the computational burden during training.
Sigmoidal Funcrions are of two types: -

* Binary sigmoid function: It is also termed as logistic sigmoid function or unipolar sigmoid function.
It can be defined as

1
14+

fl)=

where A is the steepness parameter. The derivative of this function is
e m—————

L N
Lf&%ﬂfMUfo{J

Here the range of the sigmoid functi a3 from O to 1.

Bipolar sigmoid function: This function is defined as

2 S et
f@= 1= T =

where A is the steepness pasareter and the sigmoid funcrion range is between —1 and +1. The derivative
of this fifriciion tarbe

fw=§u+ﬂmu—ﬂm

The bipolar sigmoidal function is closely related o hyperbolic tangent function, which is written as

X 2x

b _e‘-—e_ _ 1—¢
W= =TT =

The derivarive of the hyperbolic tangent function is
Hix) =1+ A1 — &)
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If the nerwork uses a binary data, it is better to convert it to bipolar form and use the bipolar sigmoidal

activation Tunction or hyperbolic tangent funcrion. ——
h'h'_-——..,_

S. Ramp function: ‘The ramp function is defined as
1 ifx>1
fly=4x fF0<x=1
0 ifx<0

The graphical representarions of all the activation functions are shown in Figure 2-15(A)—(F).

I 2.4 Important Terminologies of ANNs

This section inttoduces you to the various terminologies related wich ANNs.

l D.4.1 Weights

In thearchitecture of an ANN, each neuron is connected to other neurons by means of directed communication
links, and each communication link is associated with weights. The weighes contain informarion abour the
inpur signal. This information is used by the net to solve a problem. The weight can| ented in
‘Erﬁ_s?fgmatrix. The weight marrix can Zonnection matrix. To form 2 mathematical notation, it
is assumed that there are “#” processing elements in an ANN and each processing element has exactly “n”
adaptive weights. Thus, the weight matrix W is defined by o

T

- - — ﬁ’\‘
w) wiowiz ... W\ﬂ S

T DA
wy wy wn ... . Wy D

RS

W= =
Lw?;_ Lyl Wp2 - . . . Wy

where w; = [wi, wp, .., @il 2= 1,2, is the weighe vector of processing elemenr and wy is the

w

weight from processing element “#” (source node) to processing elemnent “;” {destination node).

IF the weight matrix W conrains all the adaptive elements of an ANN, then the set of all W macrices
will derermine the ser of all possible information processing configurations for this ANN. The ANN can be
realized by finding an appropriate matrix W. Hence, the weights encode long-term memory (LTM) and the
activation states of neurons encode short-term memory (STM) in a neural nerwork.

Iﬁ‘? Bias

The bigs included ip the netwark has its impact in calcularing the net input. The bias is included by adding
a component xg = 1 to the input vector X 1hus, the input vector becomes

X=(LX,....%,.. ., Xy
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Figure 2-15 Depicrion of activation functions: (A) identity function; (B) binary step function; (C} bipolar step
function; (D) binary sigmoidal funcrion; (E) bipolar sigmoidal function; (F) ramp function.

The bias is considered like another weighr, that is,!" woj\= b4 Consider 2 simple network shown in Figure 2-16
with bias. From Figure 2-16, the ner input to the'duput neuron Y; is caleulated as

n
Yinj = Exiwr‘j = apuygj + xiwyy + xpuapt -+ Xatn
i=0

"
= wgj + Zx,-w,j

=1

n
ying = b+ Y %

i=1
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Figure 2-16 Simple net wich bias.

¢ (Bias)

(Welght)
' m N N
Input *@F Y —> y=mx+c

Flgure 2-17 Block diagram for straighe line.

The activation function discussed in Seetion 2.3.3 is applied over chis net input to calculate the ourpur. The
bias can also be explained as follows: Consider an equarion of straight line,

y=nmx+¢

where x is the input, m is the weight, ¢ is the bias and y is the oucput. The equacion of the scraight line can
also be represented as a block diagram shown in Figure 2-17. Thus, bias plays a major role in determining
the ourpu of the necwork.

The bias can be of two types: positive bias and negarive bias. The positive bias helps in increasing the nec
inpur of the nerwork and the negarive bias helps in decreasing l’.hﬂ_ ner inpur of e _pe - Thus, as a resule
of the bias effect, the ourput of the network can be varied.

12.4.3 Threshotd

Threshold is a ser value based upon which the final outpur of the nerwork may be calculared. The threshold
value is used in the activation function, A comparison is made between the catetlared-nerinput and the
threshold to obmin the nerwork oucput. For each and every applicafios, théré 1 4 threshold limit. Consider a
direct current (DC) motor, If its maximum speed3-L500 rpm then the chreshold based on the speed is 1500
rpm. Ifthe mosor is run on a speed higher than its set threshold, it may damage motor coils. Similarly, in neural
networks, based on the threshold value, the activation functions are defined and the output is calculated. The
activation function using threshold can be defined as O TTr——

1 ifner>p
—1 ifner< @

flne = [

where 6 is the fixed threshold value.
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I 2.4.4 Learning Rate - ,;-‘C) o

)
b
¥

The learning rate is denoted by “o.” It is used to contro] the mﬂnﬁg\mmmw

training. The learning rate, ranging from 0 to 1, c%etc.r_’fgiﬁes the rate of learning at each rime step.

I 2.4.5 Momentum Factor '

Convergence is made faster if a momentum factor is added to the weight updarion process, This is generally

done in the back propagation nerwork. If momentum has to be used, the weights from one or more previous

waining patterns muse be saved. Momentum helps the net in reasonably large welght adjustments undl the
e S - H

corrections are in the same general direction for several patterns.

I 2.4.6 Vigilance Parameter

. The vigilance parameter is denoted by “p.” It is generally used in adaptive resonance theory (ART) nerwork.

The vigilance parameter is used to control the degree of similarity required for patteens to be assigned o the

same cluster unit. The ciioice of vigilatics parametertanges-gppreximately from ﬁ./l7to to perform useful
Woik in controlling the number of clusters.

l2.4.7 Notations

The-notations mentioned in this section have been used in this textbook for explaining each nerwork.

xi:  Activation of unit X;, inpur signal.

yir  Activation of unic Yo 3 = Oing)

wi:  Weight on connection from unit X; to unic Y;.

b;:  Biasacting on unit /. Bias has a constant activation of 1.
W Weighe matrix, W = {w}

Finji Net input to unit Y; given by iy = b + 3, siww

[Ix}l: Norm of magnitude vector X.

6. Threshold for activation of neuron Yj.

§:  Training input vector, § = (s1,..., 5, ..., )

T:  Training output vector, T = (t1,.. ., 2.+ )

X Inputvector, X = (¥1,..., % ..., Xn)

Ay Change in weights given by Awy; = wi{new) — w;{old)

o:  Learning race; it controls the amount of weight adjuscment ac each step of training,

I 2.5 McCulloch~Pitts Neuron

L2.5.1 Theory

The McCulloch~Pitts neuron was the earliest neural nerwork discovered in 1943. It is usually called as M—P
neuron. The M—P neurons are connected by directed weighted parhs. It should be noted that the activation of
a M-P neuron is binary, that is, at any rime step the neuron B3 he weights associated
with the communication links may be excitatory (weight is positive) or inhibitory (weight is negative). All the




[N
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excicatory connected weights entering into a particular neuron will have same weights. The threshold plays
a major role in M~P neuron: There is a fixed threshold for each neuron, and if the net input to the neuron
is greater than the threshold then the neuron fires. Also, it should be noted that any nonzero inhibitory

input would prevent the neuron from firing, The M-P neurons are most widely used in the case of logic
functions: —

l 2.5.2 Architecture

A simple M—P neuron is shown in Figure 2-18. As already discussed, the M—P neuron has both excitatory and
inhibirory connections. It is excitatory with weight (w> 0} or inhibitory with weight —p{p < 0}. In Figure
2-18, inputs from x; to x,, possess excitatory weighted connections and inputs from x4} (0 %4 o possess
inhibitory weighted interconnections. Since the firing of the output neuren is based upon the threshold, the
activation function here is defined as

S if yim 20
f(?m)‘lo if 3y < 0

Forinhibition w be absolute, the threshold with the activation function should sarisfy the following condition:

& >nw=-p

-
The outpuc will fire if it receives sa@ mo;a\é)tcuatory mput.j.but no inthibitory inputs, where

T

kw >0 > (k -—l)w

The M-P neuron has no particular cralnmg algorithm. An analysis has to be performed to determine the
values of the weights and che threshold. Here the weights of the neurcmd to
make the neuron perform a simple logic function,..Fhe-M= s are used as building blocks on which
we can model any funcrion or phenomenon, which can be represented as a logic huricrion.

'Figure 2-18 McCulloch—Pitts neuron model.
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I 2.6 Linear Separability

An ANN does not give an exacr solution for a nonlinear. problem. However, it provides possible approximate
solutions g nonlinear problems. Linear semmt wherein the separation of the input space
into mglor%%?ﬁmu: network tesponse is_positive or negative.

A decision line is drawn to separate positive and negative responscs. The decision line may also be called as

the decision-making line or decision-support line or lincar-separable line. The necessity of the linear separability

concept was felt to classify the paue on their output responses. Generally the net input
to the GUIPIT TnIL i given as

L

n
Yin =0+ Zx,—w,-
=1

Fot exarnple, if a@lp@ function is used over the calculared nee input {3;5) then the value of
the function’is 1 for a positive net input and —1 for a negative net input. Also, it is clear that there exists 2
boundary becween the regions where yi, > 0and y;, < 0. This region may be called as decision bonndary and
can be determined by the relation

u .
b+ Zx;w,- =0
i=1

On the basis of the number of input units in the network, the above equation may represent a line, a plane
or 2 hyperplane. The linear separability of the necwork is based on the decision-boundary line. If there exist
weights (with bias) for which the training input vecrors having positive {correct) response, +1, lic on one side
of the decision boundary and all che other vectors having negative (incorrect) response, —1, lie on the other
side of the decision boundary.then we can conclude me@;g?'s “linearly separable.”

Consider a single-layer network as shown in Figure 2- ias included. The net input for the nerwork
shown in Figure 2-19 is given as

Fin=1b+ xiwq +

The separating line for which the boundary lies beoween the values x; and 3, so that the net gives a positive
tesponse on one side and negarive response on other side, is given as

b+ xun +ou =10

< d
{Output)

Figure 2-19 A single-layer neural ner.
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If weight = is not equal to O then we ger
w b

0n=—-——x——
un

Thus, the requirement for the positive response of the net is
b+xjw; +xqus > 0

During training process, the values of w1, un and b are determined so that the net will produce a positive
(correct) response for the crainifig
for obtaining the positive response from outpur unit is

Net inpur received > 8 (threshold) (

Yin> 6
xw +xun > 8

The separating line equation will then be
xew + xpuy =8
8
== {with wp # 0)
w wa

During training process, the values of wy and w; have to be determined, so thar the net will have a correct
response to the training data. For this correct response, the line passes close through the otigin. In cerrain
situarions, even for correct response, the separating line does not pass through the origin.

Consider a nerwork having positve response in the first quadrant and negative response in all other
quadrants (AND function) with either binary or bipolar data, then the decision line is drawn separating the
positive response region from the negative response region, This is depicred in Figure 2-20.

Thus, based on the conditions discussed above, the equation of this decision line may be obtained.
Also, in all the neoworks that we would be discussing, the representation of data plays a major role.

X

+
{Positive rasponse region)

{Negalive response region)

_xl

Decision
line

%
Figure 2-20 Decision boundary line.

on the other hand, threshold value is being used, then the condition

2.7 Hebb Network 3N

However, the dara representation mode has to be decided — whether it would be in binary form or in

bipolar form. It may be noted that the blpolar represenrauon is better than the binary representation.
Using bipolar data representarion, t

ues ate tepresented by 0 and mistakes can be reprcsented by reversing the inpur value from +1 10 —1 or

Vlce'versa - ot
o D,

[ 27_Hebb Network [eﬂ(,u, one m{m,Lun* -

I 2.7.1 Theory .

For a neural net, the Hebb learning rule is a simple one. Let us understand ir. Donald Hebb stated in 1949

that in the brain, the learning is performed by th¢'€hange in the synapric ebb explained it: “When an

axon of cell A is near enough 1o excite cell B, m%ﬁake& place in firing it, some.
gmmj%eﬂwhabmgemkes place in one or both the cells such thar A's efficiency, as one of the

el hiring B, is increased.”

According to the Hebb rule, the weight vector is found to increase proportionately to the product of the
inpur and 'the learning signal. Here the learning signal is equal to the neuron’s ourpur. In Hebb learning,
if two interconnected neurons are ‘on’ simultanegusly then the weiglits amociated with these neurons can

be increased by the modification made in their Synaptic gep (strength). The weight update in Hebb rule is
given by

wi{new) = w;{old) + x;y

The Hebb rule is more suited for bipolar dara than binary dara. If binary dara is used, the above weight
updation formula cannot distinguish two conditions namely: —
1. A training pair in which an input unic is “on” and targer value is “off.”

2. A training pair in-which both the input unit and the rargec value are “off.”

Thus, there are limitations in Hebb rule application over binary data. Hence, the represencation using bipolar
data is advantageous. -

I 2.72 Flowchart of Training Algorithm

The training algorithm is used for the calculation and adlustment of weights. The flowchare for the training
algorithm of Hebb network is given in Figure 2-21. The notations used in the flowchart have already been
discussed in Section 2.4.7.

In Figure 2-21, 5: ¢ refers to each training inpuc and targee output pair. Till there exists a pair of training
input and target outpar, the training process takes place; else, it T Sopped.

I 2.73 Training Algorithm

The training algorithm of Hebb network is given below:

| Step 0: First initialize the weights. Basically in this network they may be sediro zero, ie., w; —Ofori=11
to n where “n” may be the total number of inpur neurons.

Step 1: Steps 2—4 have to be performed for each input training vector and target output pait, 5: =
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{ Starl )

l Initialize weights

Activate input unils
x=5

Activate outpul unils
y=t

Weight update
w,(new) = w{old)+x y

Bias update
b (new) = blold}+y

-@(\, Stop

- ( )

. m Figure 2-21 Flowcharc of Hebb rraining algorichmn.

Stép 2: Inpurunits acrivations are set, Generally, the activation function of input layer is identiry funcdion:
Step 3: Ourpuc units activations are set: y = £,

Step 4: Weight adjustments and bias adjudtments are performed:

wi{new) = w;i(oldy + x;y
b(new) = blold) + ¥
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The above five steps complete the algorithmic process. In Step 4, the weight updation formula can also be

given in vector form as
winew) = w(old) + xy
Here the change in weight can be expressed as
Aw=xy
As a result,
w(l:ew) =wlold) + Aw

The Hebb rule can be used for pattern association, pattern categorization, pattern classification and over a
range of ather areas.

I 2.8 Summary

In this chapter we have discussed the basics of an ANN and its growth. A deeiled comparison berween
biolegical neuron and artificial neuron has been included to enable the reader understand the basic difference
between them. An ANN is conscrucred with few basic building blocks. The building blocks are based on
the models of artificial neurons and the topology of few basic structures. Concepts of supervised leamning,
unsupervised learning and reinforcement learning are briefly included in this chapter. Various activation
functions and different types of layered connections are also considered here. The basic rerminalogies of ANN
are discussed with their typical values. A brief descriprion on McCulloch—Pites neuron model is provided.
The concepr of linear separabiliy is discussed and illustrated with suitable examples. Derails are provided for
the effective training of a Hebb network.

I 2.9 Solved Problems

1. For the network shown in Figure 1, calculare the  weights are
net inpue to the ourput neuron.

[11:12- 1'3} = [0-3, 0-5, 0-6]
[w, wa, ws] = [0.2,0.1, —0.3]

The net inpuc can be calculated as

Yin = 1wy + quy + x3u3
=03x024+05x0.1+06x(-0.3)
=0.06+0.05 — 0.18 = —0.07

2. Calculare the ner input for the nerwork shown in
Figure 2 with bias included in the network.

Figure 1 Neural net.

Solution: The given neural net consists of threeinpur ~ Solution: The piven net consists of two input
nenrons and one output neuron. The inputs and  neurons, a bias and an output neuron. The inputs are
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Figure 2 Simple neural net.

[x1, 3] = [0.2,0.6] and the weights are [w), w2] =
[0.3,0.7). Since the bias is included & = 0.45 and
bias input xq is equal to 1, the net input is calou-
lated as
Fin = b+ xyw1 + 2w
=0.45+02x03+06x07
= 0.45+0.06 + 042 = 0.93

Therefore yin = 0.93 is the net input.

3. Obrain the output of the neuron Y for the net-
work shown in Figure 3 using activation func-
tions as: (i) binary sigmeidal and (ii) bipolar
sigmoidal.

0.6 0.3

a4

Figure 3 Neural nec.

Solution: The given nerwork has three inpuc neu-
rons with bias and one oucput neuron. These form
a single-layer network. The inputs are given as
[x1,x2,x3] = [0.8,0.6,0.4] and the weights are
[y, 9, w3] = [0.1,0.3, —0.2] with bias $=10.33
{its input is always 1).

The net inpuc to the output neuron is

¥in = b+ Z XjW;
i=l
[n = 3. because only
3 input neurons are given]
= b+ x1wy + xaun + X303
=0354+08x01+06x%x03
+0.4x%x(—02)
=0.35 4 0.08 + 0.18 — 0.08 = 0.53

(i) For binary sigmoidal activation function,

1 1

y=Flm = T = T3 0% =~ 065

(iiy For bipolar sigmoidal acrivation function,

2

Ty !

2
= iy = ——— — 1=
7= Fom T4t

=0.259
4. Implemeat AND function using McCulloch-Pires
neuron (take binary data).

Solution: Consider the cruth table for AND function
(Table 1).

Table 1

X1 ) J
1 1 1
1 0 0
0 1 0
0 0 0

In McCulloch—Picts neuron, only analysis is being
performed. Hence, assume the weights be w1 = 1
and w; = 1. The network architecture is shown in
Figure 4. With these assumed weights, the net inpur
is calculated for four inputs: For inputs

(L1, pp=xmtxum=1x1+Ixl=2
(1L,0), yw=mw+xuwr=1x1+0x1=1
0,1), y;,,=x1w1+X2wz=0xl+1x1=1
0,0, yin=xw +xun=0x1+0x1=0

s, Implement

2.9 Solved Prablems

X

Figure 4 Neural net.

For an AND function, the output is high if both the
inpus are high. For this condition, the net input is
calculated as 2. Hence, based on this ner input, the
threshold is ser, i.e. if the threshold value is greater
than or equal ro 2 then the neuron Fires, else it does
not fire. So che threshold value is setequal to 2{6'= 2).

This can also be obrained by .
'\v Oznw—p
N AT

Here, n= 2, = 1 (excitatory weights) and p = 0
{no inhibitory weights). Substitudng these values in
the above-mentioned equation we get

frlixl—-0=6022
Thus, the output of neuron Y can be written as

Vifgmz2 B
—_ ] = L WA
y=flad =19 i Fin< 2 -

i ‘i‘ i
o

where “2" represents the threshold value.

ANDNOT  function  using
McCulloch-Ditts neuron  (use binary daw
representation).

Solution: In the case of ANDNOT funcrion, the
response is true if the fist input is true and the
second inpur is false. For all other inpuc variations,
the response is false. The truch table for ANDNOT
funcrion is given in Table 2.

35
Table 2
A m X,
0 0 0
CQ._-\I\__ 0 @
1 1 0

The given funcrion givesan outpur onlywhenx =1
and x = 0. The weights have o be decided only afrer
the analysis. The net can be represented as shown in

Figure 5. o DO &
i

Xt

‘Figure 5 Neural ner (weights fixed after analysis).

Case 1: Assume that both weights un and wy are
excieatory, Le.,

w=w=1
Then for the four inputs calentate the net input using
Yin = X110 +omun
For inpurts

(L), pp=1x1+1Ix1=2
(1,0), pn=1%x1+4+0x%x1=1
0,1), yy=0x1+1x1=1
0,0, y9u=0x1+0x1=0

From the calculated net inputs, it is not possible to
fire the newron for input (1, 0) only. Hence, these

weights are not siiable. ,\.P/\( /\L’) 7 ‘7 )
Assume one weight as excitato and the técr as k.
inhibitory, i.e., . u‘{\ﬂ"‘

wy =1, up=-1
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Now calculase the net input. For the inputs A single-layer ner is not sufficient 1o represent the

L1, pn=1x14+1x~1=0 ﬁmcuoln.Anm:ermedlate layer is necessary.
(llo)l _yirr:lx 1+0X—-1=1 s
0.1} ym=0x14+Ex—-1=-1
0,0, pir=0%x14+0x—-1=0 t
From the calculated net inputs, now it is possible

to fire the neuron for input (1, 0) only by fixing a
threshold of 1, i.e., 8 = 1 for Y unir. Thus,

Figure 6 Neural net for XOR function (the

Note: The value of 8 is mlqulated using the following: shown are ebuaincd after analysis).

6> nw-p First function (#] = x%3): The rruch tble for

funcrion 2; is shown in Table 4.

022x1~1 - [for*p" ighibitory only

‘N ‘:" magnitude considered] Table 4
9=>1 FaN ———
- 5\“’2.\5 x] x2 E4
Thus, the output of neuron Y can be wrirten as g ? g
EPYR B | 1 ] i
»=fin) = IU if yip < 1 1 1 i]

The net representation is given as

6. Implemenc XOR function using McCulloch-Piers Case 1: Assume both weights as excitatory, i.e

neuron {consider binary data).

Solution: The truth table for XOR function is given wn = wy =1
in Table 3.
Caleulate the ner inpus. For inputs,

Table 3
x) x ¥ (0.0).31;,,=0xl+0xl=0
0 0 0 0,1, 21,=0x1+1x1=1
0 1 1 (LOhzZyr=1x14+0x1=1
1 0 1 L z=1%x1+1x1=2
1 1 0

Hence, it is not possible 1o obrain funcrion z
using these weighes.

Case 2: Assume one weight as excitatory and the
other as inhibitory, i.e.,

In this case, the outpur is “ON” foronly odd number
of 1's, For the rest it is “OFE” XOR function cannot
be represented by simple and single logic function; it
is represented as

wn =1, wy=-I

y=x33 + X0 T

=z +z
’ O fmman)
where
5 =x%3 (function 1)
o =X {funcion 2)

y=21(0R)z, (function 3) Figure 7 Neural net for Z;.

2.9 Solved Problems
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Zoin=X Wiz +XWaz

Figure 8 Neural net for 7.
Calculate the net inputs. For inputs
0,0), 215, =0x14+0x—-1=0+
0,1z =0x14+1x~1=—1
(1,0, zi=1%x14+0x -1 =1
(1,1),21,‘,:1)(1.-}-] X=1=0

On the basis of this calculated net input, it is
possible to get the required outpur. Hence,

Ly Ly
wyp =1 P!S‘\r oA
un) = —1

8 > 1 forthe Z;, neuren

T T T T
+ Second function {2z = %7x3): The truth table for
function z; is shown in Table 5.

. ;
Table 5 .0
x x z

0 0 0

0 I 1

1 0 0]

1 1 0

The net representation is given as follows:
Case 1: Assume both weights as excitatory, i.e.,

Wiy =mwy =1
Now calculate the net inputs. For the inputs

(0,0), 225y =0x 1+ 0x1=0
01 z2n=0x1+1x1=1
(L0, zppn=1x14+0x1=1
Lmm=1x1+1x1=2

Hence, it is not possible to obrain function z
using these weights.

Case 2: Assume one weight as excitatory and the
other as inhibirory, i.c.,

wp==-1, wp=1

" Now caloulate the net inputs. For the inputs

{0,0), 0jp =0x —-14+0x1=0

(2/]7—524 O zzim=0x—~1+1x1=1

(1,0} zpp=1x -14+0x 1 =—1
(L), zgw=1x

Thus, based on this
possible to ger the requi

wiz = —1
- wyy =1
S 8 21 fortheZ; neuron

[ e
+ Third function {y = £; OR 22): The truth table
for this function is shown in Table 6.

Table 6

X1 x2 ¥ z1 22
0 0 0 0 0
0 1 1 0 1
1 1] i 1 0
| 1 0 0 0

Here the net input is calculated using
P . ,
Case 1; Assume both weights as excitatory, i.e.,
n=wmn=1
Now calculate the net input. For inputs

0,0), in =0 x140x1=0
©1), pn=0xI+1xi=1
(LO), yin=1x1+0x1=1
(L), Jin=0x14+0x1=0

(because for x;, = land x3 = 1,z = 0 and
z=0)
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Figure 9 Neural nec for Y (Z; OR Z2).

Serting a threshold of 8 > 1,5 = 1y = 1, which
implies that the net is recognized. Therefore, the

analysis is made for XOR function using M-P
neurons. Thus for XOR function, the weights are
obrained as

wyy =unp =1 (excitatory)
w12 = wz) = —1 (inhibitory)
py=1 =1 ({excitatory)
7. Using the linear separabiliry concepr, obtain the

response for OR function (take bipolar inpurs and
bipolar targets).

Solution: Table 7 is the truth table for OR function
with bipolar inputs and targets.

Table 7

x| X ¥
1 1 1
1 -1 1

-1 1 1

~1 -1 -1

The truch rable inputs and corresponding ourpurs
have been plotted in Figure 10. If ourpur is 1, it is

denoted as “+” else “—.” Assuming che coordinaces
as (—1,0) and (0, —=1); {x;, 1) and {x2, 32), the slope
“m" of the straight line can be obtained as

n-n _-1-0 -l

m=t———=—— = — =]

X — Xy 0+1 1

We now calculare

c=y —mx =0-(=1}-1)=~1

X

(1
+

X

6 .
SR

¢ )
"] ™\ Funelion dacislon
boundary

Figure 10 Graph for ‘OR’ function.

Using this value the equarion for the line is given as
y=mitce=(-lx—1=—x—1

Here the quadrants are not x and y but x) and x;, so
the above equation becomes

,,,,, ——
[ ®m=—x—1 . 2.1
This can be written as
—uwy b
X = ——x = — (22)
wa u

Comparing Eqgs. (2.1) and (2.2), we get

wy 1 b 1

N =

173} 1 w; I

Therefore, w; = 1, w2 = 1 and & = 1. Calculating
the net inpur and ourput of OR fufiction on the basis
of these weights and bias, we ger entries in Table 8.

Table 8 /\

n om b yp=btmuiFtmury y |
1 1 1 /\b—) .
Io—1 1 1 1

-1 o1 1

-1 -1 1 -1 -1

. I3
Thus, the outpur of neuron Y can be writtenas ¥

— LYy = 1 if.yr'nzl
r=FUw =10 ifym<1

L
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where the threshold is taken as 1" (6 =1} based
on the calculated net input. Hence, using the linear
separability concepr, the response is obrained for
“OR” function. ‘

8. Design 2 Hebb net ro implement logical AND
function {use bipolar inputs and targets). '

Solution: The training data for the AND funcrion is
given in Table 9.

0

Table 9
Inputs Target
X1 X2 b ¥
1 1 1 1
1 -1 1 -1
-1 1 1 -1
~1 -1 1 -1

The nerwork is trained using the Hebb nerwork teain-

ing algorithm discussed in Section 2.7.3. Initially the

At

weights and bias are set 1o zero, Le.,

First input [x) x2 ] =11 1] and targer = 1
li.e., y=1]: Serting the initial weights as old
weights and applying the Hebb rule, we get

wi(new) = wi{old} + x;y

wi{new) = w)(old) +xy=0+1x1=1

unfnew) = wylold) + xy =0+ I x 1 =1
blnew) = blold) +y=0+1=1

The weights calculated above are the final weights
thar are obrained after presenting the first input.
These weights are used as the initial weights when
the second input partern is presented. The weight
change here is Aw; = x;y. Hence weight changes
relating to the first input are

Awj=xiy=1x1=1
Awp=xy=1x1=1
Ab=y=1

Second input vy bl=[1 -1 1] and
y = —1: The initial or old weights here are the

final (new) weights obtained by presenting the
first input partern, i.¢.,

[y wa B} =[111]

" The weight change here is

Aw) =xy=1x-1=-1
Awy=smy=-lx-1=1
Ab=y=—1

The new weights here are

w{new) = wifold) + Awy =1-1=0
wy (new) = unlold) + Awp =141 =12
blnew) = blold) + Ab=1-1=0

Similarly, by presenting the third and fourth
input patterns, the new weights can be calculated.
Table 10 shows the values of weights for all inpucs.

Table 10
Inputs Weight changes Weighis
x1 by Aw Aun Abuy wn b

(0 0 0)

1 11 1 1 I 1 1 1 1
1-11-1 =1 1 -1 0 2 0
-1 11-1 1 -1 -1 1 1-1
-1 -11-1 1 1 -1 2 2-=2

The separating line equarion is given by

—un b
= ——x — —
W) W

For all inputs, use the final weights obrained
for each input to obtain the separating line.
For the first input [1 1 1], the separating line is
given by

-1
=-—x3 - = =—x1 —1
x2 i | 1 X2 1

Similarly, for the second inpuc [1 -1 1], the
separating line is

-0 0 0
= —X] — - =
L) 3 1 2=>x2
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(t. 1)

""I
\ (1._*1)
{A) First Inpul
*
{-1.1 (1.1}
- +
2,=0
xl
(—1._-1) (1.——1)
(B} Second inpul
%
(=51} (1.1
+
xl
(-1._—1) {1.:1)

(C) Third and fourth inputs

Figure 11 Decision boundary for AND
funcrion using Hebb rule for

each training pair.

For the third input [—1 1 1], it is

-1 1
1‘2=TII+T=?'1‘2=—I1+1

Finally, for the fourth input -1 = 1 1], the
separating [ine is

Za+is +1
= ——x - = —X
"= At Sn 1

The graphs for each of these separating lines
obrained are shown in Figure 11, In this figure
“+” mark is used for outpur “1” and “—" mark
is used for outpur "—1." From Figure 11, it can
be noticed char. for the first input, the decision
boundary differentiates only the first and fourth
inpus, and nior all negative responses are separated
from positive responses. When the second input
pattern is presented, the decision boundary sep-
arates (1, 1) from (1, —1) and (—~1, —1) and not
(=1, 1). But the boundary line is same for the both
third and fourth training pairs. And, the decision
boundary line obtained from these input training
pairs separates the positive response region from

the negative response region. Hence, the weighes
obtained from this are the final welghrs d-are
given as

wm =2 =2 b=-2

The network can be represented as shown in
Figure 12.

Figure 12 Hebb net for AND function.

9. Design a Hebb ner to implement OR function

{consider bipolar inputs and wrges).

i
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Solution: The training pair for the OR function is
given in Table 11.

Table 11
Inputs Target
x1 x2 b ¥
1 1 1 1
1 ~1 1 1
-1 i 1 1,
-1 -1 1 -1

Initially the weights and bias ate sec to zero, i.e.,

The necwork is trained and the final weights are out-
lined using the Hebb training algorithm discussed
in Section 2.7.3. The weights are considered s final
weights if the boundary line obtained from these
weights separates the positive response region and
negarive response region.

By presenting all the input patterns, the weights
are calculated. Table 12 shows the weights calculared
for all the inputs.

Table 12
Inpurs Weight changes  Weights
¥ x by Aw Awmy A-b w wy b
© o 0
1 i1 1 t 1 11 1 1
I -1 1 1 I -1 1 2 6 2
-1 11 1 -1 1 1 1 1 3
-1 -1 1 =1 1 I -1 2 2 2

Using the final weights, the boundary line equation
can be obtained. The separaring line equation is
—u b -2 2

= —— _——_—= ——=—-x—1
X2 H)le wr le 3 1

Thedecision region for this nevis shown in Figure 13.
It is observed in Figure 13 that strzught line ;y =

—x} — 1 separates the pattern space into two regions.
The input parrerns [(1, 1) (1, =1}, (-1, 1)} forwhich
the ourpur response is “1” lie on one side of the

boundary, and the i input pattern (—1, —1) for which

the output response is “—1" lies on the other side of
the boundary. Thus, the final weights are

The network can be represented as shown in
Figure 14,

% 6* e b
4" "'

ﬂ

-11 .4}

(—17-1) a.-n

—_—
2
X 7\ 2
X Y 4
O
2
*2

Figure 14 Hebb net for OR funcrion.

10. Use the Hebb rule method to implement XOR
function (rake bipolar inputs and rargets).

Solution: The training patterns for an XOR funcion
are shown in Table 13.

Tabile 13
foputs  Target
xn o n by
1 11 -1
1 -11 1
-1 P 1 1
-1 -1 1 =1

)
Jo
”(J"\

:\
T
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Here, a single-layer nerwork with two input neurons,
one bias and one output neuron is considered. In
this case also, the initial weights are assumed to be
zer0:

w=un=6=0
By using the Hebb trining algorithm, the nerwork is

trained and the final weights are calculated as shown
in the following Table 14.

Table 14
Inputs

Weight changes  Weights

x ox by Aw Aun Ab wy un b
o 0o O

1 11 -1 -1 =1 =1 —-1-1-1
1-11 1 1 -1 1 0-2 O
-1 11 1 -1 i I -1 -1 1
-1-11-1 1 1 -1 ¢ 0 0

The final weights obrained after presenting all the
inpur patterns da not give correct ourput for all pac-
terns. Figure 15 shows that the input patterns are
linearly non-separable. The graph shown in Figure 15
indicares that the four input pairs thac are present can-
not be divided by a single line to separate them into
two regions. Thus XOR function is a case of a pactern
classification problem, which is not linearly separable.

X j!'\‘:u/
(-1.1) 11 | 3
e
+ - ‘."\0
(No dec/i;iox
X, beundary Iine)/'
— + -
{-1.-1) {.-1)
5

Figure 15 Decision boundary for XOR function.

The XOR function can be made linearly separable by
solving it in a manner as discussed in Problem 6. This
method of solving will result in two decision bound-
ary lines for separaring positive and negative regions
of XOR funcrion.

11. Using the Hebb rule, find the weights required to
perform the following classifications of the given
input pacterns shown in Figure 16. The pasern
is shown a5 3 x 3 macrix form in the squares. The
“+" symbols represent the value “1” and empty
squares indicate “—1." Consider “I" belongs to
the members of class (so has target value 1) and
“0” does not belong to the members of class
{so has rarger value -1).

+ |+ ]+ + 0+ | +
+ + +

+ o+ ]+ )+ ]+
P '

Figure 16 Data for input patterns.

Solution: The training input patterns for the given
net {Figure 16) are indicated in Table 15.

Table 15
Patrern

Inputs Targer
Xy X ¥ X x5 X X7 b oy
I 1 11-1 1-11111 1

o 111 1-1 11111 -1

Here a single-layer nerwork with nine input neurons,
one bias and one output neuron is formed. Ser the
initial weights and bias ro zero, i.e.,

w = =Wy = Wy = s

wg=uwr=wg=wg =5b=10

Case I: Presenting first input pattern (I), we calculate
change in weights: '
Auwi=xp i=11w09

Awy=xy=1x1=1

il

vz | )t o b
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Aun=xy=1x1=1
Awg=xyy=1x1=1
Awi =xgy=—1x1=-1
Auws=xy=1x1=1
Awg=xgy=—~1x1=-1
Aur=xpy=1x1=1
Aug=xmy=1x1=1
Aug=xgy=1x1=1
Ab=y=1

We now calculare the new weights using the formula
wi{new) = wi{old) + Aw;

Setting che old weighes as the initdal weighes here,
we obrain

wifnew) = wylold}) + Amw; =051=1
wal(new) = unf{old) + Aun =04+1=1
wilnew) = wfold) + Aws =0+1=

Similarly, caleularing for other weights we get

wilnew} = 1, wslnew) =1, wglnew) = —1,
wylnew) = 1, wglnew) =1, wolnew) =1,
blnew) =1

The weights after presenting fitst input pattern are
Winewy=[111-11-11111]

Case 2: Now we present the second inpuc parrern
(O). The initial weights used here are the final weights
obtained after presenting the firstinput parrern. Here,
the weighrs are calculared a5 shown below (y = —1
with the initial weighesbeing [111-11—-11111]).

wiinew) = wifold} + Ax;  [Aw; = xp]

wi(new) = wifold) + xjy=14+1%x-1=0
ua(new) = unfold) + xpy=1+1x-1=0

wa(new) = wafold) +x3y=14+1x-1=0
wilnew) = wilold) + xgy= —1 +1 x =1 = =2
Hfs(new) =wsfold) +xp= 14+ -1x~-1=2
wg('new) = wglold) +xgy=—14+1x —1=-2
wy(new) = wylold) +xyy=14+1x ~1=0
wg{new) = wgleld} + xgy=1+1x-1=0
wo{new) = wofold} + gy =1+1x-1=0
blnew) = blold) +y=1+1x-1=0

The final weights after presenting the second input
pattern are given as

The weighes obtained are indicared in the Hebb net
shown in Figure 17,

12. Find the weights required to perform the follow-
ing classifications of given inpur patterns using
the Hebb rule. The inpurs are “1" where “+”
symbol is presentand “—1" where “.” Is present.
“L” pactern belongs to the class (target value +1)
and “U" pattern does not belong to the class
(rarget value —1).

Solution: The training inpur parterns for Figure 18
are given in Table 16.

Table 16
Pattern

Inputs Targer

X| X2 X3 X5 X5 X6 xyxgy by
L 1 -1-11-1-111T11 1

I-1 11-1 11111 =1

A single-layer network with nine input neurons, one
bias and one output neuron is formed. Set the initial
weights and bias to zero, Le.,

W= wy ==y = s
=wg=uwr=wg=uwg=6=10
The weights are calculated using
w;(new) = wylold) + x;y
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The caleulated weights are given in Table 17.

Table 17 ;

X

— T N
Inputs Target Weights
/
$m om v w % w oo b Y U1 W W WA w5 we oy wsowy b
% @O0 0 000200 00
1 -1-11-1-11111 ¢ bD=t=Lb=1=11 1171
X3
-1 0 0 =200 -200 0 0
1 -1 1 1 -t 1 1111 =L
Xy

The obrained weights are indicated in the Hebb ner

3 . . -n ut

The final weights after presenting the two inP chown in Figute 19,
° y patterns are g

2

Winew) =[00 ~200 —20000j

®® 6 6 @ 0

' X
i
| (%)
!
. X,
*3 , : @
3
S (%)
Figure 17 Hebb nex for the data matrix shown in Figure 16. : X @
0 ° 4
%
() =
+ . . + . % g
(o) >
Q
+ . . + » + Xy e
Xa
+ + + + + + @
- v
. . Xa
Figure 18 Inpur dara for given pacterns. @

Figure 19 Hebb net of Figure 18.
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l2.1 0 Review Questions

1.
2.

10.

11.

12.
13.

14,

Define an artificial nevural nerwork.

State the properties of the processing element of
an artifictal neural necwork.

. How many signals can be sent by a neuron aca

particular rime instant?

. Draw a simple artificial neuron and discuss the

calcularion of net input.

. Wha is the influence of a linear equation over

the net input calculation?

. List the main components of the biological

neuron.

. Compare and contrast biological neuron and

artificial neuron.

. State the characreristics of an artificial neural

nerwork.

. Discuss in detail the historical developmenc of

artificial neural nerworks, .

YWhar are che basic models of an artificial neural
necvork?

Define net architecture and give irs classifica-
tions.

Define learning.

Differentiace berween supervised and unsuper-
vised learning,

How is the criticinformacion used in che learning
process?

I 2.11 Exercise Problems

15.
16.
17.

18
19,
20.
2L

22,

23,

24,

25.
26.

27.

28,

29,

30.

What is the necessity of activation function?
List the commonly used acrivation functions.

Whar is the impace of weight in an arificial
neural network?

What is the other name for weight?
Define bias and threshold.
What is a learning rate parameter?

How does a momentum factor make faster
convergence of a network?

State the role of vigilance parameter in ART
network.

Why is the McCulloch-Pirts neuron widely used
in logic funcdons?

Indicate the difference berween excirarory and
inhibitory weighted interconnections.

Define linear separability.

Justify — XOR funcrion is non-lineatly separable
by a single decision boundary line.

How can the equation of astraight line be formed
using linear separabiliy?

In what ways is bipolar representation betcer than
binary representation?

State the training algorithm used for che Hebb
necwork,

Compare feed-forward and feedback network.

1. For the nerwork shown in Figure 20, calculate the ner inpur to the outpur neuron.

Figure 20 Neural ner.

e
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2. Caleulate the outpur of neuron Y for the net
shown in Figare 21. Use binary and bipolar
sigmoidal activation functions.

Figure 21 Neural ne:.

3. Design neural necworks with only one M-P

neuron that implements the three basic logic 9

aperations:
{i) NOT (x;}
(i) OR (xy, 22}
{iiiy NAND {xy, x3), where x) and 12 € {0, 1},

4, (a) Show that the derivative of unipolar sig-
moidal function is

100 =Af1 = F)]

(b) Show that the derivacive of bipolar sigmoidal
funcrion is

Fl= %u +FOI0 — )

5. {a) Construct a feed-forward necwork wish five
input nodes, three hidden nodes and four ourput
nodes that has lateral inhibicion structure in the
outpuc layer.

L2.12 Projects

Gy

{b) Construct a recurrent neewerk with four
input nodes, three hidden nodes and two ourput
nodes that has feedback links from the hidden
layer to the input layer.

.. Using linear separability coriccpt, obtain che
. response for NAND function.

. Design a Hebb ner to implement logical AND

function wich
(a) binary inpurs and rargees and
(b) binary inpurs and bipolar rargets.

. Implement NOR function using Hebb ner wich

{a} bipolar inpuzs and wargets and

{b) bipolar inputs and binary rargers.

Classify the inpur pattetns shown in Figure 22
using Hebb training algorithm.

+ + ¥ + + T
+ . + + N .
+ + + + + +
+ . + + ’ .
+ . + + + +
A g
Target value +1 -1

Figure 22 Inpuc pattern.

10. Using Hebb rule, find che weights required 1o

perform following classifications. The vecrors
(1 —11~1)and {111 ~1}belong 10 class (rarger
value +1); vectors (—1 —1 1 Dand (11 -1 —1)
do nor belong to class (rarger value —1), Also
using each of training x vecrors as inpuy, rest the
response of net.

1. Write a program to classify the letzers and numer- 2.
als using Hebb learning rule. Take a pair of letters
or numerals of your own. Also, after training 5
the network, test the response of the net using
suitable activation function. Petform the clas-
sification using bipolar data as well as binary
dara.

4,

Wxit;__suimb{e programs for implementing logic
funcrions using McCulloch~Pius neuran,

Write a compurter program to train a Madaline to
perform AND function, using MRI algorithm.

Write a program for implementing BPN for
training a single-hidden-layer back-propagation
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necwork with bipolar sigmoidal units (L= 1) 1o
achieve the following two-to-one mappings:

* y=Gsin(rx) + cos(mxy)

* y = sin{mrx1) cos(0.27xp)

Set up two sets of data, each consisting of 10
input-output pairs, one for training and other for

testing. The input—output data are obtained by
varying input variables (x|, x3) within [—1,+1]
randomly. Also the ourput dara are normahized
wichin (—1,1). Apply craining to find proper
weights in the nerwork.

Qeas aohomn

Supervised Learning Network

— Learning Objectives £

* The basic nerworks in supervised learning, Adaline, Madaline, back-propagation and

* How the perceptron learning rule is betcer radial basis function network.

than the Hebb rule.

* Original perceperon layer description.

* The various learning facrors used in BPN.

+ An overview of Time Delay, Function Link,
Waveler and Tree Neural Nerworks,

* Difference between back-propagarion and
RBF nerworks.

Delta rule with single outpur unit.

Architecre, flowcharr, training algorithm
and testing algorithm for perceperon,

I 3.1 iInfroduction

The chapter covers major topics involving supervised learning nerworks and their associated single-layer
and multilayer feed-forward necworks. The following topics have Beén discussed in derail — the percéptron
learning rule for simple perceptrons, the defta rule (Widrow-Hoff rule) for Adaline 2nd single-layer feed-
forward neoworks with continuous activation functions, and the back-propagarion algorithm for multilayer
feed-forward nerworks with continucus activarion functions. In shorr, all the feed-forward networks have
been explored.

I3.2 Perceptron Networks

IEJ Theory

Perceprron networks come under single-layer feed-forward necworks and are also called simple perceptrons,
As described in Table 2-2 (Evolution of Neural Networks) in Chapter 2, various rypes of perceptrons were
designed by Rosenblate (1962) and Minsky-Papert {1969, 1988). However, a simple perceprron nerwork was
discovered by Block in 1962,

The key points to be noted in a perceperon nerwork are:

1. The perceptron network consists of three units, namely, sensory unit {input unit), associator unit (hidden
unit}, response unit {output unic).
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. The sensory units are connected to associator unis with fixed weights having values 1, 0 or —1, which are

assigned ar random.

. The binary activation function is used in sensory unit and associator unit.

4. The response unit has anaceivation of 1, 0 or —1. The binary step with fixed threshold @ is used as
activartion for associator, The outpur signals that are sent from che associator unit to che response unit are
only binary. - —

5. The outpuc of the perceptron nerwork is given by

~

'_7\ \\-': ‘ J’=f()’m)

2" where Fiyin} is accivation function and is defined as
oA

e RN ¢ 1 if yp> 8

0 if ~8 <y, =P

—1 if yin<—0

e

f(}'l'n) =

. The perceptron learning rule is used in che weight updarion berween the associator unic and the response
unit. For each training input, the ner will calculate the response and it will détermine whethet o1 7ot an

error has occurred.

7. The error calculation is based on the comparison of the values of targets with those of the calculaced
onrputs.

8. The weights on the connections from the units thar send the nonzero signal will get adjusted suitably.

9. The weights will be adjusted on the basis of the learning rule if an errar has occurred for a particular
\‘-——\l——\_,,_,—.——.——"—-——.—_
cmining Earteru.i.c.,_

wi{new) = wilold) + or
b(new) = bold) + o

1f no error oceurs, there is o weight updation and hence the training process may be stopped. In the above
equations, the rarget value “r” is +1 or — t and w is the learning rate. In general, these learning rules begin with
an initial guess at the weight values and then successive adjusements are made on the basis of the evalyation

of an abjective function. Eventually, the learning rules reach a near-optimal or optimal solution in a finite

-»_.——/'

nuinber of steps.
mcpcron necwork with its three units is shown in Figure 3-1. As shown in Figure 3-1, a sensory unic
can be a two-dimensional matrix of 400 photodetectars upon which a lighted picrure with geometric black
and white pattern impinges. These detectors provide a binary (0} electrical signal if the input signal is found
to exceed a certain value of threshold. Also, these detectors are connegted randomly with the associaror Unic.
“The associator unit is Found 6 Gonsisc of a set of subcircuics called rmure predicates. The feature predicates are
hard-wired co detect the specific feature of a pattern and arc e
fearure, cach predicate is examined wich a few or all of the
the results from the predicate units are also binary {0
pastern-recognizers or perceptrons. The weights pr

fvalent to the feature detectors. For a particular
ponses of the sensory unit. It can be found chac
1). The last unit, i.e. response unit, concains the
fit in the input layers are all fixed, while the weights on

. _‘_

3.2 Percepiron Netwarks
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I 3.2.2 Perceptron Leaming Rule KA 6 ack
In case of the perceptron learning rule, the learning signal is the difference berween gsired.and actual .. .

response of a neuron. The perceptron learning rule T explzingd 7s fotiows:

w.on

1L eg =D AR

Consider a finite “n number of input training vectors, wich their associated ra-rget-(-cfésired) values x(n)

:mc! H{r}, where “n” ranges fram I-to V. The targee is either +1 or ~1. The output 5" is obtained on the
basis of the ner inpur calculated and QWOH being applied over the net inpur.

1 Yin > g i
¥ =f(}'in) = 0 if -8 < Yin <@ \\j\l
=1 if yig<—0 J f(-\\ ~
DTS

\ e (—}\ \
{ﬂ ‘j'_f,"i
Ify ?‘2 A then S

The weight updarion in case of perceprron learning is as shown.

winew) = wlold) + asx (& ~ learning rate)
clse, we have

winew) = wlold)
The weights can be initialized at any values in_this mechod, The pesceptron rule conver

states thar “If there is 2 weight vector o 7EEATWT = #(n), for all ,

w1, the perceprron learning rule will converge 0 x

gence thearem
en for myswarting vector
3t gives the correct response for all

L

)

T
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Figure 3-2 Single classification perceptron network.

training parterns, and this learning takes place within a finite number of steps provided that the solution

exists.” "

I 3.2.3 Architecture

In the original perceptron network, the output obtained from the assoc'mﬂl.l_@lb_iga_rz_v_ecmr, and hence
thac outpur can be taken as input signal to the response unit, and classification can be performed. Here only
the weights berween the associator unic and the output unit can lmgemeen the
sensory and associator unirs are fixed. Asa result, the discussion of the nerwork is limited to a single portion.
Thmﬂa like the i inpuc unic. A slmple perceptron network architecture is shown in
Figure 3:2. I

In Figure 3-2, there ate 7 input neurons, 1 outpur neuron and a bias. The inpuc-layer and output-
layer neurons are connected through a directed communication link, which s associared with weights. The
goal of the perceptron net is [0 classify the jnput partern as a member or not a mcmber 1o a particular
class. e T

— 2005 =7 [LO-.»U(l |\f \PF u!--l(—“,y-f\ 64 5 redeadh B S r\ﬂ{
I 3.2.4 Flowchart for Training Process

The flowchart for the perceptron network training is shown in Figure 3-3. The nerwork has to be suirably
trained to obtain the response. The flowchart depicted here presents the flow of the training process.

As depicted in the flowchare, firs the basic initialization required for che training process is performed.
The entire loop of the training process continues until the training input pair is presented to the nerwork.
The training (weight updation) is done on the basis of the comparison berween the calculated and desired
output. The loop is terminated if there is no change in weight.

Ij.2.5 Perceptron Training Algorithrh for Single Output Classes

The perceptron algorithm can be used for either binary or bipolar input vectors, having bipolar targers,
threshold being fixed and variable bias. The algorithm discussed in this secrion is not particularly sensitive

to the injtial values of the weights or the value of the learning rate. In the algorithm diseussed below, inidally
the inputs are assigned. Then the net input is calculated. The output of the newwork is obrained by applying
the activation function over the calculated net inpur. On performing comparison over the calculated and

U v

bt kit m ey ot e m e

3.2 Percaptron Netwarks
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!
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r

Calculate net inpul y,

'

Apply activation, abtain
y=1y,)

J

w(new) = wold} + atx,
b{new) = b(old) + art

wnew} = w,(old)
b(new) = biold)

[

[

If
weight
changes

Yes

No
r

Step ]

Figure 3-3 Flowchart for perceprron network with single output.
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the desired ourput, the weight updation process is carried our. The entire nemwork is trained based on the
mentioned stopping criterion. The algorithm of a perceptron network is as follows:

[ Step 0: Initialize the weights and the bias {for easy calculation they can be set to zero). Also initialize the I
leacning rate @(0 < a < 1). For simplicity a issereo 1.

Step 1: Perform Steps 2—6 until the final stopping condition is false.
Step 2: Perform Steps 3-5 for each training pair indicated by s:x.

Step 3: The inpur layer containing input units is applied with identiry activation functions:
% =5

Step 4: Calculate the output of the necwork. To do so, first obrain the net input:

n
Jin = b+ Zx,—w,—
i=1

where “#” is the number of inpurt neurons in the input layer. Then apply activations over the ner
input caleulated to obeain the outpuc:
1 fys> 0
}"=f(7fn)= 0 if—es]in <8
-1 ifpp<—0
Step 5: Weight and bias adjustment: Compare the value of the acral (caleulated) outpur and desired
(rarger) output.
Ify # ¢, then
wi{new) = w;(old) + asx;
bnew) = blold) +
else, we have
winew) = w;(old)
binew) = blold)

Step 6: Train cthe nerwork until chere is no weighe change. This is cthe stopping condition for the network.
If chis condition is not met, then start again from Step 2. J

The algorithm discussed above is not sensitive ta che initial values of the weights or the value of the
learning rate.

13.2.6 Parceptron Training Algarithm for Multiple Qutput Classes

For multiple output classes, the perceptron training algorithm is as follows:

I Step 0: Initialize the weights, biases and learning rate snitably.
Step 1: Check for stopping condition; if it is false, pecform Steps 2-6.

3.2 Parceptron Networks a5

Step 2: Perform Steps 3-5 for each bipolar or binary training vector pair s:4.

Step 3: Set activation (identicy) of each input uniti=1tom

Xj= 8

e

Step 4: Calculate output response of each output unjrj = 1 to f: First, the ner input is calculated as

¥ AR
"/,—. " r\r\- ‘/CJ;"‘\ 1’(0'. I’JJ‘
g Fing = b+ Y ity W s
N\ QC‘- .\; ) .7 r~

\ . =t E’b' N (r'

N
Then activations are applied over the net inpur to calculate the outpus response:

1 ifyfnj> 7}
Y=flm) =14 0 -0 py<0
—=1 ifyu;<—8

Step 5: Make adjustment in weights and bias for j=lw mand i =10 n.

Ifz; # 3, then
wiflnew) = w,'j(old) + ayx;
bi{new) = gifold) + o
else, we have
wiilnew) = wlold)
bilnew} = £;{old)

Step 6: Test for the stopping condition, i.e., if there is no change in weights chen stop the training process,
else start again from Step 2. J

It can be noticed chat after training, the ner classifies each of the training vectors. The above algorithm is
suited for the architecrure shown in Figure 3-4.

I 3.2.7 Percepiron Network Testing Algorithm

It is best to tesc the nerwork performance once the training process is complete. For efficient performance

of the network, ir should be trained with more data. The testing algorithm (applicadion procedure) is as
follows:

I Step 0: The inirial weights to be used here are taken from the training algorichms (the final weights l
obrained during teaining).
Step I: For each input vector X to be classified, petform Steps 2-3.

Step 2: Set activarions of the input unit.
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Figure 3-4 Nerwork archirecrure for perceptron nerwork for several output classes.

Step 3: Obtain the response of output unit,

n
Fin = Zx,-w; /\
i=1

1 if yip> 8

y=flr) =13 0 if -8 <y, <0 /’/\.

7

s '

=1 if yp <0

L

Thus, the testing algorithin tests the performance of network.

Note: In wgfmn network, it can be wsed for linear separability conceps. Here the separating line
may be based on the vilur of thiehald, re., the dhprshold used iy _getivation function must be a non-negative

value.

—

The condirion for separating the response from region of positive to region of zero is

wixy+up+b> 8

The condition for separating the respofise from region of zero to region of negative is
ToMm reglon Of Zero to region of negative |
et e —_— ————
wyxy + wyxy + b< —0
- e e, 22 < T :
The conditions above ate stated for a sifiglé-layer perceptron nerwork with two input neurons and one output
neuron and one bias.

/b
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3.3 Adaptive Linear Neuron (Adaline) S

3.3.1 Theory ;

The unics with linear activacion fanction are called inear.units. A necwork with a single linear unit is called
an Adualine (adaptive linear neuron). That is, in an Adaline, the inpuc—output relationship is linear. Adaline
uses bipolar acrivation for its input signals and its targer outpur. The weights between the input and the
output are adjustable. The bias in Adaline acts like an adjustable weight, whose connection is from a unit
with acrivations being always 1. Adaline is a net which has only one output unit. The Adaline necwork may
be trained using delra rule. The delta rule may also be called as least mean square (LMS) rule or Widrow-Hoff
rule. This learning rule is found to minimize the mean-squared error berween the activation and the targer
value.

I 3.3.2 Delta Rule for Single Qutput Unit

The Widrow-Hoff rule is very similar o perceptton leaming rule. However, their origins are different. The
perceptron learning rule originates from the Hebbian assumption while the delea rule is derived from the
gradienc-descent method (it can be generalized to more than one layer). Also, the perceptron learning rule
stops after a finite number of fearning steps, but the gradient-descent approach continues forever, converging
only asymprotically to the solution. The delta rule updates the weights between the connections so as o
minimize the difference berween the net input to the output unir and the target value. The major aim is to
minimize the error over all training pacrerns. This is done by reducing the error for each pattern, one ara
time.
The delea rule for adjusting the weight of ith pattern (i = 1 to 1) is

Aw; = alt — yi)xi

where A w; is the weight change; @ the learning rate; x the vector of activation of inpur unit; 3, the net input
10 output unit, i, ¥ = 3 1| xw;i ¢ the targer outpuc. The delia rule in case of several output unirs for
adjuscing the weight from ith inpur unit to the jth outpuc unit {for cach partern) is

Awl}' = a(rj _yl'rrj)xi

l3.3.3 Architecture

As already stated, Adaline is a single-unit neuron, which receives input from several units and also from one
unit called bias. An Adaline model is shown in Figure 3-5. The basic Adaline model consiscs of trainable
weights. Inputs are either of the two values (4-1 or —1) and the weights have signs (positive or negative).
Initially, random weights are assigned. The net input calculated is applied to a quantizer transfer funcdon
{possibly acrivation function) that restores the output to +1 or 1. The Adaline model compares the acrual
output with the target output and on the basis of the training afgorithm, the weights are adjusted.

I 3.2.4 Flowchart for Training Process

The flowchart for the training process is shown in Figure 3-6. This gives a picrorial representation of the
nerwork training, The condirions necessary for weighr adjustments have ro be checked carefully. The weights
and other required paramerers are initalized. Then the necinputis calculared, output is obtained and compared
with the desired ourpue for calculation of error. On the basis of the error factor, weights are adjusted.



58 Supervised Learning Netwark 3.3 Adaptive Linear Neuron {Adaline)

Start

&
T
-
o
|

T o
Set initial values welghts
and blas, learning state

X
lva\‘
w.b a
W, ‘

(44
|
i

' Input the specified
Yin tojerance error £,
N
y
Adaplive e=!-Yyn Outputeror | 5 |
algorithm generator | i F°‘h Mo
i Learning supervisor : esa ?!
Flgure 3-5 Adaline model.
Yes
I 3.3.5 Training Algorithm Activate input layer units
. . . . x,=s,{i=1tc n)
The Adaline necwork training algorithm is as follows:
Etep 0: Weights and bias are set to some random values but not zero. Set the learning rate parameter o. l
' . L Calculate net input
Step 1: Perform Steps 2-6 when stopping condition is false. _ Y= b+ Txw,
Step Z: Perform Steps 3-5 for each bipolar training pair s+ ,l,
Step 3: Set activations for input unics i = 1 to 2.
Weight updation
=g w; (new) = w, (old) + e(t - y,)x;
b{new) = b(old) + a(t - yin)
Step 4: Calculate the net input to the output unit. l
z Caloulate error
Jin = b+ Z Xty E=% (“Y:'n)e
=]
Step 5: Update the weights and bias for i =1 o
wilnew) = wilold) + a (r — yin) x; No
blnew) = b (old) + e (£ — yim)
Step 6: If the highest weight change chat occurred during training is smaller than a specified toler- ; v
ance then stop the training process, else condnue. This is the test for stopping condition of a : =
nerwork. ‘ m
The range of learning rate ¢an be berween 0.1 and 1.0. Figure 3-6 Flowchare for Adaline training process,
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l3.3.6 Testing Algorithm

It is essential to perform the testing of a nerwork that has been trained. When training is completed, the

Adaline can be used to classify inpur patrerns. A step function is used to test the performance of the network.
The testing procedure for the Adaline netwerk is as follows:

I Step 0: Initialize the weights. {The weights are obeained from the training algorithm.} I

Step 1: Perform Steps 24 for each bipolar input vecror .
Step 2: Set the activations of the input units to x.

Step 3: Calculate the net inpur to the output unic:

Yn=tb+ fow.'
Step 4: Apply the activation function over the net input calculated:

1 ify 20
=121 gm0

L

E.4 Muitiple Adaptive Linear Neurons
I 3.4.1 Theory

The multiple adaprive linear neurons (Madaline) model consists of many Adalines in parailel with a single
output unit whose value is based on certain selection rules. It may use majcrity vote rule. On using this rule,
the output would have as answer either true or false. On the other hand, if AND rule is used, the ourput is
true if and only if borh the inputs are true, and so on. The weights that are connected from the Adaline layer
to the Madaline layer are fixed, positive and possess equal values. The weights berween the input layer and
the Adaline layer are adjusted during the training process. The Adaline and Madaline layer neurons have a

bias of excitation “1” connected to them. The aining process for 2 Madaline system is similar to that of an
Adaline,

l 3.4.2 Architecturp

A simple Madaline architecture is shown in Figure 3-7, which consists of “#” units of input layer, “#” units
of Adaline layer and “1” unit of the Madaline layer. Each neuron in the Adaline and Madaline layers has a bias
of excitation 1. The Adaline layer is present berween the input layer and the Madaline {outpur) layer; hence,
the Adaline layer can be considered a hidden layer. The use of the hidden layer gives the ner computational
capabilicy which is not found in single-layer nets, but this complicates the training process to some extent.

The Adaline and Madaline models can be applied effectively in communication systems of adaprive
equalizers and adaptive noise cancellation and other cancellacion circuits.

l3.4.3 Flowchart of Training Process

The flowcharr of the training process of the Madaline nerwork is shown in Figure 3-8. In case of training, the
weights berween the input layer and the hidden layer are adjusted, and the weighrs berween the hidden layer
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Figure 3-7 Architecrure of Madaline layer.

and the outpur layer are fixed. The time raken for the training process in the Madaline nerwork is very high
compared 1o that of the Adaline network.

I 3.4.4 Training Algorithm

In this training algorithm, only the weights between the hidden layer and the inpu layer are adjusted, and
the weights for the output units ase fixed. The weights #i, vz, .. ., ¥ and the bias b that enter into outpur
unis Yare determined so that the response of unic ¥is 1. Thus, the weiphts entering Y unit may be raken as

b=

M= ==y =
and the bias can be raken as

by =

A —

The acrivacion for the Adaline (hidden) and Madaline (outpur) units is given by

1 ifx=0

FO=3_1 it e<o

Step 0: Initialize the weights. The weights entering the output unit are set as above, Set inicial small—l
random values for Adaline weights. Also set initial learning rate o.

Step 1: When stopping condition is false, petform Steps 2-3.
Step 2: For each bipolar training pair s:4, perform Steps 3-7.
Step 3: Acrivate input layer unics. For i =1 to n,

Xi = 35i

Step 4: Calculate net input to each hidden Adaline univ:

n
Zinj = bj+Zx,-w,-j, f=ltwom

i=}
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Figure 3-8 Flowchart for training of Madaline,
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Step 5; Calculare output of each hidden unit:
i =f (zr'nj)
Step 6: Find the ourput of the nex:

m
Yu=t+ Ezivj

j=1
= £ {in}
Step 7: Calculate the error and update the weighs.
1. If # =y, no weight updation is required.
2. If # # yand £ = +1, update weights on z;, where net input is closest to 0 {zero):
bi(new) = ;lold) + o (1 — zinj)
wy{new) = wylold) -+ o (1 — Zim)X;
3. If ¢ # yand £ = —1, updare weights on units z; whose net input is posirive:
wig(new) = wiplold) + e (—1 — zimk) xi
bplnew) = bylold) + o (=1 — z;)

Step 8: Test for the stopping condition. (If thereis no weight change or weight reaches a satisfactory level,
or if a specified maximum number of iterations of weighe updation have been performed then
stop, or else continue).

Madalines can be formed wich the weights on the outpur unic set to perform some logic functions. If there
are only two hidden units present, or if there are more than two hidden units, then cthe “majority vote rule”
function may be used. /

I 3.5 Back-Propagation Network

3.5.1 Theory

The back-propagation learning algorithm is one of the most important developments in neural nerworks
{Bryson and Ho, 1969; Werbos, 1974; Lecun, 1985; Parker, 1985; Rumelhart, 1986). This nerwork has re-

awakened the sciencific and engineering community to the modeling and processing of numerous.quantitaive .

phenomena using nel newworks. This learning algorirﬁ'm—'i? applied luilayer feed-forward nerworks
consiang ohprocessing elements with continuous mm%;@muciawd
with back-propagation learning algorithm are alsg called back-propagation fiefwor (BPNs). For a given set
of training inpus-output pair, this algorithm provides a procedure for changing the weights in a BPN <o
classify the given input patrerns correctly. The basic concept for this weight updare algorithm is simply the
gradient-descent method as used in the case of simple perceptron networks with differentiable units. Thisisa
method where the errot is propagared back to the hidden unir. {Lhe aim of the neural network 1s to train the

net o achieve a balance berween the net’s ability to respond {mefforization) and its ability 1o give reasonable
responses to the input that is similar but not identir?:o the one that is used in training (generalization}.

{
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The back-propagation algorithm is different from other networks in respect to the process by whid
weights are calculated during the learning period of the nerwork. The general mﬂ
perceprrons is calculating the weights of the hidden layers in an efficient way that would result in a very small
or ze10 output error. When the hidden layers are incteased the nerwork training becomes more complex. To
updare weights, the error must be caleulated. The error, which is the difference berween the actual {ealculated)
and the desired {targer) ourpu, is easily measured at the’ourpur layer. It should be noted thar ar the hidden
layers, there is no direct information of the error. Therefore, other rechnigues should be used to calculate an
error at the hidden layer, which will cause minimization of the outpur error, and this is the ultimare goal.

The training of the BPN is done in three stages — the feed-forward of the input training patern, the
calculation and back-propagation of the error, and updation of weights. The testing of the BPN involves the
computation of feed-forward phase only. There can be more than one hifiden Tayer (more beneficial) bur one

!'uddcn layer is Suffictent. Even though the training is very slow, ence the nerwork is trained it can produce
its ourputs very rapidly.

l3.5.2 Architecture

A b_ack—propagation neural nerwork is a multilayer, feed-forward neural network consisting of an inpur fayer,
a hidden layer and an output layer. The neurons present in the hidden and outpur layers have biases, which
are the connections from the units whose activarion is always 1. The bias terms also acts as weights. Figure 3-9
shovf's the architecture of a BPN, depicting only the direction of information flow for the feed-forward phase.
During .the b@mlmmm& signals are sent in the reverse direction]

. The inputs ar¢Sent to the BPN and the outpurt obtained from the ner could beeither binary (0, 1) ot
bipolar (—1,+1). The activation function could be any function which increases monoronically and is alse
differentiable.

S
ﬁ\{ 1
N Y -

FlLure 3-9 Architecture of a back-propagation network.
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I 3.5.3 Flowchart for Training Process

The flowchart for the training process using a BPN is shown in Figure 3-10. The terminclogies used in the
flowchart and in the training algorithm are as follows:
x = input training vector (X1, .- Xiv v, Xn)
# = tarper ourpur vector (A, ...y fpsven s b~
o = learning rate paramerer ,
x; = input unit £. (Since the inpur layer uses identity activation function, the input and ourput signals
here are same.)
w; = bias on jehi hidden unit
wog = bias on th outpur unic
2z = hidden unit j. The net inplt to z; is

n
Zinj = byt inb';j
i=1
and the outpur is

7= f(zj)

& = ourput unit £ The net inpur to y; is

p
Yink = wo + Ezjwjk
j=1

and the output is

2= fyins)

8 = error correcrion weight adjusrmen for wy chat is due 10 an error ar outpuc unit y, which is
back-propagaced o the hidden unics char feed inco unit
8; = error correction weight adjustment for v thar is due to the back-propagation of error 1o the
- - . . - - T - —
hidden unitz;. ot l wers *H\-M—PE; Lo J-J
Also, ir should be noted thac the commonly used activation funcrions are binary sigmoidal and bipolar
sigmoidal acrivation functions (discussed in Section 2.3.3). These functions are used in the BPN because of

the following characreristics: (i} continuiry; (ii) differenriahilisy Git) nondecteasing Monotosny.

The range of binary sigmoid is from 0 to 1, and for bipolar sigmoid it is from —1 o +1.

l 3.5.4 Training Aigorithm

The error back-propagation learning aigorithm can be outlined in the following algorichm:

s

Step 1: Perform Steps 2-9 when stopping condition is false.

tep 0: [nitialize weights and learning rate (take some small random values).

Step 2: Perform Steps 3-8 for each training pair.
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Figure 3-10 Flowchare for back-propagation network training,
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Figure 3-10 (Continued).
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T TN
{eed ﬁ;rwar pbm (Pbare I)J

Step 3: Each input unit receives input signal x; and sends it to the hidden unit (/ = 1 to n).
Step 4: Each hidden unit zi{f = 1 10 p) sums its weighted inpur signals to calculare net inpur:
— A .

—

n -
- gt
Zinjy = + wa.j SRS
i=1 v
Calculare ourput of the hidden unit by applying its activation functions over ziq; (binary or bipolar
sigmoidal activation function):

Fl

"

I'.j = f(ziny)
and send the output signal from the hidden unit to the input of outpur layer units. - }{
Step 5: For each output unit y; (¥ = 1 to m), calculare the net inpuc: A
— A

?
Yink = o + Ezj'u{;k )
j=1

and apply the activation function to compute outpur signal

e
Fb = f ()’l'nk)
e
Pack pra_paganan of error (Phase )y

L
Step-6: Each output unit ;¢ = l to ) Teceives a targer paciern corresponding ro the input training

pateern and computes theferrorcorrecuoTTE L )
8= (& — ¥ Giomt)

The derivative f”(y;m) can be calcutated as in Section 2.3.3. On the basis of the calculated error
correction term, update the change in weights and blas i

Awy = abyz; ﬂww=a5:, At

Also, send §; to the hidden layer baékwards.. -

Step 7: Each hidden unit (z;, j = 1 1o p} sums its dela inputs from the outpur units:

m
Sij= D Skt
k=1 -
The rerm 8;; gers multiplied with the derivarive of f{ziy) to calculace the error reim:
8 =B (zin}) 7

The derivative f*(z;) can be caleulated as discussed in Section 2.3.3 depending on whether
binary or bipolar sigmoidal function is used. On the basis of the calculaved §;, update the change
in weights and bias:

Avff= Etajx,'; L\ﬂoj= aﬁj
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. Weight and bias updation (Phase {ID):
Step 8: Each output unit (s, £ = 1 to m) updates the bias and weights:

wip(new) = wiplold)+Awy
wor{new) = wyglold)+ Aoy

Each hidden unit {z;, j = 1 to p) updares irs bias and weights:

vij(new) = vlold}+Avy
voj{new) = wj{old)+A g

Step 9: Check for the stopping condition. The stopping condition may be cerrain number of epochs
‘ reached or when the actual outpur equals the targer outpur. I

The above algorithm uses the incremental approach for updacion of weights, i.e., the weights ate being
changed immediaxely after a training partern is presented. There is another way of training called batch-mode
training, where the weights are changed only after all the training parterns are presented. The effectiveness of
two approaches depends on the problem, but batch-mode training requires additional local storage for each
connection to maintain the immediare weight changes. When a BPN is used as a classifier, it is equivalent to
the optimal Bayesian discriminant function for asymptotically large sets of statistically independent training
patterns.

The problem in this case is whether the back-propagation learning algorithm can always converge and find
proper weights for necwork even after enough learning, It will converge since it implements a gradient-descent
on the error surface in the weight space, and this will roll down the error surface to the nearest minimum error
and will stop. This becomes true only when che relation existing between the inpur and the oucpuc training
patcerns is deterministic and the error surface is dererministic. This is not the case in real world because the
produced square-grror surfaces are always at random. This is the stochastic nature of the back-propagation
algorithm, which is purely based on the stochastic gradient-descent method. The BPN is a special case of
stochastic approximation.

If the BPN algorithm converges at all, then it may ger stuck with local minima 2nd may be unable to
find satisfactory solutions. The randomness of the algorithm helps it to ger out of local minima. The error
funerions may have large number of global minima because of permurations of weights thar keep the nerwork
input—ouepue function unchanged. This*€auses the error surfaces to have numerous troughs.

I 3.5.5 Learning Factors of Back-Propagation Network

The training of 2 BPN is based on the choice of various parameters. Also, the convergence of the BPN is
based on some impertanc learning factors such as the initial weights, the lexrning raee, the updation rule,
the size and nawre of the training ser, and the architecture (number of layers and number of neurons per

layer).

3.5.5.1 Initial Weights

The ultimare solution may be affected by the initial Wc:lghts of a multilayer feed-forward necwork. They are
1muahz.ed at small random valucs Thc choice of ¢ i

t derermines how fast the nerwork converges.
T ed here may get sarurated

3.5 Back-Propagation Network 71

from the beginning itself and the system may be stuck at a local minima or at a very flar plateau at the starting

point itself. One method of choosing the weighﬂ is choosing It in the range
- [
Wﬂ%mtmgeﬂowd 10 processim he inirializa-
ion can also be done by a method called Nyugen=Widrow initialization. This type of initialization leads
1o faster convergence of network. The concept here is based on the geometric analysis of the response,of
hidden neurons te a single input. The method is.used for improving the leaming ability of the hidden unics.

The random inirialization of weights connecting inpur neurons to the hidden neurons is obrained by the
equation

u,_,(old)
yold)|

vy{new) =y o=—r "

where 7 is the average weight calculated for all values of 4, and the scale factor ¥ = 0. 7(AM" (“n* is the
number of input neurons and “P* is the number of hidden neurons).

3.5.5.2 Learning Rate o

The learning rate (o) affects the convergence of the BPN. A larger value of & may speed up the convergence
but might result in overshooting, while a smaller value of & has vice-versa effect. The range of o from 10~3
to 10 has been used Successkully for several back-propagation algorithmic experiments. Thus, a large learning

, fate leads to rapid learning but there is oscillation of weights, while the lower learning rate leads to slower

learning,

3.5.5.3 Momentum Factor

The gradient descent is very slow if the learning rte « is small and oscillates widely if @ is wo large. One
very efficient and commonly used method that allows a larger leammg rare withourt oscillations is by adding

a memenwm facror to the ncunaLgradlent descent method. ..
The fomentom factor s denoted by ne [0, 1] and the value of 0.9 is an:n used for the momenwum

factor. Alsg, this approach is more useful when some training data are ve rent from the majoriy
of dara. A momentum factor can be used with either paitern by pattern updating or batch-mode updat-

Mg, T case of batch mode, it has the effect of complete averaging over the parterns. Even though the

averaging is only partial in the pactern- by-pattern mode, it leaves some useful information for weight
updation.

The weight updation formulas used here are

wile+ 1) = wyle) + adp g4y [wj&(t) — wyle — 1]

Aw‘.(r+1)

and

Vrj(f'l' )= v,-j(t) + lxajx,-+r; [U,}'(t) - vjj(t— 1)]

Agile+ 1)

The momentum factor also helps in fascer convergence.
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3.5.5.4 Generalization

The best nerwork for generalization is BPN. A necwork is said to be generalized when it sensibly interpolates
with input nerworks that are new to the nevwork. When there are many trainable parameters for the given
amount of rraining dara, the nerwork leatns well but does not generalize well. This is usually called overfitring
or overtraining. One solution ro this problem is to monitor the error on the test set and terminate the training
when the error increases. With small number of trainable parameters, the network fails to learn the training

s .>" dara and performs very poorly on the test data. For improving the ability of the network to generalize from

A
i

Vo
£

S

—
o

a rraining daca set to a test dara set, it is desirable to make small changes in the iriput space of a pattern,
withour changing the outpur components. This is achieved by introducing variations in the inpurt space of

- - . 0 . - -—'—_-_-_-‘
training pauterns as part of the training set. However, compurationally, this method is very expensive. Also,

a net with large number of nodes is capable of membrizing the training set ar the cost of generalization, As a
result, smaller nets are preferred than larger ones.
3.5.5.5 Number of Training Daia

The training dara should be sufficient and proper. There exists a rule of thumb, which states that the training
data should cover the encire expected input space, and while training, training-vector pairs should be selected
randomly from the ser. Assume thar the Tipus space as being linearly separable into “L” disjoint regions
with their boundaries being part of hyper planes. Let “ T be the lower hound on the number of training
paccerns. Then, choosing 7 such thar 7/Z 3 1 will allow the network to discriminate pattern classes using
ﬁx?e"}:iecewise hyperplane parrmg some cases, scaling.or Mormalization has o be done o help

learning, . \ \

3.6.5.6 Number of Hidden Layer Nodes /</ 77 ,,/

If there exists more than one hidden layer in 2 BPN, thet] :h\.galw/l—ations performed for a single layer are
repeated for all the layers and are summed up ac the end. In case of att multilayer feed-Torward nerworks,
the size of 2 dden 5 vefy important. The numbBer of fiidden units required for an application needs
to be determined separately. The size of a hidden tayer is usually determ igq@;gge;i@;pt_ﬂl_lz. For a nerwork
of a reasonable size, the §ize of hidden no ply a Télatively small fraction of the mpat layef, [For
example, if the network does not converge to a solution, it may need mare hiddermodes—Cmriresihier hand,
if the nenvork converges, the user may try a very f_':c'\\'r/h_idden nodes and then setile finally on a size based on
overall system performance.

t,.s.e Testing Algorithm of Back-Propagation Network

The testing procedure of the BPN is as follows:

I Step 0: Inirialize the weights. The weights are taken from the training algorithm.
Step 1: Perform Steps 24 for each input vecror.
Step 2: Ser the activation of input unic for x; (f = 1 w0 7).

Step 3: Calculate the net input to hidden unit x and ics output. Forj =1 w0 p,

n
Zinj = v + Z Xilty
i=1

2= f (Z,',_-i)

3.6 Radial Basis Function Network 73

Step 4: Now compure the outpur of the outpur fayer unir. For k=1 to m,

p
Yink = ok + sz-w;x-
" 'j:l
74 = Fyink)

l Use sigmoidal activation funcrions for caleulating the output. J

/a

.

ls.s Radial Basis Function Network

I3.6.1 Theory

The radial basis function {(RBF) is a classification and functional approximation neural nerwork developed
by M.].D. Powell. The network uses the most common nonlineariies such as sigmoidal and Gaussian kernel
functions, The Gaussian functions are also used in regularization networks. The response of such a function is
positive for all values of y; the respanse decreases to O as [y| — 0. The Gaussian function is generally defined as

for =7

The derivarive of this funcrion is given by

FO =27 =270

The graphical representation of this Gaussian funcrion is shown in Figure 3-11 below.

When the Gaussian potencial functions are being used, each node is found to produce an identical ourput
for inpus existing within the fixed radial distance from the center of the kernel, they are found ta be radically
symmetric, and hence the name radial basis function network. The encire network forms a linear combination
of the nonlinear basis function.

i

1 T T T - ¥
-2 -1 0 1 2

Figure 3-17  Gaussian kernel funcrion.
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Input Hidden Qutput
layer layer (RBF) fayer

Figure 3-12 Architecture of RBE

I 3.6.2 Architecture

The architecture for the radial basis funcrion network (RBFN) is shown in Figure 3-12. The archirecture
consists of two layers whose outpur nodes form a linear combination of the kernel (or basis) functions
compured by means of the RBF nodes or hidden layer nodes. The basis unction {nanlinearity) in the hidden
layer produces a significant nonzero response to the input stimulus it has receitved only when the input of it

falls within a small localized region of the inpur space. This network can also be called as lacatized receprive
field necwork.

Hrs.s.S Flowchart for Training Process

The flowchart for the training process of the RBF s shown in Figure 3-13 below. In this case, the center of
the RBF functions has to be chosen and hence, based on all parameters, the outpur of network is calculated.

I 3.6.4 Training Algorithm

The training algorithm describes in detail all the calculations involved in the training process depicted in the
flowchart. The training is started in che hidden layer with an unsupervised learning algorithm. The training is
continued in the output layer with a supervised learning algorithm. Simultaneously, we can apply supervised

learning algorithm to the hidden and oucput layers for fine-tuning of the nerwork. The training algorithm is
given as follows.

I Step 0: Ser che weights to small random values,
Step It Perform Steps 2-8 when the stopping condirion is false.
Step 2: Perform Steps 3-7 for each input.

Step 3: Each inpur unit {x; for all / = 1 1o n} receives input signals and transmits to the next hidden layer
unit.

3.6 Radial Basis Funclion Network

75

Start

Set weights.to small
random values

Complete
radial basis tunction

1

Select centers of RBF funclions;
sufficient number has to be
selected to ensure adequate sampling

|

Calculate oulput of
hidden layer unil

1

Sel output layer weighls to
small random values

l

Complete the output
of the neural network

l

Find error

No

Figure 3-13 Flowcharr for the training process of RBE
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-Step 4: Calculate the radial basis funcrion.

Step 5: Select the centers for the radial basis function. The centers are selected from the sex of input
vecros. It should be noted thar a sufficient number of centers have to be selected to ensure
adequate sampling of the input vector space.

Step 6: Calculave the output from the hidden layer unit:

exp l:— Zr: (i — 35-';)2]
i=1

o}

vil{x) =

where X is the center of the RBE unit for input variables; a; the width of ith RBF unig; xji the
jth variable of input paceern.

Step 7: Calculare the output of the neural network:

]
Yuer = Z wimyi(xi) + wy

=1

where £ is the number of hidden layer nodes (RBF function}; 3, the output value of mech node in
output layer for the nch incoming pattern; wiy the weight berween fth RBF unit and mth ourpur
node; ry che biasing term at nch output node.

Step 8: Calculate the error and test for the stopping condition. The stopping condition may be number
l of epochs or to a certain extent weighe change.

Thus, 2 nerwork can be trained using RBEN.

Ij.? Time Delay Neural Network

The neural network has to respond 1o a sequence of parerns. Here the nerwork is required o produce a
particular ourpur sequence in response ta a particular sequence of inpucs. A shik regiscer can be considered
as a tapped delay fine. Consider a case of a multilayer perceptron where the tapped ourputs of the deiay line

are applied 10 its inputs. This type of nerwork constitues a time delay neural nerwork (TDNNY. The output
consists of a finite temporal dependence on its inputs, given as

Ul = Flxteh x(e — 1), ... x{e— )]

where £is any nonlinearity function. The multilayer perceptron with delay line is shown in Figure 3-14.

When the funcrion Uf{y) is 2 weighred sum, then the TDNN is equivalent to a finite impulse response
filcer (FIR). In TDNN, when the output is being fed back through a unic delay into the input layer, then the
ner computed here is cquivalent to an infinite impulse response (IR} filter. Figure 3-15 shows TDNN with
outpur feedback.

Thus, a neuron with a tapped delay line is called 2 TDNN unit, and a network which consists of TDNN
units is called a TDNN. A specific application of TDNNs is speech recognition. The TDNN can be trained
using the back-propagation-learning rule with a2 momenrum facror.

ey
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—xﬂq Delay line

| 0| ee. o |dew

Multilayer perceptron

l

[o]{3]
Figure 3-14 Time delay neural network {FIR filker),

r

1)

——» Delay line Delay fine

()| Hdt-n) | olt-n) [ oft-1)

Y Y 4
Multitayer perceptron

j
o)
Figure 3-15 TDNN with outpuc feedback (IR filter).

l 3.8 Functional Link Networks

These networks are specifically designed for handling linearly non-separable problems using appropriat.e
input representacion. Thus, suitable enhanced representation of the inpur daca has to be feund our. Thfs
can be achieved by increasing the dimensions of the input space. The inpur data which is expanded is
used for rraining instead of the acrual inpur data. In this case, higher order input terms are chosen so that
they are linearly independent of the original patern components. Thus, the input representation has been
enhanced and linear separability can be achieved in the extended space. One of the functional link model
networks is shown in Figure 3-16. This model is helpful for learning concinuous functions. For this model,
the higher-order input rerms are obtained using the orthogonal basis functions such as sin 7, cos 7, sin 2rex,
cos 271y, etc.

The most common example of linear nonseparabilicy is XOR problem., The funcrional link netwarlks help
in solving this problem. The inputs now are

x] x xixz2 #

-1 -1 1 1
-1 1 -1 -1
1 -1 -1 -1

11 1
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Figure 3-17 The XOR problem,

Thus, it can be easily seen thar the functio
The funcrional link nerwork consists of onl
instead of the generalized delta learning rul
link network is faster than thar of the BPN,

nal link nerwork in Figure 3-17 is used for solving this problem.
y one llayer. therefore, it can be trained using delta learning rule
e used in BPN. As a resulr, the learning speed of the functional

I 3.9 Tree Neural Networks

The tree neural nerworks {TNNs) are used for (he- 1t

3 pattern recognition problem. The mai i
necwork s to use a small mulrilayer neural neowork at each deciEi ; o by e
tree for extracting the non-linear features, TNNs co
appropriate local fearures ar the different Jev
Figure 3-18.

The decision nodes are present as
terminal node has class label denated by 2
l(sgh;{ung rule in chf: form of f(x) < 8. The rule determines whether the patrern moves to the right or to the
ek, Here, £(x) indicates the associated fearure of patrern and “6" s the threshold. The partern will be given
the class label of the terminal node on which it has landed. The ,

X classification here is based on the fact that
the appropriate features can be selected at different nodes and levels in the tree, The output feature y = £(x)

on-making node of a binary classification
mpletely exteact the power of tree classifiers for using
els and nodes of the tree. A binary classification tree is shown in

n|
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= =

Figure 3-18 Binary classification tree.

obtained by a multilayer necwork at a particular decision node is used in the following way:

x directed to left child node ¢, ify< 0
x direcred 1o right child node ¢g, ify > 0

The algorithm for a TNN consists of two phases:

1. Tree growing phase.  In this phase, a large tree is grown by recursively finding the rules for splirting until
all the terminal nodes have pure or nearly pure class membership, else it cannot splic further.

2. Tree pruning phase.  Here a smaller tree is being seleced from the pruned subrree to avoid the overfilling
of data.

The training of TNN involves owo nested optimization problems. In the inner optimization problem, the
BPN algorithm can be used to train the necwork for a given pair of classes. On the other hand, in outer
opeimization problem, a heuristic search method is used to find a good pair of classes. The TNN when cested
on a character recognirion problem decreases the error race and size of the trec relative to thar of the standard
classification tree design methods. The TNN can be implemented for waveform recognition problem. It
obtains comparable error rates and the training here is faster than che large BPN for the same application.
Also, TNN provides a scructured approach to neurat necwork classifier design problems.

Ij.lo Wavelet Neural Networks

The waveler neural necwork (WNN) is based on the waveler cransform theory. This neework helps in
approximaring arbitrary nonlinear functions. The powerful tool for function approximation is waveler
decomposition.

Let f(x) be a piecewise continuous function. This function can be decomposed inco 2 family of functions,
which is obcained by dilating and cranslating a single waveler function ¢ : R — Ras

fe =3 wda D] (Dite— 2]

=1

where D; is the diag(d}), 4; € RF are dilation vectors; D; and #; are the translacional vectors; der [ ] is the
determinant operator. The waveler funcrion ¢ selecred should satisfy some properties. For selecting ¢ : R —
&, the condition may be

¢ = (x1)--dblxn) forx=(x 2 ..., %)

— *
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+ Ry Dy ——| @ W, —_—
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Figure 3-19 Waveler neural nerwork.

where

) e {x) = —xexp (%/)

is called scalar waveler. The network structute can be formed based on the waveler decomposttion as

n

Fd =) wid[Dilx— ] +§

i=l1

where 7 helps 10 deal with nonzero mean functions on finice domains. For proper dilation, a rotation can be
made for berter nerwork operation:

n

S =) wip [DiRitx - 1]+

i=1

where R; are the rotation matrices, The nerwork which performs according ta the above equarion is called
wavelet neural nerwork. This is a combination of translation, rotarion and dilacion; and if a waveler is lying on

the samellmc, then it is called wavelon in comparison to the neurons in neural networks, The wavelet neural
nenwork is shown in Figure 3-19,

I3.11 Summary

In this chapter we have discussed the supervised learning nerworks. In most of the dlassification and recognition
problems, the widely used networks are the supervised learning networks. The architecture, the learning rule,
flowchare for training process-and training algorithm are discussed in detail for percepiron network, Adaline,
Madaline, back-propagation nerwork and radial basis function nerwork. The perceptron nerwork can be
trained for single output classes as well as multiouput classes. Also, many Adaline nerworks combine rogether

3,12 Solved Problems * 81

to form a Madaline nerwork. These networks are trained using delea learning rule. Back-propagatdion network
is the most commonly used network in the real time applications. The etror is back-propagated here and is
fine tuned for achieving better performance. The basic difference berween the back-propagation network and
radial basis function nerwork is the activation ﬁ.mct‘ion_‘ used. The radial basis function network mostly uses
Gaussian activation function. Apart from these networks, some special supervised learning nerworks such as
time delay neural necworks, functional link nerworks, tree neural networks and wavelet neural networks have

also been discussed.

I 3.12 Solved Problems .

1. Implement AND function using perceptron net-

_~"works for bipolar inputs and targets.
P polar inputs and targe

Solution: Table T shows the truth table for AND
funcrion with bipolar inpurs and targets:

Tahle 1

x L] t
1 1 1
1 -1 -1

-1 1 -]

—1i -1 -1

The percepiron nerwork, which uses perceptron
learning rule, is used to main the AND function.
The nerwork architecrure is as shown in Figure 1.
The input patterns are presented to the nerwork one
by one. When all the four inpur parterns are pre-
sented, then one epoch is said to be completed. The
initial weights and threshold are set to zero, ie,
w) = wy = b = 0and # = 0. The learning rate
@ is ser equal 10 1.

)

Figure 1 Perceptron nerwork for AND function.

For the first input parern, x; = L2z = 1 and
£ = 1, with weights and bias, 21 = 0, & = O and
b=10:

* Calculate the net input

Yin = b+ 2y + 020
=0+1x0+1x0=0

* The output y is computed by applying activations
over the net input calculared:

1 ifym>0

y=f(yin)= 0 lfym=0 i
-1 f yp<0

U

Here we have taken 9_'_=m(_lz]l-lcncc, when, yin = 0,

y=0. :

* Check whether t = y. Here, t = 1and y = 0, 50
t # y, hence weight updation takes place:

wi{new) = wi{old) + an;

wi(new) = wifold) + ot =0+ 1 x1x1=1

walnew) = unlold) + aoy =0+ 1 x1x1=1
blnew) = blold) + ar=0-+1x1=1

Here, the change in weights are

Aw) = ortxp;
Awy = aex;
Ab= at

The weights wy = 1, wp = 1, b = 1 are the final
weights after firstinpur pattern is presented. The same
pracess is repeated for all the input patterns. The pro-
cess can be stopped when all the targets become equal
to the calculared output or when a separating line is
obrained using the final weights for separating the
positive resporses from negative responses, Table 2
shows the training of perceptron nerwork until ics
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Table 2
Caleulated Weights
ate .
]nput_ Targer  Net input output Welght changes wy wy b
X x 1 ] ) ) Awy Awn Ab (0 0 0
EPOCH-1
111 1 0 0 1 1 1 1 1 1
T -1 1 -1 1 1 -1 {1 -1 0 2 0
-1 1 1 -1 2 1 1 -1 -1 1 1 -1
-1 -1 1 -l -3 -1 0 0 o 1 1 -i
EPOCH-2 —_—
1 1 1 1 1 1 0 0 0 I 1 -1
1 -1 1 -1 -1 -1 0 0 0 1 1 -1
-1 1 1 -1 -1 -1 0 0 0 I 1 -1
-1 -1 1 ~1 -3 -1 0 0 0 1 1 -1
targer and calculated outpue converge for all the - 4

patterns.
The final weights and bias after second epoch are

w=lLu =1, b=-1
Since the threshold for the problem is zero, the

equation of the separaring line is
21 b

X=——x— —
)

Here

wix +unxat+ b= 8
wx) +ugxa+ b= 0

Thus, using the final weights we obtain
1 (-1)

X =——x - -
1

‘7"_-____,,-—\1
x=-—-x +1

It can be easily found that the above straight line
separaes the positive response and negative response
region, as shown in Figure 2.

The same methodology can be applied for imple-
menting other logic functions such as OR, AND-
NOT, NAND, ete. If chere exists a threshold value
& # 0, then two separarting lines have to be obtained,
i.c., one to separate positive response from zero
and the other for separating 2ero from the negative
response.

(-1, i}

-,

(SR

%

Figure 2 Decision houndary for AND funcrion
in percepuron training {8 = 0).

ymplcmem OR function with binary ihputs and
"~ bipolar rargess using perceptron traiming algo-
rithm upro 3 epochs,

Solution: The wuth rable for OR function with
binary inputs and bipolar eargets is shown in Table 3.

Table 3

X1 X2 t
1 1 1
| 0 1
0 I 1
0 0 -1

3.12 Solved Problems

83

Figure 3 Perceptron nerwork for OR function.

The perceptron nerwork, which uses perceptron

learning rule, is used to train the OR function.
The nerwork architecture is shown in Figure 3.
The inirial values of the weights and bias are taken

a5 Zero, 1.e.,
W = wny = b= 1]

Also the learning rare is 1 and threshold is 0.2. So,
the acrivation function becomes

1 if yju> 0.2 ”

0 if —02 <y, <02
—_—

The necwork is trained as per the perceptron craining

algorithm and the steps are as in problem 1 (given for

firsc partern). Table 4 gives the nerwork training for
3 epochs.

f (yirr) =

The final weights at the end of third epoch are
w=2un=1b=-1

Further epochs have to be done for the convergence
of the network.

' yud/ﬁe weighrs using perceptron nerwork for

ANDNOT function when all the inputs are pre-
sented only one time. Use bipolar inputs and
rargets.
Solution: The truth table for ANDNOT function is-
shown in Table 5.

Table 5

x| x t
1 1 -1
1- -1 1

-1 1 -1

-1 -1 -1

The necwork architecture of ANDNOT function is
shown as in Figure 4, Let the initial weights be zero
and o = 1,8 = 0. For the first input sample, we
compute the ner input as

n
ym=b+2x.'wi=5+x1tw + xun
=1

=04+1x04+1x0=0

Table 4
Weights
Calculated , T

___Tlipit_ Targer  Netinput output Weighe changes w, wr b
X1 xn 1 6] .} W Awy, Auwn Ab {0 0 0)
EPOCH-1

1 H I 1 0 0 1 1 1 1 1 1

1 0 1 1 2 1 0 0 0 1 1 1

¢ 1 1 I 2 ) 0 0 0 1 1 0

0 0 l -1 1 1 0 0 -1 i 1 0
EPOCH-2

1 1 1 1 2 i 0 0 0 1 1 0

I 0 1 1 1 1 0 0 0 I 1 0

0 1 1 1 1 1 Q 0 0 1 1 0

0 0 1 ~1 0 0 0 0 0 1 1
EPOCH-3

1 1 1 1 1 1 0 0 0 1 1 -1

1 0 1 1 0 0 1 0 1 2 1 0

0 1 1 1 1 1 0 0 0 2 1 0

0 0 1 -1 0 0 0 0 -1 2 1 -1




84 Supervised Leaming Network
b For the third input sample, x; = -1, 2 = 1,
£ = —1, the ner input is calculated as,
X W‘

Figure 4 Neowork for ANDNOT function.

Applying the activarion function over the net input,
we obtain

1 ifya> 0
y=f(yin)=, ] IF‘OEJ‘MEO
—1 ifyin<—0

Hence, the output y = f{yin) = 0. Since £ # y, the

new weights are compured as
wi(new) = wilold) + @og =0+ 1 x—-kx1=—
un(new) = wnfold) + ety =0+ 1 x ~1x1=-1
blnew) = blold) + ar=04+1x -1=--1
The weights after presenting the firse sample are
w=[-1-1-1]

For the second inpur sample, we calculate the net
input as

7
y,',,=!'7+2x,-w;= b+11w| + xpun
=1
=—14+1x-14(—1x—1)
=—-1-14+1=-1

The outpur y = fly;,) is obrained by applying
activation function, hence y = —1.
Since £ # y, the new weights are calculated as

w{new) = wilold} + e =-1+1x1x1=0
anlnew) = wglold) + g =—14+1x1x—-1=-2
b(new) = blold) + ar=—14+1x1=0

The weights after presenting the second sample are

w=[0 -2 0]

n
Yin=b+ Y xwi = b+ xw + o
=1

=04+-1x0+1x-2=0+0-2=-2

The output is obtained as y = f{yin) = —1. Since
£ = y, no weight changes. Thus, even afiier presenting
the third input sample, the weights are

w=[0 -2 0]

For the fourth input sample, x; = —Lx = -1,
t = —1, the net input is calculated as

n
Yin=b+ inw.' =b+xw +awm

i==l
=04+—-1x0+(-1x-2)
=04+0+2=2

The output is obtained as y = f {yin) = 1. Since
¢ # y, the new weights on updating are given as

wi{new) = wi{old) + ao =0+ 1x~1x -1 =1

wpl{new) = wplold) 4 e = ~2+ 1 x~1x-1=-1
blnew) = bold) + ore =041 x 1= -1

The weights after presenting fourth input sample are

w=[l -1 —I1]

One epoch of training for ANDNOT funcrion using
perceprron nerwork is tabulared in Table 6.

Table 6
Input ~ Calculaced _ Weights
Target Netinput output wy b
xoml O () »m o 0
1 11 -1 0 0 -1 -1 -1
1-11 1 -1 -1 g-2 0
-1 11 -1 - =2 -1 0-2 0
-1-11 -1 2 I -1 -1

3.12 Solvad Prablema

4. Find the weights required to perform the follow-
ing classification using perceptron network. The

vectors {1, 1,1, 1)and (=1, 1 =1, — 1) are belong- -

ing to the class (so have targec value 1), vectors
(1, 1,1, —1}and (1, -1, —1, 1) are not belong-
ing to the class (so have rarget value —1). Assume
learning rate as 1 and initial weighes as 0.

Solution: The rru(h table for the gwen vectors is gwen
in Table 7.~

Letw; =Swp == w = b-—-‘Dandthe
lm?ng raie @ = 1. Since the threshold @' = 0.2, so

the detivation function is

1 if yp> 02
y=1 0 if 02 <y,<02
-1 if JYin = —-0.2

The net input is given by

Fin= b+ xw +xun +x3un
+ X414

The training is performed and the weights are tabu-
lated in Table 8.

85
Tabla 7
Input

% n x3 x4 & Target(n)
1 1 1 1 1 1
-1 1 -1 ~1 1 1

1 1 1 ~1 1 -1

1 -1 -1 1 1 -1

Thus, in the third epoch, all the calculared ourpurs
become equal to targets and the nerwork has con-
verged. The nerwork convergence can also be checked
by forming separating line equations for separating
positive response regions from zero and zero from
negative response region.

The network architecture is shown in Figure 5.

5. Classify the two-dimensional inpur partern shown
- in Figure 6 using perceptron network. The sym-
bol “*” indicates the data representation to be -+1
and “+” indicates data to be — 1. The parterns are
I-E. For pattern I, the targec is +1, and for E, the
rarget is — 1.

Table 8
Weights

Inputs Target Netinput Ouipur Weight changes (w1 wa wn w4 b)
i m x5 x b (8 (y,-n) (»  (Awy Awp Awy Awg ARy (0 0 0 0 0
EPQCH-1
{1 1 1 11 1 0 0 1 ] 1 1 1 11 111
-1 1 -1 -11 1 -1 -1 -1 1 -1 -1 1 02 002
(1 1 1 -1 -1 4 i -1 -1 -l 1 =1 =1 1 -1 1 1
(1 -1-1 113 -1 1 1 -1 1 1 -1 -1 =2 2 0 9
EPOCH-2
{1 1 1 11 i 0 0 1 1 1 1 1 -1 3 111
-1 1 -1-11 1 3 1 ] 0 -13 111
(1 1 1 -11) —1 4 1 -1 -1 -1 1 -1 =22 02 0
(1-1-1 11D -1 -2 ~1 6o o0 0 o0 0 -22 0209
EPOCH-3
{1 1 1 1) 1 2 1 0 0 0 0 0 =22 020
-1 1 -1-11 1 2 1 ¢ 0 0 0 0 -22 020
(1 1 1211 =1 -2 ~1 0 0o 0 0 0 -22 020
(1 -1 -1 11 -1 -2 -1 0 0 0 0 0 -22 020
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Figure 6 I-F daca representation.

Solution: The training patterns for this problem are
tabulared in Table 9.

Table 9

Input
Pattern xq x2 x3 %4 x5 X x; x3 sy 1 Targer {3)
1 111~-11-111 11 1
F 111 11 v1-1-11 -1

The initial weights are all assumed to be zero, ie.,
8 = 0and a = 1. Theacrivation function is given by

—
i

iy 0 )
y={ 0 f-0<p =0 |
: ~1 ifyy<—0 1[

For the first input sdmple, &y = [1 1 L—11-111
1 1, ¢ = 1, the net input is calculated as

9
Yin = b+ z.r,'w;
;=1

= b+ 2wy + xqwy + B3w3 + xtq + x5
+ xgiwg + 7wy + gy + Xk
=0+1x04+1x0+1x0+(-1)x0
FIx0+(-)x04+1x04+1x04+1x0
Jin=10
Therefore, by applying the activation function the
output is given by y = f (yj) = 0. Now since £ # y,
the new weights are computed as
wy(new) = wy{old) + aty =0+ 1x1x1=1
wnlnew) = wplold) + ey =0+ 1x1x1=1
wilnew) = walold) + ety =0+ 1 x1x1=1
wy(new) = wilold) + aog =0+ 1 x I x —1=~1
ws{new) = wilold) + ats =0+ 1x1Ix1=1
wi{new) = wglold) + apg =0+ 1x I x —1=-1
wy(new) = wylold) + ey =0+ 1x1x1=1
wylnew) = uglold) + epg =04+1x1x1=1
wolnew) = wolold) 4 e =0+1x1x1=1
blnew) = blold) + ar=0+1x1=1

The weights after presenting first input sample are
w=[111-11-11111]

For the second inpursample, xp ={1111111 -1
—11}, = —1, che nec inpuc is calculared as

9
Yin = b+ inwr'

i=l
= b+ xyw) + xgwn + x3a + xawq + X5
+ xgiwg + iy + xgvg + xouy
=i+Ix1+1xl+ix1+Ix-1+1x1
+lx=I+1x1+(-1x 1+{-1x1
Fa=12
Therefore the outpur is given by y = £ (i) = L.
Since ¢ % y, the new weights are
wy(new) = wyleld) + o =1+ 1x~1x1=0
wnpnew) = unfold) + ¢z =1+1x -t x1=0
wilnew) = wylold) -+ g = L +1x -1 x1=0
wa{new) = wglold) + emg = —1+1x—ix1=-2

3.12 Soived Problems
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ws{new) = welold) + amxs =1+1x-1x1=0

wglnew) = wglold) + ey =-1+1x-1x1=~2

wyinew) = wylold) + ey =T+1x-1x1=0

wglnew) = wylold) + g =1+ 1x -1 x -1 =2

wolnew) = wolold) + wog =141 % “1x-1=2
blnew) =blold) + ar=14+1x -1 =0

The weights after presenting the second input sam-
pleare ¢

w=[000 —20 —20220]

The nerworkarchitecture is as shown in Figure 7. The
nerwork can be further trained for ics convergence.

S Figure 7 Network archisecrure.

/

6. Implement OR funcrion with bipelar inputs and
targets using Adaline nerwork.

Solution: The truth rable for OR Function with
bipolar inpurs and targers is shown in Table 10.

Table 10

x] X 1 t
1 1 1 I
1 -1 1 1

-1 1 1 1

-1 -1 1 -1

Inicially all the weights and links are assumed te be
small random values, say 0.1, and the learning rare is
also ser to 0.1. Also here the least mean square error

" may be set. The weights are calculated uncil ehe least

mean square error is obrained.

The initial weights are taken to be wy = u =
& = 0.1 and the learning rate o = 0.1, For the fiest
input sample, x| = 1,23 = 1, t= 1, we calculate the
net input as

2
Yin=b+ ix,'w,' = b+Zx;w,-
=i

i=]
= b+ xymw + xun
=01+1x0141x01=03

Now compute (£ — i) = (1 = 0.3) = 0.7. Updaring
the weights we obrain,

wi{new) = wi{old} + et — yir)x;

where e(f — yulx; is called as weighe change Aw;.
The new weights are obtained as

wi(new} = wi(old)+ Ay = 0.1 401 x 0.7 x 1
=014007=0.17
wa(new) = enlold)+Aw, = 0.1
401 x07x1=40.17
b(new) = blold)+Abs=0.1+ 0.1 x 0.7 =0.17

where

Awy = a(f—)'frr)xl
Awy = ot _)’iu)-‘ﬂ
Ap = “(r"]in)

Now we calculace the error:
E=(r—ym)? = (0.7 = 049

The final weighes after presenting Arsc inpuc sam-
ple are

w=1[017 0.17 0.17]

and error £ = .49,

RN
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These calculations are performed for all the input
samples and the error is calculated. One epoch is
" completed when all che inpur pareerns are presented.
Summing up all the errors obtained for each input
sample during one epoch will give the total mean
square error of that epoch. The nerwork training is
continued until this error is minimized 1o a very small
value.

Adopting the mechod above, che nerwork training
is done for OR function using Adaline nerwork and
is tabulaced below in Table 11 for & = 0.1.

The total mean square error after each epoch is
given as in Table 12.

Thus from Table 12, it can be noticed thar as
training goes on, the error value gets minimized.
Hence, further training can be continued for fur-
ther minimization of error. The necwork architecture
of Adaline network for OR function is shown in
Figure 8.

Table 12

Epoch Total mean square error
Epoch 1 3.02

Epoch 2 1.938

Epoch 3 1.5506

Epoch 4 1417

Epoch 5 1.377

X
2z ,

W

_os®
>

Figure 8 Nerwork archirecrure of Adaline.

Table 11
Net ) Weights

_fnputs Target  input Weight changes w un & Error
W o2l ¢ Voo (E=yy) Aw Amp AF (01 01 01) (¢~
EPOCH-1 -

t 11 b 0.3 0.7 0.07 0.07 007 017 017 017 0.49
=11 1 0.17 0.83 0083 0083 0083 0253 0087 0253 069
-1 11 1 0.087 0913 —0.0913 00913 00913 0.1617 0.1783 0.3443 0.83
-1 -1t 1 0.0043 —1.0043 0.1004 0.1004 —0.1004 0.2621 0.2787 0.2439 1.0l
EPOCH-2

1 11 1 0.7847 02153 0.0215 00215 0.0215 0.2837 0.3003 0.2654 0.046
1 -11 1 0.2488 07512 07512 —0.0751 0.0751 0.3588 0.2251 0.3405 0.564
-1 11 1 0.2069 0.7931 -0.7931 0.0793 0.0793 02795 0.3044 0.4198 0.629
-1 -11 1 -0.1641 —0.8359 00836 0.0836 --0.0836 0.3631 0.388 0.336  0.699
EPOCH-3

1 11 1 1.0873 —0.0873 —0.087 -0.087 -0.087 0.3543 0.3793 03275 0.0076

1 =11 1 03025 +0.6975 0.0697 —0.0697 0.0697 0.4241 0.3096 0.3973 0.487
-1 11 1 02827 07173 —0.0717 0.0717 0.0717 0.3523 0.3813 0.469  0.515
-1 -11 I —0.2647 —0.7353 00735 0.0735 ~0.0735 0.4259 0.4548 0.3954 0.541
EPOCH-4

I 11 1 1.2761 —0.2761 —0.0276 -0.0276 —0.0276 0.39383 04272 0.3678 0.076

1 -11 1 03389  0.6611 0.0661 —0.0661 0.066] 0.4644 0.3611 0.4339 0.437
-1 11 1 03307 0.6693 —0.0669 0.0669 0.0699 0.3974 0.428 05009 0.448
-1 -11 1 03246 —-0.6754 00675 00675 —0.0675 0.465 0.4956 04333 0.456
EPQCH-5

1 11 1 1.3939 —0.3939 —0.0394 —0.0394 —0.0394 0.4256 0.4562 0.393  0.155

1 -1 1 1 03634 06366 00637 —~0.0637 00637 0.4893 0.3925 0.457  0.405
-1 11 i 0.3609  0.6391 -0.0639 00639 0.0639 0.4253 0.4654 05215 0.408
-1 -1 1 1 —03603 —0.6397 0.064 0.064 —0.064 04893 0.5204 04575 0.409

|

3.12 Solved Problems

7. Use Adaline nerwork to train ANDNOT function
with bipelar inputs and targets. Perform 2 epochs
of training.

Solution: The truth wble for ANDNOT function
wich bipolar inputs and rargers is shown in Table 13.

Table 13
x1 x 1 ¢
1 1 1 -1
i -1 1 1 ‘
-1 1 I -1
-1 -1 1 -1

Initially the weights and bias have assumed a random
value say 0.2. The learning rate is also set 1o 0.2. The
weights are calculated until the least mean square error
is obrained. The initial weightsare w; = up = b =
0.2, and & = 0.2. For the first input sample x; = 1,
xz = 1, £ = —1, we calculate the net input as

Fin = b+ x11n + x2un
=024+1%x024+1%x02=06

Now compute {# — 3} = (-1 - 0.6) = —1.6.
Updating the weights we obtain

wilnew) = wi{old) + (e ~ yorxi
The new weights are obrained as

wy (new) = w {old) 4 alz — yinde
=02+02x% (~1.6) % 1 =—0.12

un(new) = walold) + al(s — yinkez
=02+02x(—-1.6)x1=-0.12
b(new) = blold) + oot ~ yin)
=02+402 x (—1.6) = —0.12

Now we compute the ertor,
E= (=g =(~16)2 = 256

The final weights after presenting first input sample
are w = [—0.12 — .12 = 0.12] and esror £ = 2.56.

The operational steps are carried for 2 epochs
of training and nerwork performance is noted. It is
tabulated as shown in Table 14.

The total mean square ertor at the end of two
epochs is summation of the errors of all input samples
as shown in Table 15.

Table 15

Epoch Total mean square error
Epoch 1 5.71

Epach 2 243

Hence from Table 15, it is clearly understood that the
mean square error decreases s training progresses.
Also, it can be noted that ar the end of the sixth
epoch, the error becomes approximately equal o 1.
The nerwork architecrure for ANDNOT function
using Adaline nerwork is shown in Figure 9.

Table 14
Weights
Inputs Ner Weight changes
Target input w) wy b Error

0 ox 1z ¥o  (E—y) Awp Aw Ab {02 02 02} (1—y.)°
EPOCH-1

1 11 -1 06 ~146 ~032 —032 —032 -012 —0.12 —-0.12 256
1 -1 1 | =012 112 022 =022 022 010 —034 010 125
-1 11 ~1 —034 —066 013 -013 —0.13 024 —048 —0.03 043
-1 -11 =1 021 -12 024 024 ~-024 048 —023 —027 147
EPOCH-2

11 ~1 —0.02 =098 -0.195 —0.195 —0.195 0.28 —0.43 —0.46 095
1 -11 1 025 076 015 —015 015 043 —0.58 —0.31 0.57
-1 11 -1 =133 033 —0065 0065 0065 037 —051 —0.25 0.106
-} ~1 1 -1 -—0l11 —09 018 0.8 —018 055 —0.38 043 0.8
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Figure 9 Network architecrure for ANDNOT
function using Adaline nerwork.

8 Using Madaline network, implement XOR func-
tion with bipolar inputs and targets. Assume the
required parameters for training of the network.

Selution: The waining pattern for XOR funcrion is
given in Table 16.

Table 16

x1 x2 1 t
1 1 1 -1
1 -1 1 1

-1 1 1

| -1 1 -

The Madaline Rule I (MRI) algorithm in which the
weights berween the hidden layer and outpur layer
remain fixed is used for training the nerwork. Initializ-
ing the weights o small random values, the nerwork
architecture is as shown in Figure 10, with inirial
weighes. From Figure 10, the inicial weights and bias
ate [wn wy) b1) = [0.05.0.2 0.3), [mw12 wap ) =
[0.10.20.15) and [#] 1 &3] = [0.50.5 0.5). For first

Figure 10 Nerwork architecture of Madaline for
XOR functions (initial weights given}.

input sample, x; = 1, %3 = 1, target ¥ = —1, and
learning rate & equal to 0.5:

* Calculate net input to the hidden units:

Zinl = b1 + xywy| + xpwy
=03+1x005+1x02=035
zin2 = by w2 + xwn
=015+1x01+1x02=045
* Calculate the output 21,22 by applying the activa-

tions over the net input computed. The activation
funcrion is given by

. 1 'sz;nZO
f(’""')‘l—l if iy < 0

Hence,

2 = flaim) = f{0.55) =1
72 = flzim) = f(0.45) = |
* After computing the outpuc of the hidden units,
then find the ner input entering into the ourput
unit:
Y= b3+ zo +zm
=05+1x05+1x05=15

* Apply the activation function over the ner input
¥in to calculate the output y:

}’=f()'in) =f(15) =1

» Since r # y, weight updatien has to be performed.
Also since # = —1, the weighrs are updated on z
and z) that have positive net inpur. Since here both
net inputs 2,1 and zjp are positive, updaring the
weiglics and bias on both hidden units, we obrain

wilnew) = wi{old) + c— gy)x
bi{new) = b(old} + ar(e ~ Zing)
This implies:

] 1(ncw)=w11(old)+a(:— z;nl)xl
=0,054+0.5(—1—-0.55) x 1=-0.725
wya(new) = w3 (old) +a{r— zn2)x,
=0.140.5(—1—0.45) x 1 ==0.625
b1 (new) = & {old) + a{r—zn1)
=0.340.5(-1~0.55=—0.475

4.12 Solved Problems
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w1 (new) = w1 {old) + oz~ zin1 2
=0.240.5(—1—0.55)x 1=-0.575
wha(new) =wya{old) + a(t— zn2)a2
=02+40.5(—1—0.45)x 1=—0.525 '
b (new) = bz (old) + e{t—5in2)
=0.15+03(—1=0.45)=—0575

All the weights and bias berween the input Jayer and
hidden layer are adjusted. This compleres the train-
ing for the first epoch. The same process s repeated
until the weight converges. Itis found that the weight
converges at the end of 3 epochs. Table 17 shows the
training performance of Madaline nerwork for XOR
funcrion.

The network architecture for Madaline nerwork
with final weights for XOR function is shown in
Figuse 11.

9. Wsing back-propagation network, find the new
weights for the ner shown in Figure 12. Tt is pre-
sented wich the input pattern [0, 1) and the rarger
outpu is 1. Use a learning rate o = 0.25 and
binary sigmoidal activation function.

Solution: The new weights are calculated based
on the training algorithm in Section 3.5.4. The
initial weights are [ o1 #o1] = [0.6 ~0.1 0.3],

Table 17

Figure 11 Madaline nerwork for XOR function
(final weights given).

Figure 12 Newwork.

Inputs Target

x x 1 {t) Zinl Znz B & Yy ¥

wn wa A wiz wn by

EPOCH-1

111 -1 055 0.45 1115
1-11 1 —0.625 —0.675 —1-1-05-1
-1 11 1 —1.1375-0.475 —1-1-0.5-1

—1-11 =1 16375 13125 1 1 15 1
EPOCH-2
1 11 -1 0355 0168 1 1 L5 1

1-11 1 —0.1845-3.154 —1—-1-0.5—1
-1 11 1 —3.728 —0.002 —-1-1-05-1
—1-11 -1 -1.0495-1.071 —1-1-05-1
EPOCH-3

111 —1 —1.0865-1.083 -1-1-0.5-1

1-11 1 1.5915-3.655 1-1 05 1
-1 11 i —3728 1501 -1 1 05 1

~-1-1 1 —1 -1.0495-1.701 —-1—-1—-0.5—1

1-0.725 —0.58 —0475-0.625 —0.523 —0.575

0.0875—1.39 034 —0.625 —0.525 —0.575
0.0875-139 034 —1.3625 02i25 0.1625
1.4065—0.069—0.98 —0.207  1.369 —0.994

0.7285-0.75 —1.66 —0.791 —0.207 —158

1.3205—1.34 —1.068—0.791 0.785 -1.58
1.3205—1.34 —1.068—1.29  0.785 —1.08
1.3205-1.34 —1.068-~1.29 1.29 —1.08
132 —-134 -1.07 -1.29 129 -108
1.32 —1.34 —1.07 -1.29 129 -1.08
132 —-134 —1.07 -1.29 1.29 -1.08
1.32 —1.34 —1.07 -1.29 129 -1.08

-~

o
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{232 22 2] = [—0.3 0.4 0.5] and (un wy wo] = [0.4
0.1 —0.2], and the learning rate is & = 0.25. Acti-
vation function used is binaty sigmoidal acrivation
function and is given by

1

fW=1r=

Given the output sample [x], %) =
t=1,

[0, 1} and target

* Calculate the net inpue: For zy layer

Zipl = g1 + xpen + X
=034+0x06+1x-01=02

For z; layer

Zj) = 2 T 212 + X2
=054+0x-03+1%x04=09

Applying activation to calculate the output, we
obrain

zy = flgi) = = 0.5498

Them 13002

1
5 = 0.7109

22 =f(zin2) = m = 1—+_e‘—°

Calculate the ner inpuc entering che output layer.
For y layer

Yin = wn +zyw + zun
= —(.2+4 05498 x 0.4 + 0.7109 x 0.1
= 0.09101

Applying activations o calculate the outpur, we
obrain

= fGin) =

=0.5227

L +em 1 F 009101

Compure the ertor portion &

8= (6 — ylf '(y._',rgrf’)__r )

Now
f’(}'l'n) =f(_]‘in)[l _f(yin)_] = 0.5227(1 - 0.5227]
F(yia) = 0.2495

‘This implies
§ = (1~ 0.5227) (0.2495) = 0.1191

Find che changes :inrwzig—l;gge—n;een hidden and
output layer:

Awy = aby 7 = 0.25 x 0.1191 x 0.5498

—T=OOIE
Awg = wdy g = 0.25 x 0.1191 x 0.7109
=T.02117

Awy = wf) =025 x 0.1191 = 0.02978

Compure the error portion 8; between input and
hidden layer {f = 1 to0 2):

m
Sinj= E g
=1
8imj=8rwy [ only one outpur neuron]
=it = 5y w11 = 0.1191 x 0.4 = 0.04764
=dimz =8y wz = 0.1191 x 0.1 =0.01191
LT e
Error, 81 == 8 f'(2im)

Flzim) = fzim) [1 = flzim)]
=0.5498[1 — 0.5498] =
8 =ainlf’(zinl)
= 0,04764 x 0.2475 =0.0118
Error, 82 =82 f (zin2)
Flzinz) = flama [V — flzin2)]
= 0.7109[1 — 0.7109]) = 0.2055
8y =8 f'(zim2)
=10.01191 x 0.2055 = 0.00245

0.2475

Now find the changes in weights between mput
and hidden layer:

=0.25%0.0118x0=0

Avy = by xp=0.25x0.0118 x 1 =0.00295
Avy =81 =0.25%0.0118=0.00295
=0.25%0.00245%x0=90

Ky = abpxa =0.25 x 0.00245 x 1 =0.0006125
Avgy =82 =0.25 % 0.00245=0.0006125

AU“ =t1l31xl

Avp=adyx,

r’—_*__ [
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= Compute the final weights of the nerwork:

ﬂu(nEW) = Ul](Old)"'AUn =06+0= 0.6
v12{new) = spz{old)H+An; = —03+0=-03

v21 (new) = w(old)+-Awy
= —0.1 4 0.00295 = —0.09705
v22{new) = wz(oldH+Avpn

= 0.4 + 0.0006125 = (.4006125
w) (new) = wy(old)FAw) = 0.4 +0.0164,

=0.4164
un(new) = uplold)+Aun = 0.1 + 0.02117
=0.12117
vg; (new) = vy (old)+ A vy, = 0.3 4+ 0.00295
= 0.30295
v (new) = sp(old)+Awm;
= 0.5+ 0.0006125 = 0.5006125
wylnew) = uplold)+Awg = —0.2 + 0.02978

= ~0.17022

Thus, the final weights have been computed for the
nerwork shown in Figure 12.

10. Find the new weights, using back-propagation
network for the network shown in Figure 13.
The network is presented with the inpur pat-
tern {—1, 1] and the rarger outpur is +1. Use a
leaming rate of & = 0.25 and bipolar sigmoidal
activation function.

Solution: The initial weights are [py122)91] = [0.6
-0.1 0.3}, [v12 22 w2} = [-0.3 0.4 0.5] and [un
wy wy) = [0.4 0.1 —0.2], and the learning rate is
o« =0.25.
Activation function used is binary sigmoidal
activadon function and is given by
2 ] e

= —1=
fO=1r~= T+e=

Given the inpur sample [x1, x2] = [—1, 1] and target
t=1:

+ Calculate the netinput: For 2 layer

Zin) = ¥ + x0T a2101
=034+ (-1)x0.6+1x—0.1=-04

N
\ £ Gin) =050+ fim] [1 = frial]

Figure 13 Network.

For 2z layer

zZiy = vz + w2 + X202
=05+{-1)x-03+1x04=12

Applying activation to calculace the output, we
obtain

1t 1=

21 = flzim) = 1—_;;_—:‘; = 1—Ie_°_4 = —0,1974
1 P
zy = f(gin) = T = T =0.537

Calculate the net input entering the ourput layer.
For y layer

Yin = w0+ Z e+ 2un
= —0.2 + (—0.1974) x 0.4 + 0.537 x 0.1
= —0.22526
Applying activations to calculate the outpur, we
obtain

|t ] 022526

— = T BT =-0.1122

y=flpa) =
Compute the error portion 8;:

Be= (5 = yo)f Crinkd)
Now

- B

= 0.5{1 - 0.1122)[1 +0.1122] = 0.4937 .




94

Supervised Learning Natwork

This implies

8y = (1 +0.1122) {0.4937} = 0.5491

Find the changes in welghts berween hidden and
output layer:

Awy = abyzy = 0.25 x 0.5491 x ~0.1974
—0.0271
ady za = 0.25 x 0.5491 x 0.537 = 0.0737

0.25 x 0.5491 = 0.1373

H

Aun
Auyg = ad =

Compute the error portion &; berween input and
hidden layer (j =110 2}

§ = &ini f' (zin)
m

8inj = Z 8i
=l

8imj =81

~

[". only one output neuron]
=85 =8 wi = 0.5491 x 0.4 = 0.21964
=i =8 1) = 05491 x 0.1 = 0.05491

Errer, 8 =5,‘,,lf’(z,',,1) =0.21964 x 0.5

x (14 0.1974){1 — 0.1974) = 0.1056

Ercor, 87 =82 f'(zi2) = 0.05491 x 0.5

x (1 —0.537)(1 4 0.537} = 0.0195

Now find the changes in weights between input

and hidden layer:

Apyy =adx, =0.25 % 0.1056 x —1 = —0.0264

Ay =ad x=0.25x0.1056x 1 =0.0264

Ij .13 Review Questions

Avgy=ad=0.25x%0.1056= 0.0264
Aviy=abx, =0.25 % 0.0195 x —1=—0.0049
Argg=rdrx =0.25 % 0.0195 x 1 =0.004%
Awgy =e3=0.25x0.0195=0.0049

+ Compiite the final weights of the neowork:

vy (new) = vy (old)+Awy; = 0.6 — 0.0264

= 0.5736
via{new} = vpa{old)+Amz = —0.3 — 0.0049
= —0.3049
vay{new) = 9 (old)+Avy = —0.1 + 0.0264
= —0.0736
vaz(new) = va{old)+Avas = 0.4 + 0.0049
= 0.4049
w) (new) = wy{old)+Aw, = 0.4 —0.0271
=0.3729
ur (new) = un{old)+Awy = 0.1 4 0.0737
=0.1737
vo1(new) = vy (old)+Awg = 0.3 4+ 0.0264
= 0.3264
voz2(new) = pya(old)+Awgs = 0.5 4+ 0.0049
= 0.5049
uy(new) = uglold)+Awg = 0.2 + 0.1373
= —-0.0627

Thus, the final weight has been compured for the
nerwork shown in Figure 13.

. What is supervised learning and how is it differ-
ent from unsupervised learning?

. How does learning rake place in supervised

learning?

. From a mathemarical point of view, what is the

process of learning in supervised learning?

4. Wha is the building block of the perceptron?

5. Does perceptron require supervised learning? If

no, what does it require?

List the [imitacions of perceptron.

7. State the activation function used in perceptron
nerwork.

8. Whar is the importance of threshold in percep-
tron nerwork?
9. Mention the applications of perceptron network.
10. What are feature detecrors?
il. With a neat fowchart, explain the training
process of perceptron network.

12. What is the significance of error signal in per-
ceptron network?

3.14 Exercise Problems
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13.

14,

15,
16.
7.
18.

19.
20.
21.

22,
23.

24,

25,

26.
27.
28,
29.

30.

31.

32

33

State the testing algorithm used in perceptron
algorithm.

How is the linear separability concept imple-
mented using perceptron network training? |
Define perceprron learning rule.

Define delra rule.

State the error function for delra rule.

What is the drawback of using optimizarion
algorithm?

What is Adaline?

Draw the model of an Adaline network.

r

Explain the training algorithm used in Adaline
network.

How is a Madaline nerwork formed?

Is it true thar Madaline network consists of many
perceptrons?

Stare the characreristics of weighted interconnec-
tions berween Adaline and Madaline.

How is training adopted in Madaline network
using majority vote rule?

State few applications of Adaline and Madaline:
What is meant by epoch in training process?
Whar is meant by gradient descent method?
State the importance of back-propagation
algorithm.

Whar is called as memorization and generaliza-
rion?

List the stages involved in training of back-
propagation network.

Drraw the architeeture of back-propagation algo-
rithm,

State the significance of error portions &; and &
in BPN algorithm,

l3.14 Exercise Problems

34.
35.

3.
57.

38.

3%
40.

41.
42.

43,

. State the techniques for proper choice of learning

45.
46.
47.
48.
49.
50.
5L

52.

What are the activations used in back-
propagation network algorithm?

What is meant by local minima and globat
minima?

Derive the generalized delta learning rule.

Derive the derivations of the binary and bipolar
sigmoidal activation function.

Whar are the factors that improve the conver-
gence of learning in BPN necwork?

What is meant by incremental learning?
Why is gradient descent method adopred to

minimize error?

What are the methods of initialization of
weights?

What is the necessity of momentum factor in
weight updation process?

Define “over fitting” or “over training.”

tate.
What are the limitations of using momentum
facror?

How many hidden layers can there be in a neural
network?

Whar is the acrivation function used in radial
basis function nerwork?

Explain the training algorithm of radial basis
funcrion nerwork.

By whar means can an IIR and an FIR filcer be
formed in neural network?

What is the imporeance of functional link net-
work?

Write a short note on binary classification tree
neural nerwork.

Explain in derail about wavelet neural network.

1.

2.

Implement NOR function wsing perceptron
nerwork for bipolar inputs and targers.

Find the weights required to perform the fol-
lowing classifications using perceptron network.
The vectors (1, 1, —1, ~1) and {1, =1, 1, =1}

are belonging 1o the class {so have targer value 1),
vector {~1, =1, =1, 1) and {-1, -1, 1 1) are
not belonging 1o the class {so have target-value
—1). Assume learning rate 1 and inicial weights
as 0.
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3.

Classify the two-dimensional pattern shown in
figure below using perceptron nerwork.
* k% ’ ¥ &
e P
PRI ] ' ke
“Cc* A
Target value : +1 Target value : - 1

. Implement AND function using Adaline net-

work.

. Using the delta rule, find the weights required

to perform following classificarions: Vectors (1,
1, -1, =1} and (-1, -1, —1, —1) are belong-
ing to the class having targer value 1; vectors
(1, 1, 1, 1) and (-1, -1, 1, —1} are not
belonging to the class having target value —1.
Use a leaming rate of 0.5 and assume ran-
dom value of weights. Also, using each of the
training vectors as input, test the response of
the net.

. Implement AND function using Madaline net-

work.

. With suitable example, discuss the pereeptron

network training with and without bias.

. Using back-propagation network, find the new

welghts for the nerwork shown in the following
figure. The network is presented with the inpur

3.15 Projects

pareern [1, 0] and target output 1. Use learning
rate of @ = 0.3 and binary sigmoidal activation
function.

9.

10.

Find the new weights for the network given in
the above problem using back-propagation ner-
work. The network is presented the input pattern
[1, —1] and earget outpur +1. Use learning rate
of @ = 0.3 and bipolar sigmoidal activation
function.

Find the new weights for the activation func-
tion with the network shown in problem 8 using
BPN. The nerwork is presented with the input
partern [—1, 1] and targer outpur — 1, Use learn-
ing rate of @ = 0.45 2nd suirable acrivation
function.

1.

Classify epper case letters and lower case letters
using perceprron nerwork. Use as many output
units based on training sec as possible. Test the
nerwork with noisy pattern as well.

. Vrite a suitable computer program 1o classify the

numbers berween 0—9 using Adaline network.

. Write a computer program to train a Madaline to

perform AND funcrion using MRI algorithm.

. Wiice a program for implementing BPN for train-

ing a single hidden layer back-propagation nec-
work with bipolar sigmoidal units (x = 1) w©

achieve the following two-to-one mappings.

* y=06 sin{ir x1} + cos(wxa)
¢ y =sin{m x1) + cos(0.2mx7)

Set up wwo sets of dara, each consisting of 10
inpur—output pairs, one for rraining and other for
tescing. The input-output dara are obtained by
varying input variables (x1, x2) within [~1, +1]
randomly. Also the output daca is normalized
within [—1, 1]. Apply training to find proper
weights in the nerwork.

(LN RVATA A

P

Associative Memory Netwotks

— Learning Objectives :

Gives derails on associative memories.

Hopfield network with its electrical model is
described with training algorithm.

Discusses the training algorithm used for pat-
tern association networks - Hebb rule and
outer products rule.

Analysis of energy function was performed
for BAM, discrere and continuous Hopfield

The architecture, flowchart for training pro- nerworks.

cess, training algorithm and testing algorithm

An overview is given on the irerative autoasso-
of auroassociarive, hereroassociarive and bidi- ciative nerwork ~ linear autoassociator mem-
rectional associative memory are discussed in ary brain-in-the-box network and autoassoci-
detail. ator with threshold unit.

Variants of BAM ~ continuous BAM and
discrere BAM are included.

Also temporal associative memory is discussed
in brief.

I 4.1 Introduction

An associative memory nenwork can seore a set of parterns as memories. When the associative memory is being
presented with a key partern, it responds by producing one of the stored patterns, which closely resembles
or relates 10 the key patrern. Thus, the recall is chrough associarion of the key pagrern, with the help of
information memorized. These types of memories are also called as conzenz-addressable memories (CAM) n

contrast 1o that of tradirional addvess-addressable memories in digital computers where stored pauern (in byres)

is recalled by s address. Ir is also 2 matrix memory as in RAM/ROM. The CAM can also be viewed as
a.ssocia(ing_clmddjc_si_i.e.;fo every data in the memory there is a corresponding unique address. Also,
it can be viewed as data correlator] Here input dara is correlated with that of the stared daa in the CAM.
It should be nered §tored parterns must be unique, i.e., different parterns in each location. If the
same pattern exists in more than one locarion in the CAM, then, even though the correlation is correct, the

address is noted to be ambiguous. The basic scrucrure of CAM is given in Figure 4-1,

Associative memory makes § Eara][e% scarcE }vithin a@(@ﬁ he concepr behind this search is
to output any one or all stored items which march the givén search argument and to retrieve the srored data
either completely of parcially.

Two types of associative memories can be differentiated. They are autoassociative memory and heteroasso-
ciative memory. Both these nets are single-layer nets in which the weights are determined in a manner thar

the net stores 2 set of pactern associations. JEac
IF each of the ourput véctorsissame as the input vectors with which it is associated, then the net is a said to

1
=) n
3 Y
| o e \E Lo
ol X ¢ \\‘ {
o C

ch ‘of this association is an inpu-oATpUt vector pail; say, 5"
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_— [———————> Malch/No match
P

fnput * CAM °

datla . Malrix Odulpui

bus . . ata

— p———————-

Figure 4-1 CAM archirecture.

be autoassociative memory net. On the ocher hand, if the outpuc vectors are different from the inpur vecrors
then the ner is said to be heteroassociative memory net.
IF chere exist vectors, say, x = (xy,x3, . .. ol and ¥ = (', 0", ..., x5, )7, then the hamming distance

(HD) is defined as the number of mismarched compongnis of x and ¥ vectors, ie.,

¥ v — ] ifx, % € 00,1)
i=l
HD (x,x) = "

% leg—x;l ifx, £, € [-1,1]
i=f e

The architecrure of an associative net may be eithet feed-forward or iterative (recurrent). As is already known,
in a feed-forward net the informarion flows from che nput unifs 6 the oatpur urits: on the other hand,
in a recurrenc neural ner, there are connections among the units to form a closed-loop structure. In the
forthcoming sections, we will discuss the training algorithms used for partern association and various types
of association nets in deail.

l4.2 Training Algorithms for Pattern Association

There are two algorithms developed for training of pattern associacion nets. These are discussed below.

l4.2.1 Hebb Rule

The Hebb rule is widely used forfinding the weights of an associative memory neural ner. The training vector
pairs here are denorted as 5:r. The Aowchart for the training algorithm of pattein sssoctation is as shown in
Figure 4-2. The weights are updated until there is no weight change. The algorichmic steps followed are given
below:

Step 0: Seall the initial weights to zeto, 1.2, ‘ I
wy =0 f=twnj=1wm

Step 1: For each training targer input ourput vector pairs s, perform Steps 2—4.

Step 2: Activate the input layer unirs to current training inpur,

x=s (fori=1wn)

4.2 Training Algorithms for Pattern Association 29

{ Start ]

r

Initiatize all weibhls B .
w,=0{i=1ton,j=1tcm

Present inpul signals
X=S

Present oulpul signals
L=t

]
Weight adjustment

wr(new) = w,(old)-i—x’yf

( Stop } - \{ ":.‘ )

Figure 4-2 Flowchart for Hebb rule.

Step 3: Activace the outpur layer units to current target outpur,

Y=t (forj =1tom) '\; o ) ('J'\)
ANV I
Step 4: Starc the weight adjustment U E NG
L wi(new) = wy{old) + %y (fori=1ltomfj=Ltom) l

This algorichm is used for the calculation of the weights of the associative nets. Also, it can be used with
patterns that are beirig represented as either binary or bipolar vectors.
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I 4.2.2 Outer Products Rule

_Outer praduces rule is an alternarive method for finding weighes of an associarive net. This is depicted as

follows:

Input=r s=(51,. .. 5. 50)
Output = t=(fy,.. . . fjue o i ta)
The outer product of the two vectors is the product of the matrices § = T and T= 1 ie., between {n x 1]

marrix and (1 x m] maurix. The oanspose is to be taken for the input matrix given.
The marrix multiplication is done as follows:

*—\\
ST: .sT ¢ /
T
Ex
'.’"" .
"/ _:-S =14 [F‘l---fj---fm(ﬁxm
I :\;
N

e . NG .. Sl N

£

- B
W= st ... s .. sty .
Lsn&y oo Snbj oo Snfa | wxm

This weight matrix is same as the weight marix obrained by Hebb rule to store the partern association 5z,

For storing a set of associations, s(p):{p), p =110 P, wherein, o L
@) =610 5o, - a0)) o
) = (1) () ) For
the weight macrix W= {uy;} can be given as il ”5%\_ ¥
P - N VG‘&(O:S: v b 6‘
wi=3 d@40 L7 00T N g
p=l ] \“ . .\: . x
This can also be rewritten as ©oo

by component,
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for finding the weights of the ner using Hebbian learning. Similar to the Hebb rule, even the delta rule
discussed in Chapter 2 can be used for storing weights of patrern association nets.

I 4.3 Autoassociative Memory Network

L4.3.1 Theory

In the case of an autcassociative neutal ner, the training inpur and the targer output vectors are the same.
The determination of weighs of the associafion net is called storing of vecjors. This type of memory ner needs
suppression of the ourput noise ar the memory oucpur. The vectors that have been stored can be rerrieved
from distorted (noisy) inpur if the input is sufficiendy similar to it. The necs performance is based on its
abiliry 1o reproduce a stored pautern from a noisy input. It should be noted, that in the case of auroassociative
ner, the weights on the diagonal can be set 10 zero. This can be called as auto associative net with no self-
connecuon The main reason behind setting the weights to zero is that it improves the net’s ability to generalize

or incréase the biological plaunblll:y oF the net. Tl-us may be more suited for iterarive nets and when délra
taile is being used.

I 4.3.2 Architecture

The architecture of an autoassociative neural ne is shown in Figure 4-3, It shows that for an auroassociative

net, the training input and target outpur vectors are the same. The input layer consists of » inpur units

and the outpur layer also consists of n ourput units. The input and ourpur layers are connecred through
: el el gy

weighrted interconnections. The inputand putpir vectors are perfectly correlar ea \VIl’Fl eacE other component

R

l4.3.3 Flowchart for Training Process

The flowchart here is the same us discussed in Section 4.2.1, but it may be noted that the number of inpur
units and outpur units are the same, The flawchart is shown in Figure 4-4.

- h@ l @ h

Figure 4-3 Architecture of autoassociative ner.
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( Start )

Initialize the weights 1o zero
w,= 0

For Mo
each
vector,”
Yes

Aclivate input units
X=5,

Activale outpul units
=S

Weight adjusiment
w, (new) = w, {ald)+x ¥,

Stop ~

Figure 4-4 Flowchart for training of auroassociative net.
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l 4,3.4 Training Algorithm

The training algorithm discussed here is similar to thar p:hscussed in Section 4.2.1 but there are same numbers
of outpur units as thar of the inpur units.

[—Step 0: Initialize all the weights to zero, ' j
wg:O{i: lwn j=1wa)

Step 1. For each of the vector that has ro be stgred perform Steps 2—4.

Step 2: Activare each of the input unir, \ o
4 P
x,=5/=1wn) ptl‘he ri’oo‘n_\?“(‘
Step 3: Activare each of the output unir, s (‘-Q O
o JRCAF AT
_y','—;,-{]—lton) R“‘
I} o
Step 4: Adjust the weights, 1 e '

wilnew) = w,)‘{old) + x5

The weights can also be detertnined by the formula

W= Z, (p)fp)

L

I 4.3.5 Testing Algorithm

An autoassociative memory neural network can be used 10 determine whether the given inpur vector is a

“known" vector or an "unknown" vector. The net is said to recagnize a "known” vector if the ner produces a

pattern quclJVauon on the ourput unjts whlch is same asone of the f the vecrors stored in it. The resting procedure
—_— T

| Step 0: Set the weights obrained for Hebb's rule or ourer products. ]
Step 1: For each of the testing inpur vector presented perform Steps 2—4.
Step 2: Ser the activations of the input units equal to that of inpus vecror.

Step 3¢ Calculate the net input to 2ach ourpur uni[j =lwm

)’m Z X wg

Step 4: Calculate the output by applying the activation over the net inpux:

+1 ifyy, >0

L y=flmb=1_, iy, < 0 =

This type of nerwork can be used in speech processing, image processing, pattern classification, etc,
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I 4.4 Heteroassociative Memory Network

I 441 Theory

In case of a hereroassociative neural net, the training inpurt and the target outpur vectors are different. The
weights are determined in a way thar the ner can store a set of partern associations. The association here
is a pair of training input rarget ourput vector pairs (s(p), ), with p =T, TP Each vector s{p) has n
components and each vector £p) has m components, The determination of weights is done either by using
Hebb rule or delta rule. The net finds an appropriate outpur vector, which corresponds to an inpurveetor x,
thar wttier one of the stored patterns or a new pattern.

l 4.4.2 Architecture

The architeccure of a heteroassociative net is shown in Figure 4-5. From the figure, it can be noticed that for
a heteroassociarive ner, the training input and target output vectors are different. The input layer consists of
» number of input units and the ourpur layer consists of m number of output unics, There exist weighted
interconnections berween che inpur and oucput layers. The inpur and output layer units are not correlared

with each other. The flowchart of the training process and the TaiRTIg Zigotich are the same as discussed 6~

Section 4.2.1.

l 4.4.3 Testing Algorithm

The testing algotichm used for testing the heteroassociative net with either noisy inpur or with known inpur
is as follows:

I Step 0: Initialize the weights from the training algorichm. I
Step 1: Perform Steps 24 for each inpur vector presented.

Step 2: Ser the activacion for inpuc layer units equal to that of the current input vector given, x;.

Figure 4-5

Architecture of heteroassociarive ner.

o
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Step 3: Calculate the net input to the cutpur units:
n
Vi = Zx;w,'j (j=1twm)
i=] T ) b\
Step 4¢ Determine the activations of the outpur units over the calculated net input:\))\?‘p
k]
1 if >0 o
y=1 0 =0 o Lo )
T -1 i g0
/ I

Thus, the ourpur vector y obtained gives the pattern associated with the input vector x.

Note: Heteroassociative memory is not an fterative memory network. If the responses of the net are binary, then the

activation function ta be used is —
=0 i Fui <0
=

I 4.5 Bidirectional Associative Memory (BAM)

4.5.1 Theory

The BAM was developed by Kosko in the year 1988. The BAM nerwork performs forward and backward
associasive searches forfscored stimulus responses.iThe BAM is a recurrent hetergassoctative pattern-matching
nerwork that encodes biWns using Hebbian Tearning rule. It associates paterns, say from
set A to patterns from ser B and vice versa is also performed. BAM neural nets can respond to inpuc from
cither layers {input layer and output layer). There exist two types of BAM, called diserere and continuous BAM.
These rwo types of BAM are discussed in the following sections,

I 452 Architecture

The architecture of BAM network is shown in Figure 4-6, [t cansists of two layers of neurons which are con-

__nected by directed weighted parh interconnectinns. The nenwork dynamics involve rwo layers of interaction.

3 network iterates by sending the signals back and forth between the two layers until all the neurons
reach equilibrium. The weights assaciated with the nerwork are bidirectional. Thus, BAM can respond o
the puts in either layer. Figurc 4-6 shows a single layer BAM network consisting of 7 units in X layer and
 units in Y layer. The layers can be connected in o directioms-bidirectional) with the result the weight
matrix sent from the X layer to the Y layer is W and the weight marrix for signals sent from the Y layer 1o the

)_(layer i$ W, Thus, the weiphvnmawris I calclated in both directions.

I 4.5.3 Discrete Bidirectional Associative Memory

The strucrure of discrere BAM is same as shown in Figure 4-6. When the memory neurans arc being activaced
by putting an initial vector at the inpur of 3 layer, th ves afwo-pirern seable state #ith each

attern ar the e dayer, Thus, the necwork involves two layers of interaction berween each other
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x

X

*n

-— T Wem w

Figure 4-6 Bidirecsional associative memory ner.

The two bivalent forms of BAM are found to be related with each other, i.c., binary and bipolar The weights in
both the cases are found as the s od ucrs of the bipolar form of the given training vector

In case of BAM, & defifiite nonzero threshold Js asignesf Thus, the aciivation TIRCtion 15 a step function,
with the defined t6nzero threshold. When compared, to the binary vectors, bipolar vectors improve the

performance of o GHU‘-!:EE&Q,E(LE ——— =

—

4.5.3.1 Determination of Weights

Let the input vecrors be denoted by s(p) and targer vectors by #(p), p =

-+ P. Then the weight marrix to
store a set of input and target vectors, where

-"(P) = (S] (P)l e rjf(ﬂ)) . )Srr(P)}
) = (alph .. ag(p)s. .y tlp))

can be decermined by Hebb rule training algorithm discussed in Section 4.2.1. In case of input vectors being
binary, the weight maurix W = {wy} is given by

— e —

P
wi= Y [25(p) — 11[24(p) - 1]

p=1

On the other hand, when the input vectors ate bipolar, the weight matrix W = {w;} can be defined as

P
wi=y  5())
=1

The weighes matrix in both the cases is going to be in bipolar form neither the inpuc vectors are in

binary or not. The formulas mentioned above can be directly applied to the determination of weighes
of a BAM.
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4,5,3.2 Activation Functions for BAM

The step activarion function with a nonzero threshold | ‘ ivarion function for discrete BAM
nétwork. The activadon function 1s based on whether the input targer vector pairs used are binary or bipolat.

The activation function for the Y layer

1. with binary inpur vecrors is

1 if 3> 0
%=y € =0
|0 if P 0
2. with bipolar input vectors is
=1 % I =t
-1 if Fini< 0
The activation function for the X layer
1. with binary input vectors is
1 if x,>0
=1 x if x,, =90
@ if x,<0
2. with bipolar input vecrors is
1 if x>0
xj = Xf if Kini =§;

=1 if x,;<8;

[t may be noted that if the threshold value is equal to thar of the net inpur calculated, then the previous output
value calcubated is left as the activation of that unid| At a pardcular time inseant, signals are senc only from
one layer to the other and nor in bath the directions.

4.5.3.3 Testing Algorithm for Discrete BAM

The testing algorithm is used 1o test rhe(rﬂ'_’ sy_patterns bntering into the nerwork. Based on the training
algarichm, weighes are determined, by means of which net input is calculaced for the given test patern

and zactivations is applied over it, 10 recognize the test parterns. The testing algorithm for the net is as
follows:

Step 0: Initialize the weighs 1o store p vectors. Also initialize all the activations o zero. —I

Step 1: Pesform Steps 26 for each testing inpur.

Step 2: Ser the activations of X layer o current input pattern, i.e., presenting the input pateern x to X layer
and similarly presenting the inpur pattern y t Y layer. Even though, it is bidirectional memory,

at one time step, signals can be sent from only one layer. So, cither of the inpur pacterns may be
the zero vector.

T v
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Step 3: Perform Steps 4G when the activacions are not converged.

Step 4: Update the activations of units in Y layer. Calculate the net inpu,

n
Fiap = Z"iwif
i=1
Applying the activations (as in Section 4.5.3.2}, we obmin

Y= f (}'.‘nj)
Send this signal to the X layer.

Step 5: Update the activations of units in X layer. Calculate the net input,

mn
Kini = Z_‘bw,‘r
j=1
Apply the activations over the net input,

X = f (xini)
Send this signal to the Y layer.

Step 6: Test for convergence of the net. The convergence occuts if the acgivarion vectors x and y reach
l_ esuilibrium. IF this occurs then stop, otherwise, continue I

I 454 Continuous BAM

A continuous BAM transforms the input smoothly and continuously in the range 0-1 using logistic sigmoid
functions as the activation funcrions for all units. The logismﬂﬁmﬁwwmy
igmol nction or bipolar Sigmotdiifunetion. When 2 bipolar sigmoidal funcrion wich a high gain is
chosen, then the continuous BAM might converge w a state of vectors which will approach vertices-of the

cube. When thar scare of the vector approaches it acts Tike w discieie BAM.
If l'hf‘:. input vectors are binary, (s(p), €}, p = I to P, the weights are determined using rthe farmula
oA .

: ’ : »{':\(lj:\ r
S Y N L= fp) — ip) —
NN ey N = D [25(p) — 1][266p) — 1]
T -:\‘:‘ " ’ K \" (}L." p=]

™
i.¢.; even though the inpur vettors are binary, the weight matrix is bipolar. The activation function used here
is the logistic sigmoidal function. Ific is binary logistic function, then the activadon function is
—

1
Joi = T
If the activation function used is a bipolar logistic function, then the funcrion is defined as
2 L —e
T4y 1

Fiw)
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These activation funcrions are applied over the net inpu to calculate the output. The nec input can be

calculated with a bias incfuded, i.e., N . \.r-’l.'
VL)
4

Yinj = b} + Ex,—w,'j
. i

and all these formulas apply for the units in X layar also.

I 455 Analysis of Hamming Distance, Energy Function and Storage Capacity

The hamming distance is defined as the number of mismatched components of two given bipolar or l:inar-y
vecrors. It can also be defined as the number of different bits in two binary or bipolar vectors Xand X', It is
denored as H [, X'}. The average hamming distance berween the vectors is (Un)H1X, X", where “a” is the
numnber of components in each vector. Consider the vectors,

X=[1 010110 ad X¥=[111100 1]

The hamming discance berween these two given vectors is equal 10 5. The average hamming distance between
the corresponding vectors is 3/7. ‘ - .

The stabiliry analysis of a BAM is based on the definition of Lyapunov function {energy funcrion). Consider
that there are p vector association pairs to be stored in a BAM:

(0, D PN

where ¥ = (&, . LT and ff = (4 LT are either binary or bipol.ar vectors. A.Lyapunov
function must be always bounded and decreasing. A BAM can be said to be bldirecum‘-la-lly stable if che stare
corverges to a stable point, ie, ¥ > ¥t o ¥+ and ¥*+2 = #*. This gives the minimum of the energy
function. The energy function or Lynapunov funcrion of a BAM is defined as

, =1 7.7 Ly q
Ef(x,y)=Tx Wy-— 3 Wx = Wi

The change in energy due to the single bic changes in both vectors y and x given as Ay; and Ax; can be
found as

AEp{y) = VyBAyi = —Wbyi = — (;x;w;) X Byip i=11ton
=1

n
ALy} = Vi EAx = -—WTyA.\.}- = - (Ey;w,;,-) xAx, j=1rom
i=1
where Ay; and A are given as )
w

" .
2 i Yy 0 2 if Y guwy>0
= =

n , »nt
Ag=23 0 if Yywi=0 and Ay= 0 if Z xjw =0
A | = =1
m
-2 if Z xjw,;,'< 0
j=

-2 if 3 ywy<0
=i
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Here the energy funcdon is bounded below by

Efep) 2~ 3 |yl

i=l j=1

so the discrete BAM will converge to a stable state.
The memory capaciry or the storage capacity of BAM may be given as

min(rz, 1}

where “»" is the number of units in X layerand “mr” is ¢

he number of units in Y layer. Also a more conservative
capaciry Is estimated as follows:

J/min{m, B)

p.s Hopfield Networks

John J. Hopfield developed a model in the year 1982 conforming to the asynchronous nature of biological
neurons. The networks proposed by Hopfield are known as Hopfield networks and it is his work thac promoted
construction of the first analog VLSI neural chip. This nerwotk has found many useful applications in

associative memory and various optimization problems. In this section, two types of nerwork are discussed:
discrete and continuons Hopfield networks.

I 4.6.1 Discrete Hopfield Network

The Hopfield nerwork is an autoassociative fully interconnected single-layer feedback necwork. It is also a
symmerrically weighred nerwork. When this is operated in discrete line fashion it is called as discrere Hopfield
network and its archirecture as a single-layer feedback network can be called as reeterrens. The nerwork rakes

owo-valued inputs: binary (0, 1) or bipolar (41, —1); the use of bipolar inputs makes the analysis easier. The
nerwork has symmerrical weights with no self-connections, i.e.,

wi = 1wy wi =0

The key points to be norted in Hopfield net are: only one unir updares its activation at a time; also each unit
is found to continuously receive an exrernal signal along with the signals it receives from the other units in
the ner. When a single-layer recurrent network is performing a sequencial updaring process, an input pactern
is first applied 1o the nerwork and the network’s autput is found to be initialized accordingly. Afterwards,
the fnitializing patcern is removed, and the outpur that is inirialized becomes the new updared input through
the feedback connections, The first updated input forces the fiest updated output, which in turn aces as
the second updated input through the feedback interconnections and resulis in second updated output.
This transition process continues until no new, updated responses are produced and the nerwork reaches its
equilibrium.

The asynchronous updacion of the units alfows a function, called as energy functions or Lyapunov function,
for the ner. The existence of this function enables us ro prove thar the net will converge to a stable set of
activations. The usefulness of content addsessable memory is realized by the discrete Hopfield ner,
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Figure 4-7 Acchireczuse of discrere Hopfield ner.

4.6.1.1 Architecture of Discrete Hopfield Net _— _
1 in F1 ' ts of processin
The archicecture of discrere Hopfield net is shown in Figure 4-7_. The_Hop’?Eld 's model ;z:\lsc o Emcmié
i i i d the ocher non-inverting. The outputs fr
elements with two Outputs, one lnverung an . ‘ 1ch procesing
element are fed back to the input of other processing elements bur not to irself. Thelco;:necuons ¢ found
1 N . no

10 be resistive and the connection strengeh over it is represented as wj. Here, as such there are n ou% i

1ti inhibi ver .
Tesistors, hence excitarory connections use positive ouipuis and ]ﬂhlbl[gl’y csnnecnonsl‘l;lst: in ) thcpy .

: l i i ¢ as the input,

i i i sssing elernent is found to be sam :
Conncctions are excitatory if the output of a prace . . Lhey
inhibitory if the inputs differ from the ousput of the processing element. Aco.nneclm;n lberwelefl ;hitftsnits ‘; anﬁ
elements i and j is found to be associated with a connecrion strength wy. 'ljhls weight is ll:;osn.nv Funics ) anc
jare both on. On the ocher hand, if the connection strength is negative, it represents the siruat

. i ic, 1 i ij e as wjj.
being on and § being off. Also, the weights are symmetric, 1., the weights wj; are sam i

ini } i ield Net
4.6.1.2 Training Algorithm of Discrete Hopfield , o
Thee exist several versions of che discrete Hopfield net. It should bi‘ noted thar Hopfield’s first description
used binary input vectors and only later on bipolar inpur vectors used. .
For sto?::lngpa sec of binary patterns s(ph, p=1w D where s(p) = (n(ph- . VSilphe - ,5ulp)), the weight
matrix Wis given as

P
wy= 3 2sp) = Ni2glp) = 1, fori #
p:I
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For storing a set of bipoar inpur patterns, s(p) (as defined above}, the weight matrix Wis given as

P

wi = ZS;@)I};(}J), fori #j

p=l

and the weights here have no self-connection, i.e., wi; = 0.

4.6.1.3 Testing Algorithm of Discrete Hopfield Net

In the case of testing, the update rule is formed and the initial weighes are those obrained from the training
algorithm. The testing algorithm for the discrete Hopfield ner is as foilows:

rStep 0: Initialize the weights to store parerns, i.e., weights obtained from training algorithm using Hebb

rule.

Step 1: When the activations of the ner are not converged, then perform Steps 2-8.
Step 2: Perform Steps 37 for each inpur vector X.

Step 31 Make the inirial activations of the ner equal to the external input vector X:
yi=x(i=1ron)

Step 4: Perform Steps 5-7 for each unic Y;. (Here, the units are updated in random order.)
Step 5: Calculate the ner inpuc of the nerwork:

Yo =%+ Z Fitji
i

Step 6: Apply the activations over the ner input to calculate the output:

1 if yui> 6
yi =4y if =6
0 if y< 6
where 6; is the threshold and is normally taken as zero,

Step 7: Now feed back (transmir) the obtained ourpur y; to all other units. Thus, the activarion vecrors
are updaced.

I Step 8: Finally, test the nerwork for convergence. J

The updation here is cartied out at random, bur it should be noted that each unir may be updated ac the
same average rate. The asynchronous fashion of updarion is carried out here. This means tha for a given time
only a single neural unit is allowed to updare its outpur. The next update can be carried out on 2 randomly
chosen node which uses the already updated output. It can also be said that under asynchronous operation of
the nerwork, each output node unit is updared separately by tzking into accotnt the most recent values char
have already been updated. This type of updarion is referred to as an asynehronous stochastic recursion of the
discrete Hopfield nerwork. By performing the analysis of the Lyapunov function, i.e., the energy function for
the Hopfield net, it can be shown that the main feature for the convergence of this net is the asynchronous

updation of weighes and the weighes with no self-connection, i.e., the zeros exist on the diagonals of the
weight matrix.
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A Hopfield network with binary input vectors is used to determine whether an input vector ils a “known”
vector or an “unknown™ vector. The net has the capaciry to recognize a known vector by producu'lg a patcern
of activations on the units of che net thar is same as the vector stored in the net. For example, if dae_ input
vector is an unknown vector, the activation vectors resulted during iteration will converge ro an actvation

 vector which is not one of the stored patterns; such a partern is called as spurious seable state.

4.6.1.4 Analysis of Energy Function and Storage Capacity on Discrete Hopfield Net

An energy function genesally is defined as a function that is bounded alnd isa noni_ncrcasing Fuln'ction of the
state of the system. The energy function, also called as Lyapunov funcrion, .dctcrmmes the s:a?mhcy property
of a discrete Hopheld network. The scate of a §ystem fora neural network is the vector of activations of the
units. Hence, if it is possible to find an energy function for an iterative neural net, the net will converge o a
stable set of activations. An energy function Erof a discrete Hopfield network s characrerized as

"

l n n n
Er=—= 3 Y yigjwy— p_ syt )b
23 j=1 i=l i=1
it
If the nerwork is stable, then the above energy function decreases whenever the state of any node changes.

l 1 -—
Assuming that node i has changed its state from ys-k) o yS-H ), i.¢., the output has changed from +1to —1 or
from —1 to +1, the energy change A Eyis then given by

stp=t (") - £ (")

W) _ @
_ Z]j(-k}w;j-l-.\‘;—ef (y,‘ - ¥ )

j=!
i
= — {nety) Ay
where A y; = yf‘Hl' — y* The change in energy is dependent on the facr that or&l'ir_lc;nc ur:g can |..1pda.te ics
activation at a cime. The change in energy equarion A Er exploits the fact thatyy =y forj# iand

wi; = wy; and wy; = O (symmetric weight property). e
There exist rwo cases in which a change A y; will occur in the accivation of neuron Y;. If y; is positive, then
it will change to zero if

M
xi+ Z yiwii | < B
L _f.:]
This results in a negative change for y; and AEf< 0. On the other hand, if y; is zero, then it will change wo
positive if

n
%+ Z)yWJf >0
j=1

This results in a positive change for y; and AEp< 0. Hence A y; is positive only if net input is posinve arlid
A y; is negative only if net input is negative. Therefore, the energy cannot increase (0 ahy manner As 2 resulr,
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because the energy is bounded, the net must reach a scable state equilibrium, such that the energy does not

change with further iteration. From this it can be concluded that the energy change depends mainly on the

change in activation of one unit and on the symmetry of weight matrix with zeros existing on the diagonal,
A Hopfield nerwork always converges to a stable state in a finite number of node-updating steps, where

every stable state is found to be at the local minima of the energy function Ex Also, the proving process uses

the well-known Lyapunov stability theorem, which is generally used to prove the stability of dynamic system
defined with arbitrarily many interlocked differential equations. A positive-definite (energy) function £ (y)
can be found such that: -

1. Ef(j) is continuous with respect 1o all the components y; for i = 1 to »;

2. 4 Ef[yd]ldr<0, which indicares that the energy function is decreasing with time and hence the origin of
the state space is asymprotically stable.

Hence, a positive-definite (energy) function Er (y) satisfying the above requirements can be Lyapunov function
for any given system; this function is not unique. If, ar leasc one such function can be found for a system, then
the system is asymptotically stable, According to the I yapunov theorem, the energy function that is associated
with a Hopfiel nerwork is a Lyapunov Function and thus the discrete Hophield necwork is asymprotically
stable.

The storage capacity is another important factor. [t can be found that the numbcr of binary parterns that
can be stored and recalled in a nerwork with a reasonable accuracy is given approximacely as

Storage capacity € = 0.15»
where # is the number of neurons in the nec. Tt can also be given as

"

~

= 2 logy n

l4.6.2 Continuous Hopfield Network

A discrere Hopfield net can be modified to a continuous model, in which time is assumed to be a continuous
variable, and can be used for associacive memory problems or oprimization problems like sraveling salesman
problem. The nodes of this network have a continuous, graded sutpur rather than a two-state binary eutpur.
Thus, the energy of the nenwork decreases continuously with time. The continuous Hopfield necworks can
be realized as an electronic circuit, which uses non-finear amplifiers and resistors. This helps building the
Hopfield nerwork using analog VLSI technology.

4.6.2.1 Hardware Model of Continuous Hopfield Network

The continuous nerwork build up of electrical components is shown in Figure 4-8,
The model consists of » amplifiers, mapping its input voltage #; into an output voleage y; over an activation
function a(w;). The activation function used can be a sigmoid function, say,

1
alru) = ———
{hac) 1 et
where X is called the gain parameser.
The continucus model becomes a discrete one when A — or. Each of the amplifiers consists of an input
capacitance ¢; and an input conducrance g. The external signals entering into the circuit are x;. The external

o
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Figure 4-8 Model of Hopfield network using elecrrical components.

signals supply constant current to each amplifier for an actual circuic. The output of the jth node is connected
to the inpuc of the sth node through conductance 1o, Since all real resistor values are positive, the inverted
node gurputs 7 are used to simulate the inhibitory signals. The connection is made with the signal from the
noninverted ourput if the outpur of a particular node excites some other node. If the connection is inhibitory,
then the connection is made with the signal from the inverted output. Here also, the important symmetric
weight requirement for Hopfield network is imposed, i.e., wyj = wyi and wy; = 0.

The rule of each node in a continuous Hopfield nerwork can be derived as shown in Figure 4-9. Consider
the inpur of a single node as in Figure 4-9. Applying Kirchoff’s current Jaw (KCL), which states that the total
Cutrent entering a junction is equal 1o thar leaving the same function, we get

du; n "
G 7; = zl wy (yi— ud — gni+x = 3. wipyy— Gui+x

j=| i=l

JFE J#
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Figure 4-9 Inpuc of a single node of continuous Hopfield nerwork.

where

n
Gi= Z wi + gy
=t
J#i
The equation obrained using KCL describes' the time cvolution of the system completely. If each single
node is given an initial value say, #;{0), then the value 1;(s) and thus the amplifier outpur, {8} = @l {f) at
time ¢, can be known by solving the differential equacion obrained using KCL.

4.6.2.2 Analysis of Energy Function of Continuous Hopfield Network

For evaluating rhe stability property of continuous Hopfield necwork, a continuous energy function is defined
such that the evolution of the system is in the negative gradient of the energy function and finally converges
to one of the table minima in the state space. The corresponding Lyapunov energy function for the model
shown in Figure 4-8 is

o
1 " " " 1 n B
Ep= =3 DD = % f+;Zfo” )y
i=]j=I =] =1 4
J#i

where a7} {3) =Au is the inverse of the function y = a(Aw). The inverse of the function a"(y] 15 shown In
Figure 4-10(A) and the integral of it in Figure 4-10(B).

To prove that £ obrained is the Lyapunov function for the nerwork, its time derivative is taken with
weights w;; symmertic:

dy & &t dt dr

re=]

dEr I dEdy & ? dy; " dyidu;
oy S| S it G| L= =Y B
=1 J=1 i=1

J#E

L
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Figure 4-10 (A) Inverse and (B) integral of nonlinear activation function 4~ (3).

t; = (%) a )

) ._| A , ’ 3
du; - Yda™' i) = la'] (ys)iy"
e A Ay A X o

we per

where the derivative of a~1(3) is a~ ' (3). So, the derivative of energy function cquation becomes
S T A
=" g P ) (z)

From Figure 4-10(A), we know thac 2™ ' {y;} isa monomnically increasing function of y; and hence its derivarive
is positive, all over. This shows thar dEf/d.t is negative, and thus che energy funcrion Efmust decrease as the
sysiem evolves. Therefore, if £ris bounded, the system will eventually reach a stable state, where

iy dy,
dr | dr

When the values of chreshold are zero, the continuous energy functian becomes equal to the discrece energy
function, except for the rerm,

)

b
1
IZ G; fﬂ"(y)dy

i=1 )

From Figure 4-10(B), the integral of a~1(3) is zero when 3 is zero and positive for all other values of 3.
The incegral becomes very large as y approaches +1 or —1. Hence, the energy function Epis bounded
from below and is a Lyapunov function, The continuous Hopfield nets are best suited for the constrained
optimization problems.
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I 4.7 Iterative Autoassociative Memory Networks

There exists a situation where the ner does not respond to the input signal immiediately with a stored rarger
pattern but the response may be more like the stored pattern, which suggests using the firsc response as input
to the net again. The iterative auroassociative net should be able to recover an original stored vecror when
presented with a test vector close to it. These types of nerworks can also be called as recurvent autoassaciative
networks and Hoplield networks discussed in Section 4.6 come under this category.

I 4.7.1 Linear Autoassociative Memory (LAM)

In 1977, James Anderson focused on the developmenc of the LAM. This was based on Hebbian rule, which
states that connections between neuron like elements are strengthened every time when they are activated.
Linear algebra is used to analyze the performance of the net.

Consider an m % m non singular symmetric matrix having “m” mutually orthogonal eigen vectors. The
eigen vecrors satisfy the property of orthogonality. A recurrent linear autoassociator network is trained using
a set of P orthogonal unit vector #1,. . ., #p, where the number of times each vector poing to be presented is
noc the same.

The weight marrix can be determined using Hebb learning rule, but this allows the reperition of some of
the stored vecrors. Each of these stored vectors is an eigen vector of the weight macrix. Here, cigen values
represent the number of times the vector was presented.

When the input vector X is presented, the output response of the net is XW, where Wis the weight maerix.
From the conceprs of linear algebra, we know thar we cbrain the largest value of | XW]| when X is the cigen
vector for the largest eigen value; the next largest value of | XW| occurs when X is the eigen vecror for the next
largest eigen value, and so on. Thus, a recurrent linear autoassociator produces its response as the stored vector
for which the inpur vactor is most similar. This may perhaps rake several iterations. The linear combination
of vectors may be used to represent an input partern. When an input vector is presented, the response of the
net is the linear combination of its corresponding eigen values. The eigen vector with largest value in this
linear expansion is the one which is most similar to that of the inpur vectors. Although, the net increases
its response corresponding to components of the inpur patrern over which it is trained most extensively, the
averall output response of the system may grow wichout bound.

The main conditions of linearity berween the associarive memories is that the set of input vecror pairs and
output vector pairs (since, autoassociative, both are same) should be mutually orthogonal with each other,
Le., if"AP” is the input pattern pair, for p = 1 1o P, then

A,-A} =0, forallizj

Also if all the vectors A, ate normalized to unit length, Le.,

Z(ﬂi)§=1. forallp:] bl

i=]

then the ourpur ¥; = A,, i.e., the desired outpur has been recalled.

l 4.7.2 Brain-in-the-Box Network

An extension to the linear associacor is the brain-in-the-box model. This model was described by Anderson,
1972, as follows: an activity pattern inside the box receives positive feedback on cerrain components, which
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has the effect of forcing it outward. When its clement start to limit (whea it hits the wall of the box),. it
mioves to corner of the box where it remains as such. The box resides in the state-space {each neuron oceupies
one axis) of the network and represents the saturation ljmits for each state. Each component here is being
restricted between —1 and +1. The updation of activations of the units in brain-in-the-box model is done
simultaneously. . _

“The brain-in-the-box model consists of n units, each being connected to every other unit. Also, Fhere
is 2 trained weight on che self-connection, i.e., the diagonal elements are set to zefo. ?Fhere also exists a
sclf-connection with weight 1. The algorithm for brain-in-the-box model is given in Section 4.7.2.1.

.

4.7.2.1 Training Algorithm for Brain-in-the-Box Mode!

rStep 0: Inicialize the weights to very small random values. Initialize the learning rates & and .
Step 1: Perform Steps 2-6 for each training input vector.

Step 2: The initial activations of the net are made equal w the external input vector X:
Yi =X

Step 3: Derform Steps 4 and 5 when the activations continue to change.
Step 4: Calculase che net input:
n
Pig =yt E}'jwﬂ

j=I

Step 5: Caleulate the outpur of each unic by applying its activarions:

1 if =1
}:, = )lw— .lf -'1 Syjuj S 1
=t if = -1

The vertex of the box will be a stable stace for the activation vector.
Step 6: Update che weights:

wi(new) = wylold)+B yi |

L

I 4,73 Autoassociator with Threshold Unit

If a threshold unit is set, then a threshold Function can be used as the activarion Func['loln for an iterative
autoassociator net. The testing algorithm of autoassociator with specified threshold for blpo!ar vectors ar}xld
activarions with symmetric weights and no self-connections, i.c., wij = wji and wj; = 0 is given 1n the
following section.
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4.7.3.1 Testing Algorithm

| Step 0: The weights are inidalized from the training algorichm to store patterns (use Hebbian lmning).—l
Step 1: Perform Steps 245 for each testing inpur vector,
Step 2: Set the activations of X.
Step 3: Detform Steps 4 and 5 when the stopping condition is false.
Step 4: Update the activarions of all units:

"
i 3 x> 6
j=l
fi

X = x if Zx‘,wq =0;
=
Lid

~1f Y x> 6;
j=1

The threshold 8; may be taken as zero.
l Step 5: Test for the stopping condition. !

The necwork performs ireration unril the correct vector X matches a stored vector or the resting input marches
a previous vector or the maximum number of irerations allowed is reached.

I 4.8 Temporal Associative Memory Network

The associative memories discussed so far evolve a stable state and stay there. All are acting as concent
addressable memories for a set of seatic patterns. Bur there is also a possibilicy of storing the sequences of
pateerns in the form of dynamic transitions. These types of paserns are called as semporal parterns and an
associative memory with this capability is called as a temporal associative memory. In this section, we shall learn
how the BAM acr as temporal associative memories. Assume all temporal patterns as bipolar or binary vectors
given by an ordered ser § with p vecrors:

S:{:I,sz,...,:,-....,:_,] p=1lwh

where column vectors are a-dimensional. The neural necwork can memorize che sequence S in its dynamic

state transitions such thar che recalled sequenceiss; = 5 = ... > 5 > ... — T R
5i~* ... or in reverse order.
A BAM can be used 1o generare the sequence S = {s1,52,.,.., 5, ... »5p}. The pair of consecurive vecrors s,

and 54 ase taken as hereroassociative. From this point of view, 5 is associated with s, 52 is associaved wich
53 .. and 5, is again associated with 1. The weight macrix is then given as

»
W= (ser))"

k=1

A BAM for remporal pateerns can be modified so that both layers Xand ¥ are described by identical weight
marrices W, Hence, the recalling is based on

x=fW) y=f(W)
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where (-} is the activation funcrion of the network. Also a reverse order recall can be implemented using
the transposed weight matrices in both layers X and ¥. In case of temporal BAM, layess X and Y update
nonsimultaneously and in an alternate circular fashion.

The energy function for a remporal BAM can be defined as

i

Ef= -— ZJH_] W,
k=1

The energy function Efdecreases during the temporal sequence rettieval s; ~ 52 — ... ~> 5. The energy is
found to increase stepwise ax the transition §, — s1 and then ir continues to decrease in the follawing cycle of
(p — 1) rewievals. The storage capacity of the BAM is estimated using p < min{m, n). Hence, the maximum
length sequence is bounded by p < n, where » is number of components in input vector and m is number of
COMPONENts i QUIPUE VECIOT,

l 4.9 Summary

Pattern association is carried our efficiendly by assoctative memory networks. The two main algorithms
used for training a partern association network are the Hebb rule and the outer products rule. The basic
architecture, Howcharr for training process and the training algorithm are discussed in detail for autoasse-
ciative net, hereroassociative memory net, BAM, Hopfield net and iterative nets. Also, in all cases suitable
testing algorithm is included. The variations in BAM, discrere BAM and continuous BAM, are discussed
in this chaprer. The analysis of hamming distance, energy function and stworage capacity is done for few
networks such as BAM, discrere Hopfield network and continuous Hopfield network. In case of itera-
tive autoassaciative memory network, the linear aurcassociative memory, brain-in-che-box model and an
autoassociator with 2 threshold unit are discussed. Also temporal associative memory nerwork is discussed

briefly.

l4.1o Solved Problems

1. Traip-a heteroassociative memory network using

/He' b rule to store inpur row vecror § =

' (51, 52, 53, %) 1o the outpurt row vector £ = (1), ).
The vector pairs are given in Table 1. e

Table 1 R
Inputtargets s 5 5 sﬂ 1 2
w1 0 1 o1 0
™ 1 0 0 410
3 Y 1.0 o0 lo 1
4t ¢ 0 1 1i0 1

Solution: The nerwark for the given ploblem is as
shown in Figure 1. The taining algorithm based on

Hebb rule is used to determine the weights. Figure 1 Neural net.
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For Ist input veeror:

Step 0: Initialize the weights, the initial weights I
are taken as zero.

Step 1z For fiest pair (1, 0, 1, 0):(1, 0}
Step 2 Set the activations of Inpuc units:

=1 »n=0 =1 x=0 “

Step 3: Ser the activarions of ourput uniz: "t

n=1 p=0 ‘i
Step 4: Update the weights, }‘5
wii{new) = wi{old) Hlx;y
wyi{new) = wy; (old) + o = Olb\l x1l=1
wni (new) = war{eld) + xy =“0-H|0 x1=0
ws(new) = s (old) + x50 = 041 x 1= 1
wy| (new) = wyy{old) + x4y = 0-}-l 0x1=0
wa(new) = wizlold) + 252 =0+ 1% 0=10
o (new) = wyfold) + xyp2 =0 +0x 0 =0
wiz(new) = wy(old) + 133 =0+ 1x0=0
I wyz{new) = wyalold) + x4n =04+ 0x 0 = Ol

For 2nd input vector:
The inpue—~outpur vector pair is (1, 0, 0, 1):(1, 0)

x=1 x=0 x3=0 x5=I,
=1 n=0

The final weights obrained for the inpur vecror pair
is used as mitial weight here:

wiinew) = wplold) +xpy =14+ 1x1=2
wy) (new} = wg fold) + x4y =0+ 1 x 1 =1

Since x2 = x3 = 32 = 0, the other weights remains
the same.
The final weights after second input vector is pre-
sented are

wy=2,um=0u =1 wy=1
wa=0,wpn =0, w2=0, wp =0

For 3rd input vector:
The input—ourput vector pair is (1, 1, 0, 0):(0, 1)
si=lL =1 65=0 x5=0 =0 =1

Training, using Hebb rule, evolves the final weights
as follows:

Since y| = 0, the weights of y are going to the same.

' Computing the weights of 32 unit, we obtain

wia(new) = wplold) + x, =04+ 1x1 =1
uns (new) = mz(ol&)+xm=0 +1x1=1
wip(new) = waz(old} +x39, =0 +0x 1 =0
wqz(new} = wp(old) + x4 =04+ 0x 1 =0

The final weights after presenting third ihpu: vector
are

wnn =2, w1 =0, w3 =1, wgy =1
wiz=1l,wp=1,w=0wp=0

For 4th input vector:
The input—output vector pair is (0, 0, 1, 1:(0, 1)

x=0x=0xn=Lxy=1L,n=0n=1
The weights are given by

way(new) = wiplold) + x5, =0+ 1x1=1
wia{new) = wyy(old) + x4y =0+ 1x 1 =1

Since,x = =n =0, r.h_e other weights remains
the same. The final weights after presenting the fourch
input vector are

wy =2,un5 =0,w3 = 1wy =1
wr=luwy=lwy=1lLwzp=1

Thus, the weight matrix in matrix form is

wn oWz 21
01
W= unl wn -
w3 w3 11
Wy wg 11

‘2_. /Train the hereroassociative memory network using
“ourer products rule to store input row vectors s =
(11552, 53,54) 1o the ourpur row vecrors £ = (41, &)
Use the vector pairs as given in Table 2,
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Table 2

Inputandtargers 51 » 5 s« H B

1%t 1 6 1 0 1t O

2md 1 0 0 1 1 0

3 1 1 0 0 0 1

4th 0 0 1 1 0 1
Solution: Use o‘xi:—er’pr,od.ucu.d.c 1o determine the
weight matrix: ¢

P
W= E:T(JJ) Hp)
=l
For Ist pair: The inpur and outpue vectors are s =
(1010}, e=(10). Forp=1,

T (p) p) = s™(1) /1)
1

i
=T ]
L |
—
(=]
—
x
e}
I

4%\

For 2nd pair. The input and outpur vectors are 5 =-

(1001), r=(10).Forp=2,
T (o) p) = 5T (2) €2)

00
[] 0]1)(2:. 00

1
0
0
Ui 1 04y,

For 3rd pair. The input and outpue vectors ate 5 =
(1100),z=(01). Forp=23, )\{F\‘

s, M

Toap=~ee T
1 o1
1 D1
= 0 [0 l]l:-c1= 00
0 4x1 09 4%2

For 4th pair: The inpur and ourput vecrors are » =
0011),s=(01). Forp=4,

5T () p) = < (4) ()

[0 1]1x1=

4x1

—_—— D O
oo oo
—— O O

4x2

The final weight matrix is the summation of all the
individual weight matrices obtained for each pair.

4
W= () p)
p=t
= T} + 5T + 7 3)e(3) + T (4)ef4)
10 10 01 00
00 00 01 00
=11 o|Tloo]T{oolT]o
00 10 00 01
21
01
W=1,,
11

3. Trainz heteroassociative memory network to store
the inpue vectors 5 == (5|, 52,13, 14) to the ourput
vectors £ = (fy, ). The vector pairs are given in
Table 3. Also test the performance of the network
using its training input as testing input.

Table 3

Inputandtargets 5 s $3 4 0 2
1 I 0 0 0 0
nd 1 1 0 0 0 1
3 0 0 0 1 1 0
4th o0 L 1 1 0

Solution: The nerwork architecture for the given
inpur—target vector pair is shown in Figure 2. Tramn-
ing the nerwork means the determinarion of weights
of the nerwork. Here ourer products rule is used to
determine the weight.

The weight marrix W using outer products rule is
given by

P
W= Z::T(P) !(P)

p=1
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Forp=1104,
4
W= 5T dp)
p=1
= T} + T @)2) +T3)A3) + o (9)44)

1

0

0

0

+[
0

[0 1]+

[01]

-_0 o O

—

—

(=]

[E—

+
—_— OO -~

0
0
. [t o]
]

[0 1] 0t 00 00
_lo o 01 00 00
=loo[Tloo[T|oo]T|1 0

00 |00 10 10

[0 27

01

=110
L.2 0_

Xy

Figure 2 Nerwork architecrure.
Testing the Network
Method I
The testing algorithm for a heteroassocjative mem-
ory network is used to test the performance of the
net. The weight obtained from training algorithm s
the initial weight in testing algerichm.

For 1st testing inpur

rStep 0: Initialize the weights: I
wyy w2 0 2
we| ¥ w2 | _ 0 1
w3t w 1 0
Wil w4 2 0

Step I: Pedorms Steps 2-4 for each testing
INPU—OULPUE Vector.

Step 2: Set the acrivarions, x = [10 0 0].

Step 3: Compute the net input, # = 4, m = 2.
Fori=1lrw4andj=1t02:

n

Yinj = Z: Xl

=1

m
Yiml = Exiwr'l
i=l

= xy101] + xauny + x3w3) + x41043
=1x0+0x040x140x2=0

"
Y2 = Z: AWy
i=t

= xjw12 + xpwag + x3ws + xwsz
= x240x | +0x04+0x0=2

Step 4: Applying activation over the net input to
calculzre the ourput,

by =f(}'r'ul) =f(0) =0
L 2 =flm2) =f(2) =1 J

The outpur is (0, 1] which is correct response for firsc
inpur partern.

For 2nd testing input

Ser the activation x = [1 1 0 0. Computing the net

input, we obrain
Fim = x1w() +own) + o gws) + x4wh
=04+0404+0=0
Fim2 = X2 + xw + 2awsn + xqws
=2414+04+0=3
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Compure the outpus by applying activations over net
input,

p=flm)=f0)=0 )
n=Fflm=3=1

The outpur is {0, 1} which is correct response for
second input pattern.

For 3rd testing input
Ser the activation x = [0 0 0 1). Computing net
inpur, we obrain

Fiad = X301 Foway +xws) 4w
=0+0+0+2=12

Yim2 = x1w12 + w2 + X3w3 4 xqlg
=0+0+0+0=0

Caleulare outpuc of the network,

n=flm) =2 =1
)'2=f(yf112) =f(0)_—'0

The ourpur is [1 0] which is correct response for third
testing inpuc pattern,

For 4th testing input
Ser the activation x = [0 0 1 1]. Cakeularing the net
input, we obrain

Fiml = X1 + own +x3ws) +xiws
=0+0+142=3

Fing = Xyun2 + Xz + X313 + xqt4]
=0+0+04+0=0

Calculare the output of the network,

1 =S} =f3) =1
P =f(]'|'rr2) =f(0) =10

The outpur is [1 0] which is correct response for
fourth resting inpur pareern.

Method 11

Since net input is the dot product of the input row
vector with the column of weight matrix, hence a
method using matcix multiplication can be used to

test performance of nerwork. The initiat weights for
the nerwork are

| S e ==
[T == R

The binary activations are used, i.e.,

1 if x>0
f(x)=10 if x<9

For Ist eesting inpur
Ser the activation = {1 0 0 0L The net input is
given by yim = xW (in vectoc form):

0 2
01
[]Irrl ]irrZ] =l 00 0] x4 10
20 4x2
—{0+0+0+0 2+0+0+0]

={0 2]
Applying activations over the net input, we get

hpl=0 1

The correce response is obrained for fizst testing input
partern,

For 2nd testing inpus

Ser the activation x = [1 1 @ 0L The ner input is
obrained by

l}'iul _J’r’n?jl = [1 10 0]

[ I = ]

2
)]
0
0
=[0+04+04+0 2+ 14040
=[0 3]

Apply activations over the netinput o obain curpur,
we ger

[yirrl. _yinl] = [0 l]

The correct response is obtained for second testing
inpuc.
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For 3rd testing inpus The weight matrix is
Ser the acrivation x = [0 0 0 1]. The net inpur is
; 10 2
obtained by .
‘ W= 01
02 Tl1 0
01 20
[_yinl J"J'n?.] = [0 00 1] 10
2 0 The net inpuc is caleulated for the similar vector,

=[0+0+0+2 0+0+0+0]
=[2 0]

Applying activations to calculate the outpur, we get
i nl=M 0

Thus, correct response is obrained for third testing
input.

For 4th testing input

Sertheacrivationx = [0 @ 1 1]. The netinputis
calculated as

0 2
o1
[_yfn]J’irll]'—[o 01 1] 10
20

=[04+0+1+2 04+04+040]

=[3 0]

The ourpur is obrained by applying activations over
the net inpuc:

W nl=0 0]

The correct response is obtained for fourth test-
2

ing input. Thus, training and testing of 2 hecere

associative nerwork is done here,

~

4. For Problem 3, test a heteroassociative nerwork
with a similar test vecror and unsimilar test
VECIoL

Solution: The hereroassociative network has to be
tested with similar and unsimilar test veceor.

With sinﬁ g test vecsor. From Problem 3, che sec-
ondinputvectorisx = [1 10 0] with targety = [0 1].

o test the nerwork with a similar vector, making a
chafige in one compotrene of the input vector, we get

T={0100]

02
01
[yint yiw2]l = [0100] 1 0
20
=[0+0+0+0 04+14+0+40]
=[0 1]

The output is obrained by applying activations over
the net inpue

o pl=[0 1]

The correct response same as the rarger is found,
hence the vecror similar to the inpur vecror is

tecognized by the nerwork.

With unuimilar-smput vector: The second input
vectorisx=1[1 1 0 O]withrargety=1[0 1).To
test the nerwork with unsimilar vectors by making a

. T e ey et ]
change in\rwo component of the inpur vecror, we get

x=[0 1 1 0]

The weight matrix is

W=

[ S R )
(=R i N ]

The net inpur is calculated for unsimilar vector,

g

[SE T - R

[¥inl 3im] = 1011 0]

S S~

e % =[0404+140 04+140+0]

=[ 1]

The output is obrained by applying activations over
the net input

n pl=0 1
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The correct response is not obtaine r
unsimilar to the input nerwork is presented to the

¢S, Train a heteroassociative neework to store the,
inpur vectors s = (51 52 f3 54) 10 the ourput vec-

tor ¢ = (fy #2). The taining input-target output
vector pairs are in binary form. Obrain the weight
vector in bipolar form. The binary vector pairs are
as given in Table 4.

Table 4 ‘

51 52 535 54 h )
¥ 1 ¢ o 0 0 1
ad 1 o 0o o 1
3 ¢ 0 O 1 1 0
4th () ] 1 ! 1 0

Solution: In this case, the hybrid representarion of
the network is adopted 1o find the weight matrix in
bipolar form. The weight matrix can be formed using

—_—

wpy = @2x1-DEx0-1) _°
+@2x1=D@Ex0-1b
+(2x0-12x1-1)
+@x0-DEx1-1)
=—1-1-1~-1=—4
wp=02x1=1D2x1-1)
+x1-D2x1-1) _
+@x0-12x0-1) * 0o
F@x0-D2x0-1
=14+1§1+1=4 -
wp = —1x ~1+1x—1+-1x1+-1x1
=1-1—-1-1=-2
wpm=—-1x14+1xl+-1x-1+-1%x-1
=-1+1+1+1=2
wy =—tx—l+—-lx—-l+-1x1+1xl
=i4+1-14+1=2
w=—lx1+-1xl4+-Ix-14+1x-]
=-1-141-1=-2
wy=—-1x—-1+-Ix-1+1x1+1x1
=141414+1=4

i

wp=—tx1+—-1xl+lx—-1+1x-1
=—l-i-1-1=—4

The weight marrix Wis given by

wi w2 —4 4
wny wnl|_|-2 2
W= w3 032 2 -2
wi Wi 4 -4

6. Traifi a hereroassociative network to store the

{ven bipolar input vectors s = (57 52 53 54} 1O

the outpur vector £ = (# 22). The bipolar vector
paiss are as given in Table 5.

Table 5

31 2 ] 54
1 i —1 -1 -1 -1 1
and 1 ] -1 -1 -1 1
3d 1 -1 -1 1 [
g 1 - 1 1 1 -1

- . ’
~ -+ 7 golution: To store a bipolar vector pair, the weight

‘imatrix is
P
wij = Z I,'(P)G(P)

p=1

If the outer producrs rule is used, then

W=y s (phip)
?

For Ist pair
s=[1 =1 =1 -1}, r=[=11]
1 -1 1
—1 1 =1
:T(l)dl) = 1 [—1 l] = 1 =1
-1 1 -1

For 2nd pair

1 -1 1

1 11

To=| _, |-t =] 4
-1 1 -1
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For 3rd pair
s=[-1 =1 -1 1, t=[ —1]

-1 -1 1

-1 b1 1
S =|_[ | -td={_,
i 1 -1

For 4th pair

s={~1 =1 1 1], r=[1l -1]

-1 -1 1
T -1 -1
s@dd) = | [t -1]= N
1 1 -1
The final weight marix is
-1 1 -1 1
! 1 -1 1]
3T _ - -
W‘Z‘ L Y e
=l 1 -1 I -1
-1 1 -1 1
-1 -1 1
NS T Rl I
1 -1 1 =1
-4 4
-2 2
Tl 2 =2
4 —i

7. /For Problem 6, rest the performance of the ner-
~" wark with missing and mistaken data in che st
VECIor.

Solution: With missing data

Let the tese vector be x = [0 1 ¢ —1j with
changes made in two components of second inpur
veceor [1 1 -1 —1}, Computing the net inpur,
we get

-4 4
-2 2
[pim gyl =10 10 =1} | 5
4 —4
—[0—240—4 0+2+0+4]

=[-6 8]

Applying activacions to compute the outpur, we get

7 nl=011]
Thus, the net has recognized the missing dara,

With mistaben data; Lec the test vector be x =
[~1 1 1 —1] with changes made in two com-
ponents of second input vector [1 1 —1 —1].
Computing the net inpur for the test vector, using
the final weights obrained in Problem 6, as imtial
weight to test the test vector, we get

-4 4
-2 2
[)’:’ul yr'uZ]—[_l i1 -1] 1 -2
4 —4

=[0 0]

Applying the activations over the ner inpur to caleu-
late the oucpur, we obtain

n p1=10 0]

Thus, the ner does not recognize the mistaken data
becatise the cutput obrained 10, 0] has 2 msmartch
with the warget veetor [—1 1),

s

8. Train the autoassociarive nerwork for inpur vecror

" [—=! 1 1 1] and also test the network for the
same inpus vector. Test the auroassociative net-
work with one missing, one mistake, two missing
and owo ristake entries in test vecror.

Solution: The input vecroris x = [-1 1 | 1].
The weight vector is

4xl
1 -1 -1 —1
_ |- 1 1 1
-1 1 1 l
-1 1 1 1 Axd

Testing the network with same inpus vector: The test
inpucis [—~1 1 1 1]. The weight obrained above
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is used as the initial weight here. Computing the
input, we get

Ji=x-W=[-1111]

LLL.
——
—
—

=[—4 4 4 4

Applying activations over the net input to calculate
the outpur, we have £

-
oo
N

1 if yp; >0 o
ff:f(’f"f)=‘ -1 if y;,;é)() \0«‘_‘,,“

=[-1111]
Hence the cotrect response is obrained.
Testing the network with one missing eniry

¢« Testinput x = [0 1 1 I}Ttamputing the
inpur, we get

Fp=x-W=[0111]

I 1
——
—_——
—_
—— -

=1-3 3 3 3]

Applying the activations, we ger 7 = [—1 |
1 1] which is the correcr response.

Test input x = f—1 1 0 1]. Computing net
input, we obrain

g =x"W

=[-3 3 3 3]

Applying the activations, we ger yj = [-1 1
1 1] which is the correcr response.

Testing the network with one mistake entry

* Tescinputx={—1 —1 1 1]. Computing net
inpur, we get

Yoj=x-W

‘{r

=[-1 -11 1]

L
—
—_ e
—— et

"=[-221212)

Applying the activations, we ger y; = [—1 1
, 1 1] which is the correct response.

o Test input x = {1 1 1 1]. Computing net

input, we get

J’-‘nj="'w=“ 111]

[
—
—
——
—

=[-2222]

Applying the activations, we get y=10-11
1 1] which is the correct response.

Testing the network with fwo missing ensry

* Test input x = [0 @ 1 1]. Compuring net
inpur, we ger =

1 -1 -1 -1
-1 1 1 1

= W=[0011

Yo =% [ o1
-1 1 1 1

=[-22212)
Applying the activarions, we gety = [-1 1
1 1] which is the correct response,

* Testinput ¥ = [—1 0 @ 1I]. Computing net
inpur, we obtain

J‘r‘nj=x'w
I ~1 =1 =1
1 1 1 1
={-1 001
L ] -1 1 1 1
-1 1 1 1
=[(-2 2 2 2]

Applying the activations, we get 3 = [~1 1
1 1} which is the correct response.

ST eu b e e 0D N L e -
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Testing the network with two mistzken enrry
Testinputx=[-1 —1 =1 1]. Computing net
input, we obtain

Fig =2
1 -1 -1 -1
| U B |
===l =Uar o
-1 1 1 1
=[0 ¢ 0 0] ; :

Applying the activations over the net input, we get
¥ =10 0 0 0] which is the incorrect response.
Thus, the network v(u_h_nv;o_r‘n_lm not recog:-

nized.

—_—

9. /’Zheck the auctoassociative network for inpuc

N / vecror {1 1 —1]. Form the weight vector with

nao self-connection. Test whether the net is able to
recognize with one missing enrry.

Solution: Input vectorx =[1 1
vecror is

—1]. The weight

W= Ty = r 1 -1

1 I -1
= 1 1 -1
-1 -1 1

The weight vector with no self-connection (make
the diagonal elements in the weight vector zero) is
given by
[
R |
W= IN . 0 "—.l
~ .
-1 =1 0

Testing the nenwork with ane missing ety

* Testinputx=[1 0 —1]

0 1 -1
}'.‘,,J;=J-"W=[1 0 -1] 1 0 -1
-1 -1 0

=01 2 ~1]

Applying the acrivations, wegery; =[1 1 —1]
hence a correcr respense is obtained.

Testinpucx={1 1 0]

0 1 -1
Yo =x-W=I1 1 0] 1 0 -1
-1 -1 0

=011 -7

Applying the activations, wegety; = [1 1 —1],
hence a correct response is obrained.

/].0.”/Usc outer products rule to store the vectors

[1 1 1 1Jand{—1 1 1 —1}iman auro-
associative necwork. (a) Find the weight matrix
(do noc sex diagonal term to zera). (b) Test the
vectorusing [I 1 1 1] as inpur. {c) Test the
vector[—1 1 1 —1]asinpuc {d) Test the net
using [1 1 1 0] as inpur. (e} Repeat (a)-(d)
with the diagonal terms in the weight marrix w0
be zero.

Solution:

Weight marrix for {1 1 1 1}is

Wi =) (hp)

1 1111
1 111
=1, 11t 1]= R
1 1111
Weight matris for[—1 1 1 —~1}is
-1
Wom=) =1 | =111 -1
__.1_‘
1 =1 =1 1]
I T
-1 1 1 ~1
} -1 -1 1]

\-"T € wel 1X 10 store two vectors is ‘
\—\ﬁ-\_’__j

W=t +uy

V111 1 -1 <1 1
~ IR 1 1 1 -
Slivra [Tl 1 1 -
1111 P -1 -3 1

)t
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Tesevectorx = [—1 1

N O
OO
[ S % g o}
o O

Test the vector using f[1 1 1 1] as input

Test vector x = [1 1 1 1). Computing ner
input, we obtain

Fp=x-W=[1 11 1]

[ 38 Jee- R on T SN
o N O
[== I S I S )
OO

=[4 4 4 4

Applying the activations to caleulate outpur, we
gery = [1 1 1 1], hence cortect response is
obtained.

Tese the vector wsing (—1 1 1 ~1jas inpret

input, we obtain

Y =x-W=[-111 -]

[ e R SN
=T ST 36 Y o]
SO

=f{—4 44 —4)]

Applying the activations to calculare oucpur, we
gery; = [-1 1 1 =17, hence correct response

is obrained.

Test the wes wsing {1 11 0] as inpue
Test vector x = [1 1
input, we obtain

y,-,,,-=x-W=[1 I1 0]

MO oM
[=- T oS I o R o
[ar T SR 6 B o}
OO

- =102 4 4 7]

Applying the activations, we get y=1[1

1 1], hence the known response is obtained.

Repeat parts a-d with diagonal element in weight -

matrix set 1o zerp

1 —1]. Computing net

Mo O

i 0]. Computing nec

(i) The weight macrix is

2002
022¢0
W_DZZO
2002

(i) Test che vector usingx = [1 1 1 1]as
input. Compuring nec input, we obrain

000 2
0020

pp=x W= 1L o5 0o
2000

=[2222

Applying the activations, we get 3 = b 1
1 1], hence correct response is obtained.

(i) Test the VCCEOI'.ITSTI‘Tgx =1=T 171 -1}

as input.
0002
ao0z2o0
py=x-W=[-111 1] 0200
2000

= {~21212-7]

Applying the activations to calculate aurpur,
we get j; = [-1 1T 1 =1}, hence an
unknown response is obrained.

(iv) Test the vecor usingx = {1 1 T 0]as

inpur.
00602
0020
Fy=x-W=[1110] 0200
2000

It

0222

Applying the activations o calculate output, we
get 3y = [—1 1 1 1}, hence an unknown
response s obrained,

S

11. Find the weight matrix required to store the
/lw:mrs 11 -1 =1,[~1 1 1 —1]and
(-1 1 -1 1]linto W, W3, W3 respectively.
Calculate the roral weight marrix to store all the
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vector and check whether it is capable of recog- 1 -1 1 =1
nizing the swd . Let the weight -1 1 -1 1
marrix be with no self-connection. i S S TS
~- -1 1 1
Solution: For the fistvector [1 1 —1 —1} - '
With no self-connection,
1
. - - -
W= T pulp) = R o
- Wi = -1 0 -1 1
~1 1 -1 0 -1
11 -1 -1 -1 1 -1 0
1 1 —_— —_ . . .
=1 } i The total weight matrix required 1o store ail this is
-1 -1 1 1 W="Wip+ Wz + W3p
B A
With no self-connection, 0 -1+ .
- 1 0 -1 -1 + -1 0 -1 1
0 1 -1 -1 -1 -1 0 1 1 -1 0 -1
_ -1 -1 1 0 -1 1 -1 ¢
Wo—| 1 0 -1 - - -
w=(_1 1 o 1 0 -1 -1 -1
-1 -1 1 0 - -1 0 -1 -1
-1 -1 0 -1
For the second vecror [—1 1 1 —1] -1 -1 -1 0
1] Testing the network
W2=ZJ’T(P)‘(P)= i -1 1 1 —1] * With firscvectorx=[1 1 —1 —1]. Nerinpuc
is given by
-1
1 -1 -1 1] Inj=x- W
I S I T 0 -1 -1 -1
I I O T N R ] A
1 -1 =1 1 et -t 0
= -1 -1 -1 0
With no self-connection, =11 -1 -1
0 -1 -1 1 ApPlyinactivations,wcgetyj=[1 1 -1 ~1]
3 which is the correct response.
Wao = 1 0 1 -1
0 -1 1 0 —1 * With second vector x = [-1 1 1 ~I1]. Ner
1 =1 =1 0© inpuc is given by
For the third vector [~1 1 —1 1] Yy =x- W
. 0 -1 -1 -1
- -1 0 -1 -1
. =[—-1 1 1 —1]
W= o= _y| =11 -1 I
X -1 -1 ~1 0

4.10 Solved Problems

Applyingactivations, wegety; =[-1 1 1 — 1]
which is the correct response.

« With thidvector ¥ =[—1 1 —1 1]. Com-
puring net input, we get
yl'rrj=x'w
0 -1 -1 —1
-1 0 -1 -1
U I |
-1 -1 -1 0
=[-11 -1 1]

Applyingactivations, wegery; = [-1 1 —1 1]

which is the correct response.

Thus, the nexwork is capable of recognizing the
— - _

YECIOTS,— — -~ T

rynstruct an autoassociarive network to store

- vectors [—1 1 1 1]. Usq autoasso-
ciative nerwork to test the vector with three
missing elements.

Solution: The input vector isx = [—} 1 1 1]
The weight matrix is obrained as

-1
1

W= 5T(pelp) = . [-1 11 1]

P

1

I —1 =1 =1 /7
-t
i S T S B |
-1 1 1 1

//A T

The weight matrix with no self-connection is
:

0 1 -1 -1
-1 0 1 1
Wo=1 _ 1 o
-1 1 1 o

Test vecror with three missing elements

* For cest input vector x = [-1 o 0 0) the net
input is calculated as

y,—,g;-—"x-W

=[-100 0]

=111

-Applying activations, we get y; = -1 111}
i.e., known response is obtained.

+ For test input vectorx=[0 0 0 1]. Compue-

ing net inpur, we obtain

R\ A X
Yy =% :\ﬁc"\i{\“
R .

rb@@y,ﬂ 0 -1 =1 -1
“0% oy -1 0 1 1
-1 1 0 1
-1 1 1 0

N
==l 110 2

Applying activations, wegety; = [—1 1 1 — 1],
i.¢., unknown response is obtained. Ierate the net-
work again using the net input calculated as inpur
vector:

0 -1 -1 -1
-1 0 1 1
=t v v Al T gy
-1 1 1 @0

=[-2 22 3]

Applying activarions, wegery; = [~1 1 1 1],
i.e., known response is obrained after iterarion.
Thus, iterative autoassaciative network recognizes
the test paccern. Similarly, the nerwork can be
tested for the test input vecrors [0 1 0 0] and
EIO 01 0]
L%ﬁ:@suuct an autcassociative discrere Hopfield
—therwark wich inpur vector [1 1 1 = 1}
Test the discrere Hopfield nerwork with miss-
ing encrics in first and second components of
the stored vector.

Solution: The input vectoris x = [1 t 1 —1].
The weighr marrix is given by

1
W= o) = i n11 -1
~i
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TR R G
[0 S T S G
B R T s

-1 -1 -1 1

The weight marrix with no self-connection is

01 1

W= I 0 1 -1
1 1 0 -1

-1 -1 -1 90

The binary representarion for the given input vec-
tris [I 1 1 0]. We carry out asynchronous
updation of weights here. Let it be Yy, Ys, Y3, Ys.

For the test input vector with two missing entries in
Sirst and second components of the stored vector,

leeration 1

l Step 0: Weights are inirialized 1o store patterns:

0 1 I -1
W 10 1 -
1 I 0 -1
-1 -1

-1 0
Step }: The input vectorisx = [0 0 ] 01.
Step 2 For this vecory=[0 O [ 0]

Step 3: Choose unir Y, for updating its activa-
tions:

4
Y =%+ Z)ywjl
j=1

=0+[00 1 0] =04+1=

— o o
—

Applying activations we get yim > 0 =
7+ = L. Broadeasting y) to all other units,
we get

y={l 0 1 8) > No convergence

Step 4: Choosing unit Y4 for updating its activa-
tions:

4
Yind ="4+Z it
i=
-
=0+[1 01 0] ::
0

=0-1-1=-2

Applying acrivations we get yimg <0 =
4= 0. Therefore, y=[1 0 | 0] —
No convergence.

Step 5: Choosing unit Y3 for updating its activa-

4.10 Solved Problems
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Thus, the output y has converged with vector x in this
iteration iself, But, one more icerarion can be done
to check whether further activations are there or not.

fteration 2

rStep 0: Weights are initialized to store patterns. 1

0 1 1 -1
ro0 1 -

A T
-1 -1 =1 0

Step I: Theinputvectorisx=[1 1 1 @]

Step 2: Forthisvectory=1{1 1 1 0).

Step 3: Choosing unit Y, for updating its activa-
tions:

4
Yy =x 4 ZJ{,‘""J’
j=

Applying activations we get yim >0 =
y3 = L. Therefore, y=[1 1 1 0).
Step 6: Choose unit Yy for updation.

4
Fm=x+ 1 yup
j=t

=0+4[1 1 1 0]

— o 3 —

Applying activations we get yp > 3 =
L 2= 1. Therefore, y={1 1 1 0 J

Thus, furcher iterations do not change the activation
of any unir.

%4. orstruct an aurcassociativernerwork to store
/ the vectors x; = [1 1 1, 2 = [1 -1

—11-1} x3 = [—] ¥~1—1-1]. Find weighc
\\ matrix with no se)fconnection. Calculare the

tions:
4
Yimd = %3 + Z)_'f%?;
j=1
1
=1+[(1010)] !
0
-1
=1l+1=2

Applying activations we get 33> 0 =
73 =1 Therefore, y=[1 0 1 0] =
No convergence,

Step 6: Choosing unit Y5 for updating ics activa-

tions:
4
Y2 =x2 4+ ZJ’J’“{Q
Jj=I
1
_ 0
=0+[1 0 1 0] 1
-1
=042=2

Applying activations we get yp> 0 =
7 =1 Therefore, y=[1 1 1 0] =
Converges with vector x. __I

energy of the stéred parterns. Using discrere
Hopfield nepwark test pateerns if the test par-
s

=14[11 1 0] :
wern are given as x; = M1i1-11}, 02 =

il
o

0
1
1
-1 0=i~1—=1-1landxg=[11~1—1 ~1].
Coné-re the test patters energy with the stored

A i
Apply activations we get yiy>0 = AELNS ENECEY.

n=LNowy=[1 11 0.

Step 4 Choose unit Y for updation. /Si;'lution: The weights matrix for the three given

Yecrors is
4
T
Yimt = x4 + Z)’j"’j‘i W= ZJ,' & -‘j(.P)
j=1
1

1
:i } -1
=0+[1 110} | {=-3 =1 [08ii+] -t )0-1-11-0)
i i
0 1 -1
Applying activations we get yig<0 = -1
¥4 = 0. Therefore, y=1{1 1 1 0¢]. 1
Step 5: Choose unit Y3 for updation. 4+ =1 (=t ~1-1~1]
~1
i ~1
in3 = X3 + 2T
T j=]Jf[; 111 11 1 -1 -1 1 -1
1 11111 -1 1 ¥ -1 1
1 =111 11 1[+]|~-1 1 1 ~1 1
=0+f1 1 10] 0{=? I 1111 1 -1 -1 1 -1
-1 [T S -1 1 1 -1 1
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1 -1 1 1
-1 1.-1 -1 -1
o T S T T |
1 -1 1 1 1
-t 1 1 1

311 31

-1 31 11

W=]1 13 13

3211 31

1 13 13

The weighe matrix with no self-connection is

0 -1 1 31

-1 01 -1
We=| 1 10 13
3 -11 01

Il 13 10

The energy function is defined as
E=~05[x W]

Therefore the encegy for the ith partern is given by
B = 0505 W]

Energy for first pattern

£l = —0505 W k)

==0501 1 1 1 1 1,5
0 -t 1 31 1
—1 01 -1 1 1
1 10 13 1
3 -11 01 |
! t3 1 x5 l Sx1
4
=-0501 1 11 1,46
4
6

5x|
=-05[4+0+6+4+0),,

= —0.5[20] = —10

Energy for second pattern

Ey = —0.5WTal)
==05[l =1 -1 1 ~1]

0 -11 31 1
-1 01 -11 -1
1 10 13 -1
3 -11 01 1
1 13 10 —1
2
—4
=-05[1 -1 -1 1 —1]| =2
2
-2

=—0524+4+2424+2=~05{12] =6
Energy for third pattern

B = -05[xWx]]
=-05(-1 1 -1 -1 -]

0 -1t 317[-1
-1 01 ~-11 1
1 10 13|~
3 -1t 01| 1
I 13 1of| -1
-6
0
==050~1 I -1 -1 ~1] | —4
-6
-4

=-05[64+0+4+6+4]=~-05[20] = ~10
Applying test patterns

For first test pavtern ¢} = [1 1 1 —1 1]

andy=1[1 11 —1 1l Choosing uni 4 for

updarion, we gec
4

Yind = 24+ Z]} g
i=i

=—1+{1 1 1 -1 1]

_ O — = G
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=~1+3-1+1~-0+1=3>0

Applying accivations, we get y4 = 1. Therefore,
£ =101 111 11 - convergence. The
energy function is given by

E| = 05 W)

On substituting the corresponding values, we get

T

El=-10

+ For second test patrern x4 = [1 =1 —1~1 —1]
and y =[1 -1 —1 —1 —1]. Choosing unit 4 for
updation, we get

4
Yind = %5+ Z_ijjq

f=1

3

1

=—1+01 -1 -1 -1 -1} 1
0

1

=-14+341-1-0~1=1>0

Applying activations, we get 34 = 1. Therefore;”

%4 =1 -1 1 —1] - convergence. The

energy function is given by

Ey = 050, N

for updation, we get
4

Yim =% + Zijjl
) j=t

=1+{ 1 -1 ~1 =1

— ) b el (D

=141 -1 -3 —-1==-5<0

Applying activations, we get y = —L There-
fore, modified x; = (-1 1 -1 -1 -1]—
convergence, The energy function is given by

By=—0.5 W« ]
-1
i
=-05[-11-1-1-1] W] -1
-1
-1

=-0.5[201=-10

Thus, the energy of the stored pattern is same as thar
of the test patcern.

15. Construct and test a BAM network 1o associate
lerters E and F with simple bipolar input-output
vectors. The target output for E is {(—1, 1} and
for Fis (1, 1). The display matrix size is 5 % 3.
The tnput patsers are

1 ok ok K

=-05{1 =4 ~1 1 =1 {WT} | -1 * e e

i * ok * e

1 x 8 o £ = 8

* kX * 0o

=-05112]=-6 gy wpr

Targert o t{=1,1 (1,1

* Forthird cestpatterng =[1 1 -1 —1 —1] ger ousput { ) )

andy={[1 1 ~1 -1 —1].Choosingunit| Solution: The inpucs are

Input pattern ~ Inputs Targets Weights

E 1113-1-11111-1-1111) [-1, 1] W

F nNi1i1111 1-1-11-1-1 i-1-1] (1 1] W,
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(i) X vectors as input: The weight marrix is obrained by E The total weight macrix is
!
—1 17 r1 17 fo 2
V=250 4 | -1 1-| 11 0 2
[ 1] [-1 1] SR N T 0 2
1 -1 1 [ -1 1 11 0 2
1 -1 1 | I —i 1 1 2 Q0
1 -1 1 ‘ 1 -1 11 2 9
-1 1 -1 ! -1 1 1 1 0 2
~1 - | WeW, +Wy= -1 1|4|~1 —1|={-2 o0
i -1 1 | -1 1 -1 -1 -2 0
wi=| 11 =] -1 1 ! -1 1 11 0 2
1 -1 1 I -1 -1 -1 -2
| I 1 -1 |-1 =1 -2
- Lo -1 1 11
-1 1 -1 ~1 -2
- b -1 IJ -1 -1] L—z 0]
1 ~1 1 L L
1 -1 1 ! Tésting the network with test vectors “E” and “F.”
1 J -1 1 * For test parern £, compuring net inpuc we get
( 0 2'|
1] 1 17 0 2
1 Lo el , 0 2
| - . 0 2
1 ol ;o 20
' -2 0
1 1 1 0 2
1 1 1
Pir=11111—=1~11111=1=1111) 5|2 @
1 1 1 2 0
Wy=| -1 1 j=}-1 1 0 2
-1 -1 =1 -
1 i 1 -2
-1 -1 -1 0 2
-1 -1 -1 -2
1 1 1 L—2 .
! - =[-12 18hi
L -1 i L_l _1_ . Applying activarions, we get y = [—1 1], hence correcr response is obtained.

P VN e e SIS Y NN
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* For test pawtern E Computing net input, we et

F o 7]

0 2

0 2

0 2

2 0

2 0

0 2

Fr=[111111~-1-11 -1 -11-1~1]|-2 O
-2 0

o 2

0 =2

0 -2

0 2

-2 0

=[12 18] -2 0]

Applying activations over the net input, to caleulaee outpur, we gety = [1 1], hence correct response is
obrained.

(if) Y vectors as input:  The weight matrix when Y vectors are used as input is obrained as the transpose of
the weight matrix when X vectors were presenced as inpur, j.e.,

wT = 0000220-2-20 0 00 -2 -2
2222002 0 02 -2 -22 0 0
Testing the network

(@) For cest partern E, now the inpuris [—1 1], Computing net input, we have

2
0 02 -2-22 0 0
-2 -222 72

| = - — —
,#y;n=x-WT‘.:[_“]_|:00002 0 -2 -20 0 00 -2 -2
— 22220 200
=(2222 -2 -222122
Applying the activation functions, we get

y=[1111—l-11111—1—111l]

which is the correct response.

(b) For test patrern F, now the input is [1, 1]. Computing nec input, we have

| 0000220-2-20 0 00 —2 —2
'Lr‘y'"x [][2222002002—2«-2200
—_

=[2222222—2—22—2—22-2—2}
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Applying the activation functions, we get

y=(1 111111 -1~11-1-11=1~1]

which is the correct response, Thus, a BAM netv-.rork ‘ 1 —i _i —i
has been conserucred and tested in both, sh&dirthl?ns - + —1 = + o
fromXtoYand Yo X. '|'1 . : -
16. (a) Find the weight marrix in bipolar form 4 4
for the bidirectional associative memery using 4 4
outer products rule for the following binary w=|_, ,
input—output vector paits 5 o
=000 0, A= 0 . _
)= 001, #A)=(1 0 (b) The unit step function for binary with threshold
=0 100 £H=01D 0 is used.
- = l
=0 1190 {)=0 1 L if o> 0
(b} Using th@stc function {with threshold ForYlayer = 3= 13 if yiy=0
0) as the ourput units acrivation funcfiom; test | 0 if y,<0
“the response of the network on each of the inpuc s L xini;\
pawerns. ) For X layer é o =% Fxe=0
{c) Test the response of the network on various - 0 iF %<0
combinations of input patterns with “mistakes .
or “missing” data. Presenting :—in%m#

i o -1 -1 Gr-1 0 0 -1k

i) [-110 — 1 G (11 ~1 =1} () [11] * 1} =1 0 0 0. Computing net inpur,

we have
Solution:
: ; 4 —4
{a) The weight mauix for sroring the four input Yy
vectors in bipolar form is ty =[1000] 2 2
i 2 -2
T
LADBACED 4 —4
p=l
1 ! Applying activations we get ;= [L 0] which
_ -1 =1+ —i -1 is the correcr response. .
- _1 + 2)={1 ¢ 0 1]. Compusing net input,
-1
-1 -1 4 —4
l 1 —4 4
+ |+ i1} | =000 5
-1 -1 ] )
1 -1 1 -1 =6 —6]
-1 1 ~1 1 .
R -+ Applyingaciivations we get 4 = [1 0] which
-1 1 -1 ] is the correct response.
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{3 =101 0 0l Computing the net
input, we have

4 —4
w=b1og| 73 1
2 =2

=[-4 4]

Applying activations we getg =[G 1]which
is the correct response,

vs{d) = [0 1 | 0]. Computing the net
inpur, we get

4 ~4
m=lorio | 73 4
2 -2

=16 6]

Applying activations we get 5 =[0 1}which
is the correct response,

Presensing t-input pastern

*f)={1 0]. Computing the net input, we

obrain
= 4 —4 -2 2
:...,—[10][_4 i 2 ﬁz]
=[4 —4 27

Applyingactivationswegets; = [1 0 0 1]
which is the correct response.

(@ =1[0 1. Computing the net input, we

obrain
4§ —4 2 2
ins == 10
= 1][_4 P _2]
=[-4 42 -9

Applying activationswegets; = [0 1 | 0]
which s the correct response.

On presenting the partern [1 0] we obuain
only [1 00 Nandnot {1 0 0]. Sim-
larly, on presenting the parcern [0 1] we
obeain only {0 1 1 0] and not [0 1 0 o).
This depends upon the missing data encries,

() Test response of nerwork

(i) Herex=[1 0 —1 — 1]. Calcularing
ner input, we get

_y,-,y-=x-W
4 —4
—4 4
( e 5
2 -2
=4 -4

Applying activations we get y=I[1 0}
which is the correct response.

{ii) Herex=[—1 ¢ 0 —1). Calcularing
the net input, we ger

4 —4
4 4

w=1=1 00 -
Yij =1 1) 2
2 -2

=[-6 6]

Applying activations we ger y=10 1
which is the correct response.
() Herex=1[-1 1 ¢ —1). Caleularing
the net inpur, we ger .,
L

4 —4
w=1-1 110 13| 4 4
Yo .
2 -2

= [—l 01 0] [
Applying activations we geey=1{0 1]
which is the correct response,
(iv) Herex=[1 | —1 —1]. Calculating
the net input, we ger

4 -4
-4 4

inj — l l _l e
Yoy =1 Iy 5,
2 =2

=[0 O

4.11 Review Questions
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Applying the previous activation and
taking closely related partern activation
wegery; = [0 1).

geeyy=1[0 1]

) Y =[1 1). Computing che nec input, '
we get
4 -4 -2 2]
=[0 0 0 0}

-
Thus, in this casé since all the x;,; values
are zero, 1o apply the activation func-
tion it may take the previous x; values for
%, = 0. Hence the closely relared pat-
terfcan be taken to obtain the correct
response.

14.11 Review Questions

17. Find the hamming distance and average
hamming distance for the two given inpuc
veciors below.

Xi=0i-1-1-11-1-1-11-1~1]
Xz=[-111-11-11-11-1~11]
Solution: The hamming distance is number of

differenc bits in two binary or bipolar vectors.
Here

HX.X;1=8
@m’m

{“n” is.the-n, of components in given vector.)

1. What is content addressable memory?

2. Specify the functional difference berween a RAM
and a CAM,

3. Indicate the two main gypes of associative mem-
ory.
4. Stace the advantages of associarive memory.

5. Discuss the limitations of associative memory
network.

6. Explain the Hebb rule training aigorithm used
in pattern associarion.

7. Sware the outer products rule used for trining
pactern association nerworks.

8. Draw the architecture of an autoassociative net-
work.

9. Explain the testing algorithm adopted ro test an
auroassociative network.

10. What is a heteroassociarive memory newwork?
11. With 2 neat architecture, explain the training
algorithm of a heteroassociative nerwork.

12. What is a bidirectional associative memory net-
work?

13.

14,
15.
16.

17.
18.

19.
20,
21,
22,

—

23.
24,

25.

Is it true chat inpur patterns may be applied at
the outpucs of a BAM?

List the activation functions used in BAM ner.
Whar are the owo types of BAM?

How are the weights derermined in a discrete

BAM?
State the testing algorithm of a discreee BAM.

What is che activation funcrion used in contin-

uous BAM?

Define hamming distance and storage capaciry.

What is an energy funceion of a discrete BAM?

What is a Hopficld ne?

Compare and contrast BAM and Hopfield net-
works,

Mention the applications of Hopfield nerwork.
What is the necessity of weighes with no self
connection?

Why are symmetrical weights and weighes
with no self-connection imporranc in discrete

Hopfield nee?
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26. What is a recurrent neural neework?
27. What are the two types of Hopfield nec?

28. Draw the architecrure of discrete Hopfield
net.

29. State the testing algorithm used in discrete

32

33.

34.

Discuss in dewil on continuous Hopfield net-
work.

Make an analysis of energy funciion of 2 contin-
uous Hopfield nework.

Whar are iterative autoassociative memory nets?

Hopfield nerwork. 35. Explain in detail on linear auroassociative mem-
30, Whar is the energy function of a discrete ory. State the conditions of linearicy.
Hopfield network? 36. Write short note on brain-in-the box model.
31. Mention the .Formula Iu.sed for determining.the  37. What is the functional equivalent of a temporal
storage capacity of a discrete Hopfield ner. associative memory nerwork?
l4.12 Exercise Problems
1. Train a hereroassociative memory network using bipolar form, The binary vector pairs are:

Hebb rule to store input row vector ¢ =

(51 52 53 54) to the output row vector £= (4 #). A)={1 0}, Hi)y=( 1)

The vector pairs are given as below: (2y=0 1, H£)=01 0.
M=0 0010 A= 0 A!.so_tcSt the performance of the network with
=0 111, d=0 0 missing and mistaken data.

By=(1 100, [B=01 5. Construct 2 heteroassociative network for che
)= 011, dd=0 1) parern given below:
2. Construct and test a heteroassociative memory ¥ %k LI
network using outer products rule to store the ¢ % * e
given input—target vector pairs: * ok # L
“I” l(Cl’
=0 01, H£)=( 0) apn
D=0 11, D=0 1) The rarger of “I” and “C” are (1,—1) and
(-1, 1) respectively. Store the partern and as well
3. Constrtter and test a heteroassociative memory recognize the partern.
net to store the given vector pairs: 6

A= 00 1, =@ v
A2)=0 01 1), #)=(0 1
3N=0 100, HB=0 0
=0 1t 00, A= 0

Also test the network with “noisy” inpur parterns
included.

4. Construct and train a heteroassociative nerwork
to store the following input—outpur vecror pair.
The waining inpur—target outpuc vector pairs
are in binary form. Obmin the weight vectoc in

. Train an auroassociative network for input vec-

vor [~1 1 1 — 1] and also test the network with
sam¢ input vecror. Test the auroassociative net-
wark with one missing, one mistake, two missing
and two mistake entries in rest vector.

. Check the auroassociarive nerwork for inpuc vec-

tor [—1 ~ I 1]. Form the weight vector with no
self-connection. Test whether the net is able to
recognize with one missing and two missing data.
Comment on neework performance.

. Use outer products rule to store vectors

[-1-1 ~1 1} and [1 1 1 —1] in an auto-
associarive nerwork.

4.12 Exercise Problems
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10.

11,

12,

13.

14.

+ Find the weight without serting diagonal
terms o Zero.

+ Test vector using [—1 — 1 — 1 — 1] as inpu.
* Test network using [1 1 1 1] as input.

o Test the net using [0 1 1 0] as inpuc.

* Repeat {a)-(d) with diagonal elements set to

2er0.

. Find the weight macrix required to store the vec-

wrs[11-11-1},{1111-1],[-1 1111}
and [1 1 -1 —1 1) in wy, w2, w3, w4, Tespec-
tively. Caleulate the toral weight matrix to store
all the vectors and check whether it is capable
of recognizing the same vectors presented. Per-
form the association for weight marrix with no
self-connection.

Construct an auroassociative nerwork to store
vector [1 1 —1 +1]. Use irerative autoassocia-
tive necwork co test the vector with three missing
elements.

Construct and test an associative discrete Hop-
field network with inpur vector [1 —1 1 1). Test
the nerwork with missing encries in firsc and
fourth components of the stored vecror.

Construct an aurcassociative nerwork o sgore
the vectors xp = [T 1111 -1}, 0 =
f=1-1-t1ilJxz=[111-1-1 —1). Find
weight marrix with no self-connection. Calculate
the energy of the stored patterns.

Consider a two node continuous Hopfield net-
wark. Assume the conductance is gry = g2 = 3
mho. The gain parameter is A= 1.2 and the
exsernal inpurs are zero. Calculate the accurate
energy value of the state y = [0.1 0.1)f

Design a linear heteroassociate nerwork thac
associates the following pairs of vectors.

a=[L3-51Ln=[0 0 0
n=0220-4" p=0 0 17
0 =[1,0,-3,41T, ;5=10 1 1N

Verify that vecrors xi, ¥ and x3 are lincarly
independem. Compute weight matrix of linear
associates.

15.

16.

17.

19,

Consider a discrere Hopfield network with a
synchronous update.

+ Show that if all given pattern vectors are
orthogonal, then cvery original pattern is an
global minimum.

« Show that in general other global minima
exist.

Construct and test a BAM nerwork to asso-
ciare letters T and O with simple bipolar
input—output vectors. The target ourput for T
is (1, —1) and for O is {1, 1). The display marrix
size is 4 x 3. The inpu patterns are

¥ ok * ¥  * ¥
o ¥ @ * . *
[} * ] * ] *
[} * ] ¥ * *
llTIl I(OH

Find the weight maurix in bipolar form for the
BAM using outer products rule for the following
binary input—outpu vector paiss.

A =01 00 0} AD=0 1
(2 =0 110, =01 0

Using the unit step function a5 che output unir’s
activation funcrion, test the response of the net-
work on each of the input patterns. Also test the
response of the nerwork on various combinadions
of inpuc pattern with “mistakes” or “missing’
dara.

. Find the hamming distance and average ham-

ming distance for the two given input vectors
below:

X=[11-1-111-1-1—-1-1
11 -1

Y=[1-111~11-1-111
—-11-1)

Prove the stability of the continuous BAM using
{a) Kohonen Grossberg theorem and
(b} the Lyapunov theorem.
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20. Design a BAM-based remporal associative mem-
ory with 2 threshold activation function to recall
the following sequence:
s={LTT—111,[1111—F—1-1],

[11111-1—-1))

4.13 Projects

Compute the weight marix W and check the
recall of parterns in forward and backward direc-
tions.

1. Wirite 2 computer program to implement a her-
eroassociative memory nerwork using Hebb rule
to set the weights. Develop the input patterns and
rarget outpuc of your own,

2, Write a program to construct and test an auroas-
sociative necwork to store numerical values from
0-9. Also creare the parterns for 0~9 usinga 5 x 3
array matrix. Add “noise” 1o the inpur signals and
test the network.

3. White a “C” program to implement a discrete
Hopfield net to store cthe lewers A-E. Form che
input paterns for the lecters in a 4 x 3 array
matrix.

4. Write 2 computer program to implement 4 bipo-
far BAM. Allow 15 units in X layer and 3
units in Y layer use the program to store the
following patcerns (the X fayer vectors are the
lerters given in the 5 % 3 arrays and the asso-
ciared Y layer vectors are given below in each

x pattern):

"A” “B” ‘!CH
LI * ko ' ok ox
* ¥ * 0k ke »
*x k¥ * % v
* v ¥ * 4 % £ oy e
* 0ok * % L
LLY (~,-,1 1,-,D
l(Dll ‘(El’ “F”
L L I L
E L x * * o ®
L * ok k * %
* v % x * = *x = e
X ke B ok ok ¥ o

-LLD (1= (-1,=1 =1

Is it possible w store all six paccerns at once? If
not, how many can be scored ar the same dme?
Petform some experiments with noisy data,

r v
T

Unsupervised Learning Networks

— Learning Ohjectives

Definition of unsupervised nerworks. nerwork, adaptive resonance theory and

* Gives details on fixed weight competitive nets Q.

like Maxnet, Mexican hat and Hamming nex. * Enhance the features and star ropology of
» Discusses the neighborhood rtopelogy of CPN nerwork.

Kohonen self-organizing fearure maps. *» Details the variants of LVQ (LVQ2, LVQ3)
. : and ART (ART 1 and ART 2).

Provides architecture, training algorithm,
flowchart depicting training process and
testing algorithm of different unsupervised
nerworks like KSOFM, touncerpropagation

* Variery of solved problems using unsupervised
learning necwork.

le Introduction

In chis chapter, the study is made on the second major learning paradigm-unsupervised learning. In this

learning, there exiscs no feedback from the system (environment) ro indicate the desired ourputs of  network.

The network by itslf should discover any relationships of interest, such as features, patterns, conrours,

correlations or categories, classificarions in the inpur data, and thereby translate the discovered relationships

into outputs. Such nerworks are also called self-organizing nerworks. An unsupervised learning can judge

how similar a rew input patern is to typical patterns already seen, and the nerwork gradually learns what

similarity is; che nerwork may construce a sec of axes along which to measure similarity to previous parterns,

i.¢., it performs principal component analysis, clustering, adaptive vector quantization and feature mapping.

For example, when net has been trained to classify the inpur patrerns inco any one of the output classes, say,

L., R,SorT, cthe net may respond to both the classes, P and QQ or Rand . In the case mentioned, only one
of several neurons should fire, i.e., respond, Hence the network has an added strucrure by means of which the
net is forced ro make a decision, so that only one unit will respond. The pracess for achieving ¢his is called
competition. Practically, considering a set of students, if we want to classify them on theé basis of evaluarian
performance, their score may be calculated, and the one whose score is higher than the others should be the
winner. The same principle adopred here is followed in the neural necworks for pattern classification. In chis
case, there may exist a tie; a suitable solution is presented even when a tie occurs. Hence these nets may also
be called competitive nets. The extreme form of these competitive nets is called winner-take-ali. The name
irself implies that only one neuron in the compering group will possess a nonzero ourput signal at the end of
competition.
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There exist several neural networks that come under this category. To list out a few: Maxnet, Mexican har,
Hamming net, Kohonen self-organizing feature map, counterpropagation net, learning vector quantization
(LVQ) and adaprtive resonance theory {ART). These networks are dealt in detail in forchcoming sections. In
the case of unsupervised learning, the net seeks to find patterns or regularity in the input data by forming
clusters. ART necworks are called clustering nets. In these cypes of clustering nets, there are as many inpuc
units as an input vector possessing components. Since each output unit represents a cluseer, the number of
ourput units will limit the number of clusters that can be formed.

The learning algorithm used in most of these nets is known as Kohonen learning, In this learning, che
units update their weights by forming a new weight vector, which is a linear combination of the old weight
vector and the new input vector. Also, the learning continues for the unit whose weight vector is closest

to the input vector. The weight updation formula used in Kohonen learning for ourpuc cluster unit f is
given as

wi(new) = wo;(oldH-a [x - w(-)j(old)]

where x is the inpuc vector; wey the weight vecror for unit j; o the learning rate whose value decreases
monotonically as training continues. There exist two methods to derermine the winner of the nerwork during
competition. One of the methods for determining the winner uses the square of the Euclidean distance
berween the inpuc vector and weight vector, and the unit whose weight vector is at the smallest Euclidean
distance from the inpurt vector is chosen as the winner. The next method uses the dot product of the input
vector and weight vector, The dot product berween the input vecror and weight vector is nothing bur the nex
inputs calculated for cthe corresponding cluster unics, The unic wich the largesc dot product is chosen as the
winner and the weight updarion is performed over it because the one with largest dot product corresponds to
the smallest angle between the inpur and weight vectors, if both are of unit length. Both the methods can be
applied for vectors of unir length. But generally, to avoid normalization of the inpur and weight vectors, the
square of the Euclidean distance may be used.

l 5.2 Fixed Weight Competitive Nets

These competitive nets are those where the weights remain fixed, even during training process. The idea of
competition is used among neurons for enhancement of contrast in their activation funcrions. In this section,
three nets — Maxner, Mexican har and Hamming ner — are discussed in detail.

l 5.21 Maxnet

In 1987, Lippmann developed the Maxner which is an example for a neural net based on comperition. The
Maxner serves as a subner for picking the node whose inpuc is larger. All the nodes present in this subnet
are fully interconnected and thete exist symmerrical weights in all these weighted interconnections. As such,
there is no specific algorithm to train Maxner; the weights are fixed in this case.

5.2.1.1 Architecture of Maxnet

The architecture of Maxnet is shown in Figure 5-1, where fixed symmerrical weights are present over the
weighted interconnections. The weights berween the neurons are inhibitory and fixed. The Maxnet wich this
structure can be used as a subnet o select a particular node whase net input s the largest.
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®
)

-£ -

&

1 1

Figure 5-1 Maxnet structure.

5.2.1.2 Testing/Application Algorithm of Maxnet
The Maxnet uses the following activation function:

x if x>0
f(x)=l[o if x<0

The resting algorithm is as follows:

I Step O: Initial weights and inirial acrivations are set. The weight Is set as [0 < & < 1/m], where “m” is
the total number of nodes. Ler

x%;(0) = input o che node Xj
and

g if Q]

Step }: Perform Steps 2—4, when stopping condicion is false.

’”ij=l_l if i=j

Step 2: Update the acrivations of each node. Forj =1 o m,
xinew) = f|:x_r-(old)—£ Zx,(.(old)]
i
Step 3: Save che activacions obtained for use in the next iteration. Forj = 1 to m,
xj(old) = x;(new)

Step 4: Finally, test the stopping condition for convergence of the nerwork. The following is the scopping
| condition: If more than one node has a nonzero activation, continue; else swop. J

In this algorichm, the input given to the function £() is simply the toral inpur to node X; from all others,
including its own inpur,
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l 5.9.2 Mexican Hat Net

Initialize radius of region of
Start interconnection {A,), radius of + Va
reinforcement (A,), total no. of iterations &,

In 1989, Kohonen developed the Mexican har nerwork which is a more generalized contrast enhancement
network compared to the earhier Maxnet. There exisr several “cooperative neighbors” (neurons in close prox-
imity) to which every other neuron is connected by excitatory links. Also each neuron is connected over
inhibitory weights to a number of “competitive neighbors” (neurons present farther away). There are several
other farther neurons to which the connections between the neurons are not established. Here, in addition to
the connections within a particular layer of neural net, the neurons also receive some other external signals.
This interconnection pattern is repeated for several other neurons in the layer.

Set initial weights
w,=¢p; k=0to A, {c>0)
w,= &, k= A+l to A, {c,<0)

5.2.2.1 Architecture “| set X,, vector of aclivations,

The architecture of Mexican hat is shown in Figure 5-2, with the interconnection partern for node X;. The 21 previous ime step 1o zer0
neurons here are arranged in linear order; having positive connecrions between X; and near neighboring units,
and negative connections berween X; and farther away neighboring units. The positive connection region is
called region of cooperation and the negative connection region is called region of competition. The size of External signal s is inputed
these regions depends on the relative magnitudes existing berween the positive and negative weights and also x=sgand X=X

on the topology of regions such as linear, rectangular, hexagonal grids, erc. 1In Mexican Hag, there exist two
symmettic regions around each individual neuron.

The individual neuron in Figure 5-2 is denoted by X;. This neuron is surrounded by other neurons X1, Iteration count
X_1, Xirz, Xi=2, ... - The nearest neighbors to the individual neuron X; are X;4.1, Xi—1, Xit2, and Xi-2. f=1
Hence, the weights associated with these are considered to be posirive and are denoted by wi and wj. The
farchest neighbors ro the individual neuron X, are taken as X;43 and Xi_3, che weighus associated with these
are negarive and are denoted by wj. It can be seen that Xi4 and X;_4 are not connecred to the individual No
neuron X;, and therefore no weighted interconnections exist between these connections. To make it easier, 1< Ly
the units present within a radius of 2 [query for unit} to the unit X; are connected with positive weights, the
wnits within radius 3 are connected with negative weighes and che units present farther away from radius 3
are not connected in any manner o the neuron X;.

Yes

Compule net input, feri=1ton
A, -R- R,
=0 Z Xpint G2 Z: Xo.. ¥ 2 Zxﬁilk
5.2.2.2 Flowchart P} xR, Pyt

The fowcharr for Mexican hat is shown in Figare 5-3. This clearly depicts the flow of the pracess performed
in Mexican har necwork.

Apply activation functions
X, = Min{X,,,, max(0, x)] i=110n

W. W
3 WD K]

W, n W,

W, /% Slore current activations
SECNOROED
t=t+1
{ Stop )

Figure 5-3 Flowchare of Mexican hat.

S

Figure 5-2 Structure of Mexican har.

iy
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5.2.2.3 Algorithm

The vasious paramerers used in the eraining algorichm are as shown below.

R» = radius of regions of interconnections
Xi14 and X,y are connected to the individual units X; for £ =1 to Rz.
Ry = radius of region with positive reinforcement (Ry < R)
W, = weight berween X; and the units X and X;_;
0K k<R,  w=positve
By < k<R, wp= negatve
s = external input signal
£ = vector of activation
xg = vecror of activations at previous time step

tmay = total number of iterations of contrast enhancement.

Here the iteration is started only with the incoming of the external signal presented to the network.

Step 0: The parameters Ry, Ry, tmay ate initialized accordingly. Initialize weights as

we=c fork=0,...8 (where ¢; > 0)
wp=g frk=R+1....,R (wherecz < 0)

Initialize xg = 0.
Step L: Inpur the external signal s:
xr=cs
The activations occurring are saved in array xo. For =1 o n,
Xi = %

Once activations are stored, set iteration counter £ = 1.
Step 22 When /s less than tmax, perform Steps 3-7.

Step 3: Calculace net input. For7i =1l w n,

'y —Ri-1 R
X=a Z Xy T 02 Z X4 F 02 Z X0,k
k=—Ry b=—Ry pe= By 41

Step 4: Apply the activation function. For i =} o »,

x; = min[xmay, max(0, 1)}

Step 5: Save the current activations in xp, i.e., for =1 w0 n,

xpi = Xi
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Step 6: Increment the iteration counter:
r=t+1

Step 7: Test for stopping condirion. The following is the stopping condition:
If £ < £y, then continue S

Else stop 2 _J

The positive reinforcement here has the capacity to increase the activation of units with larger initial
activacions and the negative reinforcement has the capacicy o reduce the acrivation of units with smaller

wn

nitial activations. The activation function used here for unit X;ata particular time instant 7

xit) = f[s,'(r) + Z wekiph + k- 1)]
£

The terms present within the summation symbol are the weighted signals that arrived from other units at the
previous time step.

I 5.2.3 Hamming Network

The Hamming nerwork selects stored classes, which are ar a maximum Hamming distance (FI) from the
noisy vector presented at the input {Lippmann, 1987). The vectors involved in this case are all binary and
bipolar. Hamming nerwork is a maximum likelihood classifier thar determines which of several exemplar
vectors (che weight vecror for an cutput unit in a cluscering net is exemplar vector or code book vector for the
pattern of inpurs, which the net has placed on that cluster unit) is most similar to an inpur vector {represented
as an a-tuple). The weights of the ner are determined by the exemplar vecrors. The difference berween the
toral number of components and the Hamming distance berween the vecrors gives the measure of similaricy
berween the input vector and stored exemplar vectozs. It is already discussed in Chapter 4 that the Hanming
distance berween the two vectors is the number of components in which the vectors differ.
Consider two bipolar vecrors x and y; we use a relation

is given by

xy=a—d
where z is the number of components in which the vectors agrec, d the number of components in which the
vecrors disagree. The value “e — & is the Hamming distance existing between two vectors. Since, the total
number of components is #, we have,
n=a+d
ie, d=n—a
On simplification, we get
x y=a—d
x y=a—{n—a)
xy=2a—n
a=x-y+n

a= e+ 50
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From the above equation, it is clearly understood thar the weights can be set to one-half the exemplar vector
and bias can be set initially to #/2. By calculating the unic wich the largest net inpue, the net is able to locate a

particular unit that is closest to the exemplar. The unit with the largest net input is obtained by the Hamming
net using Maxnec as its subnet.

5.2.3.1 Architecture

The architecture of Hamming neework is shown in Figure 5-4. The Hamming network consists of two layers.
The first layer compures the difference between the toral number of components and Hamming distance
between the input vector x and the stored partern of vectors in the feed-forward path. The efficient response
in this layer of a neuron is the indication of the minimum Hamming distance value berween the inpucrand the
category, which this neuron represents. The secand layer of the Hamming nerwark is composed of Maxnet
{used as a subner) or a winner-take-all network which is a recurrent nerwork, The Maxnet is found to suppress
the values ac Maxner ourpur nodes except the initially maximum output node of the firs layer.

The funcrion of Maxnetis to enhance the initial dominart response of the node and suppress others. Since
Maxner possesses recurrent processing, the jth node is found to respond positively while the response of all

the remaining nodes decays to zero. This result needs a positive self-feedback connection with itself and a
negative lateral inhibirion connection.

5.2.3.2 Testing Algorithm

The given bipolar inpur vector is x and for a given set of “m” bipolar exemplar vecrors say «(1),...,

e(7), ..., e(m), the Hamming network is used ro decermine the exemplar vecror that is closest to the input
L& ]
—{ A
ni2
o
W o1 AT g b
E. b
}"2“0 -£
)
y"r 1 yzmn
. =3
. {#) .
w14,
E M[krl]

W, |’ ym(m)
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vector x. The net input entering unit Y; gives the measure of the similarity berween the input vector and

exemplar vector. The parameters used here are che following;

# = number of input units (number of components of inpus—output vector)
m = number of oueput unics (number of components of exemplar vector}

¢(7) = jth exemplar vector, i.e., ‘
:(]) = [fl(j):-- -Jfl'(j):- --:fn(j)]

The testing algorithm for the Hamming Net is as follows:

Gep 0: Inicialize the weights. Fori= lwonandj=lwm

eilf)
wyj=——

2

Initialize the bias for storing the “" exemplar vectors. Forj= 1o m,

Step 1: Perform Steps 24 for each input vector x.

Step 2: Calculare the net input to each unit Y}, 1.e.,
il
Yo = b+ Zx;w,_‘,', j=lwm
=1
Step 3: Initialize the activations for Maxnet, i.c.,

_yj(O) =i J=110m

Step 4: Maxnet is found to iterate for finding the exemplar that best marches the input patterns.

N

The Hamming nerwork is found to recrieve only the closest c-las:s index and not the enrir_e vecror. Hinccne[;
the Hamming nerwork is 2 classifier, racher than being an associarive memory. The Hammmﬁ netl:vor_
be modified to be an assaciative memory by just adding an extra layer over [h(_: Maxne, such : ac the winril:;
unit, y;(k + 1), present in the Maxnet may trigger a corresponding stored weight vector. Such an associat

memory network can b called 2 Hamming memory network.

l 5.3 Kohonen Self-Organizing Feature Maps

5.3.1 Theory

Feature mapping is a pracess which converss the pat of arbicrary dimensionaliry ingo a respo

q or rwo-dimensional arrays of neurons, i.¢., it converts 4 wide pattern spage-nto 2 ?.p_mﬂifgggégiicilahe
e e @N necvork performing such a mapping is called feature map. Apare from its capability to reduce the higher

i i i i.e., it has to obtain a
Figure 5-4 Structure of Hamming nerwork. dimensionaligy, it has to preserve the neighborhood relations of the mp1-1t patterns, 1.e., it has
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X

Flgure 5-5 One-dimensional feaure mapping network.

topology preserving map. For obtaining such feature maps, it is required 2

which consists of neurons arranged in a ooe-dimensional array or a two-dimensional array. To depict this, a
typical riecwork structure where each component of the inpur vector x is connected to each of the nodes is
shown in Figurs 5-5.

On che other hand, if the inpue vector is two-dimensional, the inputs, say x{g, £), can atrange themselves
in a two-dimensional array defining the input space (a, 8) 2s in Figure 5-6. Here, the two layers are fully
connected.

The topcll_c_)_g_i_calgr_eserving property is obsgrved in the brain, but not found in any other artificial neural
nerwork. Here, there are 22 ourpur cluster units arranged in a one- or two-dimensional array and the input
signals are n-tuples. The cluster (output) units' weight vector serves as an exemplar of the inpur pastern
Lhﬁj;zss_ad_;jwzw&_t’}_)gr_chx_sgn At che rime of self-organization, the weﬁﬁméﬁ%m
which matches the inpur pattern very closely is chosen as the winner unit, The closeness of weight vector
of cluster unit to the inpur patrern may be based on the square of the minimum _Euclidean distance. The
weights are updared for the winning unic and its neighboring units. 1t should be noted thae the weight
vectors of the neighboring units arc not dlose ta the input pattern and che connective weights do not multiply

the signal sent from che inpur units to the cluster units until dot product measure of similarity is being
used.

I 5.3.2 Architecture

Consider a linear array of cluster unis as in Figure 5-7. The neighborhoods of the units designated by “o” of
radii Ni(ky), Ni{ko) and Nilks), b1 > by > ko, where by = 2,83 = 1,3 = 0.

For a recrangular grid, a neighborhood (N;) of radii 4|, #; and #3 is shown in Figure 5-8 and for a
hexagonal grid the neighborhood is shown in Figure 5-9. In all the three cases (Figures 5-7~5-9), the unit with

5.3 Kohonen Self-Organizing Feature Maps
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Figure 5-6 Two-dimensional feature mapping network.

o o o (o ) 0) o} o
T 4
Niks)
|
Ni(kz)
|
N{k)

L

Figure 5-7 ‘CLmﬂ:.armuﬂclugw

grids, fel >k >--E§:-‘i;'}1ergk:m= 2,k =1k=0

—

“#" symbol is the winning un{t and the other units-are iridicated by “0.” Tn both rectangular and hexagonal

, . . .. in
For rectangular grid, each unit has eight nearest neighbors but chere are only six neighbors for each unit

the case of 2 hexagonal grid, Missing neighborhoods may just be ignored. A typical architecture of Kohonen

self-organizing feature map (KSOFM) is shown in Figure 5-10.
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I 5.3.3 Flowchart

The flowcharc for KSOFM is shown in Figure 5-11, which indicates the flow of training process. The process
is continued for particular number of epochs or till the learning race reduces to a very small rate.

The architecture consists of two layers: input layer and outpur layer (cluster). There are “»™ unirs in the
input layer and “m” units in the output layer. Basically, here the winner unit is identified by using either dot
product or Euclidean distance method and the weight updation using Kohonen learning rules is performed
over the winning cluster unir.

Figure 5-11 Flowchart for training process of KSOFM.
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I 5.3.4 Training Algorithm

The steps involved in the craining algorithm are 2s shown below.

Etep 0: + Initialize the weights w;: Random values may be assumed. They can be chosen as the same I
fn-ge—of' values as the f the input vecto If information related to distribution
clusters 1s known, the inttal weights.can T to reflect that prior knowledge.

* Set opological neighborhood parameters: As clustering progresses, the radius of the neighbot-
hood Hecreas

* Initialize the learning rate or: It should be a slowly decreasing function of time.
Step 1: Perform Steps 2-8 when stopping condition is false.
Step 2; Perform Steps 3-5 for each input vector x.
Step 3: Compure the square of the Euclidean distance, ie., for each j = 1 1o m,

n m

DY =) (- wy)?
1

=1 j=

Step 4: Find the winning unir index ], so that D{]) is minimum. (In Steps 3 and 4, dot product method
can also be used to find the winner, which is basically the calculation of net input, and the winner
will be the one with the largese dot product.)

Step 5: For all units j within a specific neighborhood of J and for all , calculate the new weights:

e s —
x;

|wjlnew) = w; L'_l_dl;i‘.ﬂ.f_.x:-!‘e'ij(@

or wif{new) = (1—a Jewylold) o x;
Step 6: Update the learning rate o using the formula & (¢ + 1) == 0.5 ().
Step 7: Reduce radius of topological neighborhood ar specified time intervals,
I_Step 8: Test for stopping condition of the network. J

Thus using this training algorithm, an efficient training can be performed for an unsupervised learning
nerwork.

l5.3.5 Kohonen Self-Organizing Motor Map

The exeension of Kohonen feacure map for a mulsilayer network involves the addition of an essaciation layer”

to the outpur of > izi ture map layer. The output fiode is found ro associ i s

values with certain inpur vegrors. This type of architecture is called as Kohonen seiforganizing motor map
(KSOMM; Tatter, 1992) and layer thar is added is called a motor map in which the movement command:

are being mapped into two-dimensiconal locations of excitation. The architecture of KSOMM is shown in

Figure 5-12. Here, the fearure map is memtia%mﬁitive network which classifies the

inpur vectors. The feature map is trained as discussed in Section 5.3.3. The Totor fap formatton is based

on the learning of a control task. The motor map learning may be either supervised or unsypervisetHearming ™ 1| .
and can be performed by delta learning rule or outstar learning rule (to be discussed later). The motor map ’p,r- \\J’

learning is an extension of Kohonen's original learning algorithm. a-\-f’b oo 2 W
I KRLIRS
&
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Mator map

Actions
performed

Featura map

Partially connected
{unsupervised or
supearvised learning}

X Fully connected - unsupervised learning
Figure 5-12 Architecture of Kohonen self.organizing motor map. P ol : re =
\ l.'/c( [
o 3
< - - e o
I 5.4 Learning Vector Quantization o N

Ii4.1 Theory

Learning vecror quantizagion (LVQ) is a process of classifying the patterns, wherein each outpuc unir represents
a particular class. Here, for each class several units should be used. The ourpur unit weight vector i called the
reference vector or code book vector for the class which the unit represenes. This 1s a special case of competinve
ner, which uses supervised learning methodolopy. DUfing traliing, tie autput units are found o be positioned
to approximare the decision surfaces of the existing Bayesian classificr. Here, the ser of training patterns with
known classifications is given to the network, alafig with an initial distribucion of the reference vectors. When
the training process is complete, an LVQ net is found to classify an inpuc vector by assigning it to the same

class as that of the ourpur unir, which has ifs weight vector very close_ 1o the input vector Thus IVQ s a.
cmm ties between categories to minimize existing misclassification. LVQ
is used for optical characrer mmgnition,mmmeWs as well.
LVQ ner may resemble KSOFM net. Unlike LVQ, KSOFM output nodes do not correspond to the known
classes but rather correspond to unknown clusters that the KSOFM finds in the data autonomously.

S rea
A R

't 6

’ y AN s
e ' i
N N

TR

l5.4.2 Architecture

-~
Figure 5-13 shows the architecrure of LVQ, which is almost the same as thag of KSOFM, with the difference
being that in the case of LVQ/the topological structure at cthe putput unic is not being considéredl. Here, each
ourpur unir has knowledge abour what a kncwrt TESENTs.
From Figure 5-13 it can be noticed that there exists input layer with “n” unics and ourpUt layer with “m”
units. The layers are found ro be fully interconnected with weighted linkage acting over the links.
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( Start }

Initialize weight vectors’
and learning rala ¢

No
v
.\\\
. 3
Figure 5-13 Archirecture of LVQ. Ay
Calculate winner unit J, k- \
when D(j} is minimum
I 5.4.3 Flowchan )ls S
ini ; : Input T ,
The parameters used for the training process of a LVQ) include the following: rarget - -
I
x = wraining vector (¥, ..., x5 ..., %) '
- No
T = category or class for the sraining vecror
w; = weight vector for jch output unic (1js- st oo w,,j)
¢; =cluster or class or category associated with jth ourput unit,
The Euclidean distance of jth output unit is D{j) = 3" {; — w,-j)z. The flowchart indicating che flow of
training process is shown in Figure 5-14, Update weights using Updale weights using
w (new) = w,(nld} + afx-wjfold)] w'(new) = wiold) - alx—wlold)]
l 5.4.4 Training Algorithm ]
In case of training, a ser of training input vectors with a known classification is provided with some inirial
distriburion of reference vector. Here, each output uni will have a known class. The objective of the algerithm Reduce learning rate
15 t0 find che oucput unic that is closest to the inpur vecror. . a{f+1) =05 alt)
I Step 0: Initialize the reference vectors. This can be done using the following steps.
|
|
* From the given ser of training vectors, take the first “m” (number of clusters) training vectors and !
use them as weight XEQIQrs, che remaining vectors can be used for training, ; No rreduces
+ Assign che inital wejghes and classificarions randomly. [ 10a ne‘gl;glble
‘ valu
» K-means chistering mechod.
Ser inidial learning rate ct. Yos
Step 1: Perform Steps 26 if che stopping condition is false. ‘ :
Stop

Step 2: Peiform Steps 34 for each training input vector . !

: Figure 5-14 Flowchart for LVQ.

T
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Step 3: Calculate the Euclidean distance; fori= lwon,j= 1l tom,

D(5} = ZZ(X;' — wy)?

=l =1
Find the winning unit index J, when D{J} is minimum.
Step 4: Update the weights on the winning unit, wy using the following conditions.
I€ T = ¢,then wy{new) = wy(old}4- & [x — wylold)]
If T # g,then wj(new) = wy(old)— o [x — wy{old}]
Step 5: Reduce the learning rate a.

Step 6: Test for the stopping condition of the training process. (The stopping conditions may be fxed
| number of epochs or if learning race has reduced to a negligible value.)

I 5.4.5 Vanants

There exists several variants of LVQ net proposed by Kohonen. These include 1¥Q2,LVQ2.1 and IVQ3. In
the LVQ algarithm, only the reference vector that is closest to the input vecror is updated. The movement
it moves is based on whether or not the winning vector helongs to the same class as the input vecror. In the
developed versions of LVQ, two vectors called winner vector and runnet-up vector learis iFseversl conditions
are satisfied. Here two distances have to be caleulated. Learnjng takes place only if the inpur is approximarely
the same disrantmm One dismncemmmfnwm: other is from

runner to inpar layer.

54571 tVQ2

The conditions over which both vecrors are modified in tie case of LVQ 2 are the following,
1. The winner and the runner-up unit belong to different classes,

2. The runner-up vector is of the same class as the inpur vector.

- The distances berween the input vector and winner and berween the input vector and runner-up are almost
equal to each other,

If x is the current input vector, y; the reference vector closer to x (winner), y; the reference vector next closer to 5,
x (runner-up), ) the distance from x to ¥, &2 the distance from x to 2, then the conditions for the updatio \)

of the reference vector can be defined as follows: ‘\)h (;\Ja\
—_— T
d i
d—')(]-ﬂ;) v \\‘,} Q}_/
2 \\\ / { \0 E
d ¥ y
d “*2 O
an ) <(14€) \ N

where the value of ¢ is based on the number of wainin
are given by
nle+1) = pid-a (@) — 3] {belongs to differenc class)
2206+ 1) = pa(d+ o ([ — 32091 {belongs to same class)

%y

g samples. The weight updation formulas in this cas%"%
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54.52 VO 2.1

ing i basis of th
In LVQ 2.1, the two closest reference vectors y1, and yz, are ‘“ke“ Here updating 1sdd(c|;|)1e on d?:s na::sb:lone
requirements thar {a) y1, belongs to the correct class for the given InpUE vectar x an il mm———?aa—ﬁ
10 the same classas x. LVQ 2.1 does not distinguish whether che closest vector is that represeatifig the correct
class or incorrect class for the given input, The condirions Jor this case are given by

S SN
w2 2] -0 £
& dh, AT TG
\’ G
and max [&, df_lf] < (148) TN
2e Ge

. ve conditions are mét, the followin
Here, it is not sure whether x is closer to y;, of 0 y2c: W1"Ien the at’: ¢ coe class as inpur V,CCEOI' then 6
weight updation formulas are used. If the reference vector belongs to the sam P !

J'lt(f +1)= ylt(t)‘l’ « (t)[x(t) - )’Ir(r)]
else el 1) = poel)— 2 OB = peld)]

5453 VO3

PR
e

h .
| min [ﬂ,ﬁc] > 1-ote)
L 2c %*lc

The weight updarions are done in a similar manner as in LVQZme ofthe m-r;‘doseﬂlvca?\s;&; belongs
to the same class as the input vector x and the other vecton J2o belc;lngs w3 ‘li‘ c%‘:‘ f\:s'ht . da[:‘ﬁ:r:
: PP . The , here,

this rraining algorithm to provide training fx._yh. and yze lqel°ns to the same class gnt up
are given by the equation —

ele+ 1) = p(-+BAEA — 5]

Replace y, with y1c Of 2, as the case may be. The learning rate B(2) is a muldiple of the learning rate w(s) thar
(3 i) .
is used if yy, and ¥y, belong o different classes, Le.,

Blo = gald)
where g is bétwec@@

5.5 Counterpropagation Networksj

I 5.5.1 Theory

Counterpropagasion networks were proposed by Hecht Nielsen in 1987.1.Th?y are anululaycr ncr:ror[l.(s bas:i
on the combinations of the inpur, outpur and clustering layers. T,hc, Eppications of COUNLETPropagation rll( :
are dara compression, function approximation and pactern ssociation. The coun:eﬂrjpropagﬂ;:t;:l nenv;)r :
basically constructed from an instar—ouestar model, This mc,.del Isa :hree-layer_ neural nenwor a]:pe; -rm;‘
inpur—ourpur data mapping, producing an outpur vector y 11 response .to an llnput ;cc]:?;;;:?c;; :(ij:v:)
competitive learning. The three layers in an instar—outstar model are the input layer, the hi pe

[‘g the two closmrvectom are allowed to learn as long a5 the inpu vector satisfies the condition (take
£=102)

!
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layer and the output layer. The connections berween the input layer and the competitive fayer are the instar
structure, and the connections existing berween the competitive layer and the outpur layer are the outstar
structute. The comperitive layer is going to be a winner-take-all nerwork or a Maxnet with fateral feedback
connections. There exists no lateral connection within the input layer and the outpur layer. The connections
berween the layers are fully connected.

A counterpropagation ner is an approximation of its training input vector pairs by adaptively con-
structing a look-up-table. By chis method, several dara points can be compressed to a more manageable
number of look-up-table entries. The accuracy of the function approximarion and data compression is based
on the number of entries in the look-up-table, which equals the numbet of units in the cluster layer of
the net.

There are two stages inveolved in the trining process of a counterpropagation net. The input vectors are
clustered in the first stage. Originally, it is assumed chat there is no topology included in the counterpropa-
gation nerwork. However, on the inclusion of a linear topelogy, the performance of the net can be improved.
The clusters are formed using Euclidean distance methed or dot product merhod. In the second stage
of training, the weights from the cluster Jayer units to the output units are tuned to obtain the desired

response. There are cwo types of counterpropagation necs: (i} Full counterpropagation nerand (ii) forward-only
counterpropagation net.

' 5.5.2 Full Counterpropagation Net

Full counterpropagarion net {full CPN} efficiently represents a large number of vector pairs xiy by adaptively
constructing a look-up-table. The approximation here is x*:*, which is based on the vector pairs x:y, possibly
with some distorted or missing elements in either vector or both vecrors. The neowork is defined to approximate
a continuous funcrion £ defined on 1 compact sec A. The full CPN works best if the inverse function £ !
exists and is continuous. The vectors x and y propagare through the network in a counterflow manner to
yield output vectors x* and y*, which are the approximations of x and y, respeciively. During competition,
the winner can be determined either by Euclidean distance or by dot product method. In case of dot product
method, the one with the largese net inpuc is the winner. Whenever vecrors are to be compared using the
dot product metric, they should be normalized. Even though the normafization can be performed without
loss of informarion by adding an extra component, yer to avoid the complexicy Euclidean distance method
can be used. On the basis of this, direct comparison can be made benween the full CPN and forward-only
CPN,

For continuous functien, the CPN is as efficient as the back-propagation net; it is a universal continuous
function approximator. In case of CPN, the number of hidden nodes required to achieve a particular level
of accuracy is greater than the number required by the back-propagacion nerwork. The greacest appeal of
CPN is its speed of learning. Compared to various mapping nerworks, it requires only fewer steps of training
to achieve best performance. This is commeon for any hybrid learning method that combines unsupervised
learning (e.g., instar learning) and supervised learning {e.g., outstar learning).

As already discussed, the training of CPN occurs in two phases. In the input phase, the units in the cluster
layer and inpus layer are found to be active. In CPN, no topology is assumed for the cluster layer unirs; only
the winning units are allowed to learn.. The weight updation learning rule on the winning cluster units is

sy(new) = wylold)+ o [x; — wylold)], i=1lrwan
wiy(new) = wylold)+ B [ye — wyleld), k=lwm

The above is stndard Kohonen leatning which consists of competition among che units and selection of
winner unit. The weight updation is performed for the winning unit.
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In the second phase of training, only the winner unit § semains active in the cluster_lay_er. The weigh'ts
berween the winning cluster unit ] and the output units are adjusted so that the vector of activations of t!‘:e units
in the Y-output layer is Y* which is an approximation to the input vector y and X* which is an approximation
w the inpurt vector x. The weight updations for the units in the Y-outpur and X-output layers are

upp(new) = uylold) + alyi ~ r’g',(.('old)], E=1tom
tri(new) = g;{old) + b - gileld)], i=1lron

This is Grossberg learning, a more general case of outstar learning. Qutstar learning is Foum.f- 10 occur.for
all units in a particular layer; there exists no competirion among those units. The form of weight updation
is similar for Kohonen learning and Grossberg learning, The leaming rule for the output layers' can also .be
viewed as delea learning rule. The weight change in all these cases is the product of the learning rate and
the error. When tie occurs in the selection of winning unit, the unit with smallest index is chosen as the
winner.

5.5.2,1 Architecture

The general structure of full CPN is shown in Figure 5-15. The complete architecrure of full CPN is shown
in Figure 5-16. -

The four major components of the instar—oucstar model are the inpur layer, the instar, the competitive layer
and the outstar, For each node ¢ in the input layer, there is an input value x;, An instar responds maximally 1o
the input vectors from a particular chuster. All the inscars are grouped into a layer cafled the competiltivc layer.
Each of the instar responds maximally to a group of input vectors in a different region of space. This layer of
instars classifies any inpu vector because, for a given input, the winning instar with the strongest response
identifies the region of space in which the input vector lies. Hence, ic is necessary that _the comperitive layer
single outs the winning instar by setting its ourput s0 a nonzero vatue and also suppressing the other outpuss
10 2ev0. That is, it is a winner-take-all or a Maxnet-type nerwork. An outstar model s found to have all the
nodes in the outpur layer and a single node in the competitive layer. The outstar looks like the fnn?o!n of
a node. Figures 5-17 and 5-18 indicate the units that are active during each of the two phases of training 2
full CPN.

In the instar—outstar nenwork model, the competitive layer participates in bath the instar and outstar
structuces of the network. The function of these competitive instars is to recognize an input patcern through
a winner-take-all competition, The winner activates a corresponding ourstar which associates some desired
output pattern with inpur patsern.

y* (Qutpul}
. XUnpwh | Instar-outstar natwork "
) (Input)
L xoutpu | Instar—outstar nefwork s

Figure 5-15 General suracrure of full CPN.
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Figure 5-16 Archirecture of full CPN.
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Cluster Y-input
layar layer

Figure 5-17 First phase of training of full CPN.

Cutstar Outstar
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Y-outpul Cluster ¥-output
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Figure 5-18 Second phase of training of full CPN.
5.5.2.2 Flowchart

The flowchart for the training process of full CPN is shown in Figure 5-19.
are as follows:

The parameters used in the CPN

x =input training vector X = (¥0aeeenXireess %)

¥ = target output corresponding to input x,y = (Fro-- o Bteonbm)
zj = the ourpuc of cluster layer unir z;

wj =weight from X-input layer unit X; to cluster layer unit 2;

Wy =weight from Y-input layer unic Yy, to cluseer layer unit z;

uj =weight from cluseer layer unit z; to Y-output layer unit Y7

1;; = weigh from cluster bayer unir 2; to X-output layer unit X;"

e i e e i e L v, AT 7 L

L e ———
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ﬁ't'nialize weights, learning rat;|

Start phase 1 training

No

Obtain the activations of X-input
layer and Y-input to x and y

!

lFind winner cluster unit J'

-----

Updale weights !

V,{new) = V (old) + alx-v,(old)] | |

Update weights
w(new) = w, (old) + Bly,— w{old)]

------

Reduce learning —les & g
a(t+1) = 0.5 e(f)
Alt+1) = 05 A1)

Input stopping learning rates

a(n), Bit)

( Stop phase 1 training )

@

Figure 5-19  Flowchart for training of full CPN,

—— e
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Start phase 2 training

Set xinpul layer activations to vector x
Set y-input layer activations 1o vecler y

]
LFind winning cluster unil Jj

--------

Update weights into z
Viinew) =V {old) + alx— v,(old)]

Fork=1lom

Update weights inlo Z to oulput layers

w,{new) = v, (old) + f[x— v,{old)]
[

Fork=1lom

Update weights from z 10 oulput layers
u fnew) = u,fold) + aly,—~w,{old)]

I

u(naw) = tfold) + Alx—1,(old)] 1
T

--------

Reduce learning rates & #
a(I+1) =05 e(l)
Alt+1) = 0.5 A1)

Input stopping leaming rates

a(t), (8}

- S—

Figure 5-19 (continued).
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X* = calculated approximation to vecror x
P = calculared approximarion to vector y
a, b = learning rates for weights out from cluster layer
@, B = learning rates for weights into cluseer layer
The training phase is performed here in o stages. The scopping conditions here may be number of
epochs to be reached. So the training process is performiad until the number of epochs specified is completed.

The reduction in learning rate can also be a stopping condition. The formula for reduction of learning rare is

alr+ 1) = 0.5a(z), where {2 is learning rate at time instant “#” and (s + 1} is learning rae of next epoch
for a time instant “t 4 1",

5.5.2.3 Training Algorithm

The steps involved in the training process of a full CPN are given below.

I Step 0: Set the initial weights and the initial learning rate. —l
Step 1: Perform Steps 2-7 if stopping condition is false for phase I training,

Step 2: For each of the training input vector pair x : y presented, perform Steps 3-5,
Step 3: Make the X-inpur layer activations ta vectar X.

Make the Y-inpuc layer acrivacions to vector Y.
Step 4: Find the winning cluster unir.

If dor product method is used, find the cluster unit 2j with targer net inpuc; for j = | 10 p,

" "

i = Z.\',-v,-j + Z_y;,uq,,

=1 f=

If Euclidean distance method is used, find the cluster unic z,

whose squared distance from nput
vecrors ts the smallest:

ne

D_; = Z (x ~ V_.‘j)l + Z (e — "’»(7):

i=1 L=

it there occurs a tie in case of selection of winner unirt, the unic with the smallese index is the
winner. Take the winner unit index as .

Step 5: Update the weights over che caleulaced winner uni .

Fori= 1t n. #y(new) = pylold)+ wx; ~ vy(old)]
For k= 11o0m, ninew) = 1wy lold)+ 8 1y — wyylold))

Step 6: Reduce the learning rares.

alt+ 1 =05a(); B+ 1) = 0588
Step 7: Tess ssopping condirion for phase | training,

Step 8: Perform Steps 9-15 when scopping condition is false for phase ! training,
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Step 9: Perform Steps 10-13 for each training input pair x ; y. Here erand 8 are small constant values.
Step 10: Make the X-input layer activations to vecror x. Make the Y-input layer activations to vectot y.
Step 11: Find the winning cluster unir {use formulas from Step 4). Take the winner unit index as J.

Step 12: Update the weights entering into unit .

Fori=1l1won, u,:,:(l‘lcw) = wjlold)+ alx; — vylold)]
Fork=1tom, wylnew) = wylold)+5 [y ~ wyylold)]

Step 13: Update the weights from unit z; o the outpur layers.

Fori=1lwn, ti{new) = gilold) + x; — #{old))
For k=110 m, nrylnew) = uylold) + aly, — uplold)]

Step 14: Reduce the learning rares 2 and 4.
ale+ 1) =054l He+1) =056
LStep 15: Test stopping condition for phase Il training, J -

If during training process inicial weights are chosen appropriately, then afrer the completion of phasc- Lof
training, the cluseer units will be uniformly diseributed. When phase I1 of training 1s_comp1eted, the weights
to the outpur units will be approximarely the same as the weights into the cluster unic.

5.5.2.4 Testing (Application) Algorithm

A CPN once trained can be used for finding approximations X* and Y* 10 the input—output vecror pair X
and Y. The application algorithm for full CPN is as follows:

I Step 0: Initialize the weights (from training algorithm).
Step 1: Perform Steps 2-4 for each inpur pair X: Y.

Step 2: Set X-inpur layer activations to vector X.
Set Y-inpuz layer acrivarions 10 vector Y.

Step 3: Find the cluster unit z; that is closest to the input pair.

Step 4: Calculare approximations to x and y:

I X =y gh=up |

One important variation of the CPN is operating it in an interpolation mode a'fter the craining hasl been
complered. Here, more than one hidden mode is allowed to win the competition, i.e., we havelﬁrst winner,
second winner, third winner, fourth winner and so on, with nonzero ouzpur values. On making the total
strength of these multiple winners normalized o 1, the tocal ourput will interpolace lincar_ly among CI’_IC
individual vectors. To select which nodes to fire, we can choose all those with weight vectors within a cercain
radius of thé input x, The interpolated approximations to x and y are then

=2 gt =) g
; 7

By using interpolation, the approximation accuracy is highly increased.
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l 5,5.3 Forward-Only Counterpropagation Net

A simplified version of full CPN is the forward-only CPN. The approximation of the funcrion y = f'(x) bur
not of x = f(3) can be performed using forward-only CPN, i.e., it may be used if the mapping from x te y
is well defined but mapping from y to x Is not defined. In forward-only CPN only the x-vectors are used o
form the clusters on the Kohonen units. Forward-only CPN uses only the x vectors to form the clusters an
the Kohonen units during first phase of training,

In case of forward-only CPN, first input vectors are presented to the inpur units. The cluster layer unirs
compete with each other using winner-take-all policy to learn the inpur vector. Once entire ser of training
vecrors has been presented, there exist reduction in learning rate and the vectors are presented again, performing
several iteracions. First, the weights berween the input layer and cluster layer are trained. Then the weights
becween the cluster layer and outpur layer are trained. This is a specific competitive necwork, with target
known. Hence, when each input vector is presented to the input vector, its associated target vectors are
presented 1o the output layer. The winning cluster unic sends its signal to the outpur layer. Thus each of
the outpur unir has a compured signal (w) and thie carger value (yz). The difference between these values is

calculared; baséd on this, the weights between the winning layer and output layer are updated.

The weight updacion from inpur units to cluster units is done using the learning rule given below: For
i=1lrton

- vi(new) = wylold)+ alx; — vylold)) = (1— a)uylold)+ ax;

The weight updation from cluster units to output units is done using following the learning rule: For
k=1wm,

wip(new) = wplold) + aly; — wyelold)] = (1 ~ Awplold) + ap

The learning rule for weight updation from the cluster units to outpur units can be written in che form of
delta rule when the activations of the cluster units (zj) are included, and is given as

wiplnew) = miplold) + gy — wilold)]

where

yifj=]
0 if ]

Z]':

This occurs when wy is interpreted as the computed outpur {i.e., 3 = wyg). In the formulation of forward-enly
CPN also, no tapological structure was assumed.

5.5.3.1 Architecture

Figure 5-20 shows the architecture of forward-only CPN. It consists of three layers: input layer, cluster
{competirive) layer and outpur layer. The architecture of forward-only CPN tesembles the back-propagarian
nerwork, but in CPN there exists interconnections between the units in the cluster layer (which are not
conpected in Figure 5-20). Once comperition is completed in a forward-only CPN, only one unit will be

active in thar layer and it sends signal to the output layer. As inpurs are presented to the network, the desired
outputs will also he nresented simultaneously.
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Figure 5-20 Archicecture of forward-only CPN.

5.5.3.2 Flowchart

The flowcharr helps in depicting the training process of forward-only CPN and the manner in whicl_l Fhe
weights are updated. The training is pecformed in cwo phases. The parameters used in flowchart and waining
algorithm are as follows:

o, f = learning race parameters where @= 0.5 10 0.8 and B = 0 10 1. The typical values of learning
rates may be ¢ = 0.6 and § =1

X = activation vecror for input layer units, ie,

K= (o s Xy e )

Ilx — |l = Euclidean distance berween vectors X and v

Figure 5-21 shows the flowchart for training process of forward-only CPN.

5.5.3.3 Training Algorithm
The steps involved in the training algorithm of forward-only CPN are as follows:

l Step 0: Inirtalize the weights and learning races.
Step 1: Perform Steps 2-7 when stopping condicion for phase I craining is false.
Step 2: Perform Steps 3-5 for each of rraining inpuc X.
Step 3: Set the X-input layer acrivartions to vector X

Step 4: Compute the winning cluster unit (]). If dot product method is used, find the cluster unic 2
wich the largest net input:

n
Zjnj = Zx,'u,'j
=1
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Initialize weights, learning rates

Start phase 1 training

For each input vector x

Obtain X-input layer activations to vectar x

lYes

Complete winning cluster unit ()
{Euclidean distance)

Fori=1ton  H---—-

;

: )
1

' i
! \
! Update weights for unit 2, '
! V (new) =V (old) + alx-vfold) | |
1 1
: ;
1 ]
1 1
1 1

Reduce learning rate
alt+1) =05 a(t)

Inpul stopping learning rales

alt). Bl

No If
a(t+} < afl)

Stop phase 1 training
Start phase 2 kraining

Figure 5-21 Flowchar for training of forward-only CPN.

5.5 Counterpropagation Networks
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?

}

lTSet ceconstant smal_lvaﬂ

|

also, set output layer activations y to vector ¥

Sat Input layer activations x to vector x

s

distance or dot product

1
)
1
1
1
1
1
1
1
1
1
1
1
:
1
|
E ‘ Calculate winning cluster unlt use Euclidean (J}
E
1
|
)
1
'Y
1
]
1
T

Update weights into unit z,
v (new) = V fold) + a(x-vold)]

Update weights from unit 2, o cutput unils

i
w,l(new) = wﬁ(old) + Bly,— wﬁ(old)] i

Reduce learning rate
Blt+1) =05 B(1)

Input stopping learning rate
value 4 {t)

No

Yes
Slop phase 2 lraining

Figure 5-21 (continued).
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Step 5

Step 6

Step 7: Test the stopping condition for phase I training,
Step 8: Perform Sreps 9~15 when stopping condition for phase II training is false, (Set oa small constant
value for phase II training.)

Step 9: Pecform Steps 10-13 for each training input pair x:y.
Step 10: Set X-inpur layer activations to vector X. Set Y-output layer activarions to vecror Y.
Step 11: Find the winning cluster unit (§) fuse formulas as in Step 41.
Step 12: Update che weights into unit . For i = Lo,

vi(new) = wylold)4 el ~ vylold)]
Step 13: Update the weights from unit z; 1o the ourput units. For £ = 1 1o m,
wyp(new) = wylold)+ 8 [y ~ wplold)]
Step 14: Reduce learning rate B, ie.,
Ble+1)=058{
l Step 15: Test the stopping condition for phase IT training, l

If Euclidean distance is used, find the cluster unit z7 square of whose distance from the input
pattern is smallest:

i
D;= Z (x; — v,j)z
i=1

If there exists a tie in the selection of wirner unir, the unic wich the smallest index is chosen as
the winner.

: Perform weight updation for unit z;. Fori = 1w »,
uvylnew) = vylold)+ el ~ vylold)]
: Reduce learning rate e

alt+ 1) =05al)

~. patterns should net be presented on the same cluster unit, when it is presented each time. On the basisof 7

? this, the stabilicy of the net s défined a5 that WICIEID & patfern is 00T presente i _gh;s_l;c:.&mﬁ;}fj -
Lfhe stability may be achieved by reducing the learnin ~Jhe ability of the network to respond 0 a new

The stopping condition for both phase I and phase Il training may be the reduction in learning rare or number

of iterations to be performed.

5534

Testing Algorithm

The testing algorichm used for forward-only CPN is given as follows:

I Step @
Step 1:
Step 2:

Ser initial weights. (The inicial weights here are the weights obtained during training.)
Present input vecror X.

Find unit ] that is closest to vector X.
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Step 3: Set activations of outpur unis:

| Y= Wik

As in the case of full CPN, the forward-only CPN can also be used in the interpolation mode. Here, if more
than one unit is the winner, with nonzero acrivation value, then

Hence the acrivadon of the output unit is given by

= Zuy

j Lol

s
Use of intetpolation mode results in increase of accuracy. A

8¢ XV

afy ¥
I 5.6 Adaptive Resonance Theory Network i A v
SRS

L5,6.1 Theory "

=

-
The adaprive resonance theory {ART) nerwork, developed by ;éven Grossberg and Gail Carpenter (1987),
is consistent with behavioral models. This is an unsupervised learning, based on competition, that finds
categories ausonomously and learns new categories if needed. 1he adaprive resonance model was developed
to solve the problem of instability occurring in feed-forward systems. There are two types of ART: ART 1 and
ART 2. ART 1is d&siganfoTn':Tustering binary vecrors and ART 2 is designed 1o accept continuous-valued
vectoss. In both the nets, inpur patterns can be presented in any order. For each partern, presented ro the
necwork, an appropriate cluster unit is chMMmﬁing!&ﬂM@Miﬂﬂtaﬂm r
unic learn the pattern, This network controls the degree of similarity of the patterns placed on the same cluster
p}lligs;ljufih‘g._t}aining. each training pattern may be presented several umes. It should be noted thart the mput

I
pattern equally at any stage of learaing is mlledﬁﬁr; T nets are designed to possess the properties, ~

stability and plasticity. The key concept of ART is that the stability plascicity can be resolved by a system a’“,
in which the network includes bottom-up (inpur—ourpur) competitive learning combined with rop-down
(output=inpur) learning. The instability of instar—ourstar nerworks could be solved by reducing the learning

rate gradually to zero by freezing the learned caregories. But, at this point, the nev may lose its plassicity or

the ability to react to new dara. Thus it is difficult to possess both stability and plasticity. ART nerworks are
designed particulally o rescive the srability-plasticicy dilemma, chat is, they are stable o preserve significane

past learning but nevertheless remain adaptable o incorporate new information whenever it appears.

5.6.1.1 Fundamental Architecture .
\:Tl'hr groups of neurons gre used o build an ART nerwork. These include: ' S

L. Input processing neurons (F layer). hs &



s
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2. Clustering unies (F2 layer}.
3. Control mechanism {(conrtrols degree of similarity of patterns placed on the same cluster}.

The inpur processing neu nsists of : [nput portion and interface portion. The
input portion may perform(some processing based on the inputs it feceiv&yThis is especially performed in
the case of ART 2 compared to ART 1{The interface portion of the Fy layer combines the input from input
portion of Fy and F; layers for comparitig the similari
GSter ol selected as a unit for learning,
interface portionas F(b). - —
There exist two sets of wei intetconnections for controlling the degree of similarity berween the units
in the interface portion and the cluster layer. The bottom-up weights are used for the connection from Fy (b)
layer to Fytayerand are represented 5y #(7th F1 unic to fth F3 unit). The top-down weights are used for the

of the inpur signal with the weight vector for the
layer input portion may be denoted as F(a) and

connection from F; layer to Fy (b) layer and are represented by #; (jth F3 unit to ith Fy unit). The competitive
layer in this case is the\elster laydr and the duster unit with largest net inpur is the victim to learn it
pattern, and the acrivations of all other F» umis are T 2eT5; The Tnterface units combing the dam from

input and cluster layer unis. O the basis of the similarity becween the top-down weighe vector and input

vecror, the cluster unit may be allowed to learn the input partern. This decision is done by-
unit on the basis ¢ ¥ i i inpur portion of the Fy layer. When
cluster unit is not allowed to learn, it is inhibited and a new cluster unit is selected as the vicum.

5.6.1.2 Fundamental Operating Principle

In ART network, presentation of one input pattern forms 2 learming trial. The activarions of all the units
in the ner are sec to zero before an input panw units inmé. On
Presentation of 4 pattern, the input signals are sent continuously@ﬂw& There
exists a user-defined parameter, called vigilance parameter, which controls the dégree of similarity of che
pattetns assigned to the same cluster unit. The function of the reser mechanism is w control che stare of each

in_Fa layer. Each unit in F3 layer, at any time instant, can be in any one of the three states mentioned
Below. - j\v(}\ L

- AT AN - PR N

@\ (! : ti b

1. Active: Unicis ON. The activation in this case isequai to 1. For ART 1, = | and forART 2,0 < 4 < 1.

2. Inactive: Unitis OFF Theactivation hereis zero and the unit may be available to parricipate in competitian.

3. Inhibired: Unit is OFF. The acrivation here is also zero but the unit here is prevented from participating
in any further competition during the presentation of cutrent input vector,

The ART nets can perform their learning in owo ways: Fastlearning and slow learning, The weight updarion
takes place rapidly in fast learning, relative to the length of time a pattern is being presented on any paniicular-

learning trial. In fast learning, the weights téach equilibrium in €ach trial. On the contrary, in slow learning
the weight change occurs slowly relative to thetimetaken for a learning trial and the weights do not reach

equilibrjum in cach traf, More patterns have 10 be presented for slow learning compared 1o that for fast

3=

learning, Tor each learningrial, there occurs only minimum number of Caltufations in STow learning, In case

~ - . .- e — - -
of fast learning, the ner is considered to be stabilized when each pattern closes its Correct cluste S
The paccern: i i rwork, hence the weights assw uniz stabilize

in the fast learning mode. The weighe vectors obtain

riate for the type of Input parierns used

in ART 1. In case of ART 2 nefwark, the weights produced by fast learning corilrlfl%c;h’a.nje’cg;h time

—_—— - H -t -‘_‘_\A_, i)
a pattetn is presented. The net is found to seabilize only afier few presentacions of €ach raining patrern.
It i§"noc easy to find equilibrium weights immediarely for ART 2 as it is for ART 1. In slow learning

~F
o
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process, the weight changes do not reach equilibrium during any particular learning trial and more trials
are tequired before the net seabilizes. Slow learning is generally not adopred for ART 1. For ART 2, the
wéigh‘tl_sp—rm&mmning are far better than those produced by fast leaming for particular types
of dara g

—

5.6.1.3 Fundamental Algorithm

This algorithm discovers clusters of a set of patrern vectors. The steps involved in various stages of training
algorithm are as follows:

mp 0: Initialize the necessary parameters.” j
Step 1: Perform Steps 2-9 when stopping condition is false.
Step 2: Perform Steps 3-8 for each inpur vector.
Step 3: F| layer processing is done.
Step 4: Perform Steps 5-7 when reset condition is true.

Step 5: Find the victim unit to learn the current input pattern. The victim unit is going to be the F3 unit
{that is nar ighibired) with the largest input.

Step 6: \F\_l__(b) units combine their inputs from F(a) and sz

Step 7: Test for reser condition. .
If reset is true, then the current victim unit is rejected (inhibited); go ro Step 4. If reset is false,
then the carrent vicim unit is accepred for learning; go to next step (Step 8).

Step 8: Weight updation is pecformed.

ljrep 9: Test for stopping condition. J

The ART network does not require all training pacterns to be presented in the same order, it also accepts
if all patterns ate presented in the same order; we refer to this as an epoch. The flowcharr showing the flow
of rrahiing process i rately for 2.

IS.B.Q Adaptive Resonance Theory 1

Adaprive resonance theory 1 (ART 1) nevwork is designed for binary input vectars. As discussed generally, the
ART 1 ner consists of two fields of units—input unit (F) unit) and output unit (F3 unit)-along with the reset
contro) unit for controlling the degree of similarity of patterns placed on the same cluster unic. There exist
two sers of weighted interconnecrion pach berween Fy and Fa layers. The supplemental unic presentin the net
provides m&mumc&ss. Carpenter and Grossberg have designed ART 1
nerwork as a real-time system, In ART 1 network, it is not pecessary to present an input pattern ina pardicular
order; it can be presenced in any order. ART 1 network can be pracrically implemented by analog circuits
governing the differential equations, i.e/, the botrom-up and top-down weighrs ace coner i
equatﬁﬁﬁ"mmork runs throughout autonomously. It does not require any external control signals
and dandun stably with infinite patterns of inpur dara.

ART 1 network is trained using [as¢ learning_method, in which the weights reach equilibrivm during each
learning trial. During this resonar??,?‘l-:fmE ctivarions of F] units do not change; hence the equilibrium
welights can be decgrmi he ART 1 nerwork performs well with petfect binary input patterns, but
it'Ts sensitive to noise in the inpur dara. Hence care should be caken to ha,ndl;c/t,hc»no"ﬁ?'\/[

- Y :Y}
@ uf:‘p‘w PR { ""-\ | ((ﬂ'\
H .
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5.6.2.1 Architecture
The ART 1 network is made up of two units:

1. Compurational units, ~

2. Supplemental units,

In this section we will discuss in decail about these two units.

Computational uniss

The computational unit for ART 1 consists of the following:

L. Input units {F) unit — both input porrion and inrerface portion).
2. Cluster units (Fy unit — ourpuc unit),

3. Reser control unit (controls degree of similarity of patterns placed on same cluster).

. The_ basic architecture of ART 1 {computational unit) is shown in Figure 5-22. Here each unir present
in t}}e input portion of Fy layer (i.e., F)(a) layer unit) is connected 1o the respective unit in the interface
: wuayer_(i_:., F1(b) layer unit). Reset control tnic has connections From eaciof F1{z) and Fi (b)
= units. Also, each unit in F((b) layer is connected through two weighted interconnection paths to each unit
in Fy Iay_cr and the reser control unit is connected to every Fy unit. The X; unit of Fy(b) layer is connected

to Y; unit of F; Jayer ‘through bortonT= i f-wic of Fy is connected to X; unit of )
- through rop-down weights (). Thus ART 1 includes a borrom-up mmgw i ing-system combined
.-——wich a rop-down outstar learning system. In Figure 5-22 for simplicity only iphted inserconnccrions
b,-j and 4i are shown, the ather units’ weighted interconnections are in a similar way. The cluster layer (F;

layer) unit is a competitive layer, where only thé uninhibited node with the Jargest net input jnas nonzero
N j

.. activation. -

=

(Beset controt unit)

5
]
o
>
S; «
&
A s
B
Sﬂ

F,(a} layer
input portion interface portion cluster unit

Figure 5-22 RBasic archirecture of ART 1.
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Supplemental units

Figure 5-23 shows the supplemental unit interconnection involving two  gain control ynits along with one
reset unic. The discussion on supplemental units is important based on theoretical point of view.

Difficulty faced by computational wnits: It is ngcessary for these units 1o respond differendy at different
stages of the process, and these are not su sorted By any of the biolog] .
'Iﬁér:_&%c-u?y is that the operation of the reser-inechanism is not well defined for irs implementation
in ral systems. e
mcuﬁu are rectified by the introducriongof two supplemental units (called as gain con-
trol unis) Gy and Gz, along with the reset control unic E These three units rggeive signals from and
send signals 10 all of the units in inpur layer and cluster layer. In Figure 5-23, the excitatory weighted
signals are denoted by “+'"and inhibitory signals are indicated by “—." Whenever any unit in desig-
narted layer is “on,” a signal is sent. F1(b) unit and F» unit receive signal from three sources. Fy(b) unic
can receive signal from either Fy{a) unic or Fy units or Gy unic. In the similar way, Fo unit réceives sig-
nal from either Fy(b} unit or reset control unit R or gain control unit Gy. An Fi(b) unit or F2 unit
should reccive two excitatory signals for them to Be on. Both F(b) unit_ﬁdm‘si—g——
rals through three possible ways; this is called as two-thuds Tl TFhe Fy(b) unit should send a signal

wheneyer it receives input Fromlfl(a) and o F2 node is actve] After an Fz node has been chosen in
competition, it is necessary that only F1(b} units whose nput sighal and top-down signal march remain

constant. This is performed by the two gifi g UMits G 3, 10 addition with two-thirds rule.
Whenever Fy unit is on, Gy unit is inhibited.{When no F2 unir is omn, each F; interface unic receives a
signal from Gy unig; here, all of the units thatTeceive a positive inpuc signal from the inpur_vecror pre-

sented fire. In the same way, G unit controls the firing of Fp unis, obeying the twe thirds rule. The choice
of parameters and initial weights may also be based on two-thirds rule. On the other haiid, the vigilance
matching is controlled by the reser control unit R. An excitatory signal is always senlio R when any unit
in F(a) layer is on. The scrength of the signal depends on how many F; (inpur) unirs are on. It should
be noted thar the reser control unit R also receives inhibitory signals from the Fy interface units that are
on. If sufficient number of interface unirs is on, then unit “F” may be prevenied from firing, When unic
“R” fires, it will inhibic any F; unit that is on. This may force the F2 layer to choose a new winning
nade. T

PEAEE 5

-y

F, layer i +
(cluster units)
i

b, f

Y
F,(b) layer ‘
{interface porticn) +

G, Gg

F.(a) layer
{input portion)

Figure 5-23 Supplemenal unit of ART 1.
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5.6.2.2 Flowchart of Training Process
The flowchart for the training process of ART 1 nerwork is shown in Figure 2. The parameters used in
flowchare and training algorithm are as follows:

n = number of components in training input vector

m = maximum number of cluster units that can be formed

p = vigilance parameter (0 to 1)

by = borrom-up weights (weights from X; unic of Fy (b) layer to Y} unit of Fy layer)

%; = top-down weighes (weights from Y units of Fy layer to X; unit of F1(b) layer)

s = binary inpur vector

[l%]l = norm oncctor x that is defined as the sum ofcomponents ofx{i=1r0n)

Initially, binary input vector “’s” is presented in the Fy ( ﬂa}\yer_’i" mgnals are sent to the corresponding
X layer, i.¢., F1(b) layer. Each F (b} layer sends the activation to the F; layer over the weighted interconnection

paths. Each F7 layer unit then calculates the net input. The unit with the largest net inpur is selected as the
winnef and will have acrivation”1,” the other units” activation will be 0. The winning uni is specified by its

index “].” Only this winner unit can learn the current inpur pattern, Then the signal is send from F; Jayer
to Fy (b} layer over the top-down weights (i.e., signals ger multiplied with rop-down weights). The X unics

presenc in the intetface portion F (b} layer remain on, only if they receive a no ignal from both Fyfa) ™ ; 2
ﬂw /%—%@x\

f* \
Now we calculate the factor [lxlf. The norm of vector x gives the number of components in which the o

2

top-down weight vector for the winning F3 uni Tiput vector 5 are both 1. This is called Mazch. The
ratio of norm of %, ||x||, to norm of s, |5, is called Match Ratw, Whi t than or equal to vigilance
parameter, then both the wop-down and bottom-up welghts have to be ad)u.sted Thisis calleé Teset condmon )‘
That is CT

. IF [IxIl/s}f =>p, then weight updacion is done. This testing condition is called reser condition. ,\"

* If lx|I/ sl < p. then cureene _unit is rejected and another unir should be chosen. The current winning

cluster unit becomes inhibited, so this unit again cannor be ChDSE? as a unit, on this particular learning
ULl —

.-—"__—"_'\._
trial, and the acnvauons‘ﬂe_F units are_[eset 1o zgro. v _Pf..

This process is repeated until a sansfactory martch is found (umts get accepred) or until all the units are
inhibited.

5.6.2.3 Training Algorithm
The training algorithm for ART | nerwork is shown below.

T Fa

ﬁtep 0: Initialize the parameters: . -

Inicialize the weights:
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Step 1: Perform Steps 2-13 when stopping condition is false.
Step 2: Perform Steps 3—12 for each of the training input.
Seep 3:

Step 4

Ser activations of all Fy units to zero. Set the activations of Fi(a) units to input vectors.
Calculate the norm of 5

EEDI

: Send input signal from Fi(a) layer ro F) (b) layer:
%=

ode that is not inhibited, the following rule should hold: If y; # —1, then

1 .
Eiform Steps 8-11 when reser is true, i

: Find ] for yy = y; for all nodes /. If yy = —~1, then all the nodes are inhibited and aote thar this

pattern cannot be clustered.

Step 9: Recalculare acrivation X of Fy (b):
Xy _—-rl-rjl k_'7|
Step 10: Calculate the norm of vector x .\ ) J
=Y
i
Step 11: Test for reset condirion.

IF l=l)/|lsll < o, then inhibit node ], yy = —1. Go back to step 7 again,
Else if fix}i/|ls{l = p, then proceed to the nex step (Step 12).

Perform weight updation for nodeﬂl_[fa,s_tlcaming):.-——"’"?\d

ax; \-\

_ﬁFEJ
r Lj, new} ﬂ

Step 13: Test for scopping condition. The followmg may be the stopping conditions:
a. Ne ClEESE_i.n weights.

b, No reser of units.

Step 12:

,](new)

L c. Maximum number of epochs reached. |

When calculating the winner unit, if there occurs a tie, the unit wich smallest index is chosen as winner.
Note thatin Step 3 all the inhibitions obtained from the previous learning trial are removed. When yy = —1,
the node is inhibited and it will be prevented from becoming the winner. The unit % in Step 9 will be ON
only if it receives both an external signal s; and the other signal from Fz unit to F (b} uni, 4;. Note that g;
is either 0 or 1, and once it is set to 0, during learning, it can never be set back to 1 (provides stable learning

method).
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{ Start )

vigilance parameter 0 < p <1 |

Inittatize weights,

L o)=1
0<b,(0) <=7 {0

Make activations of all F {a} units
1o input vectors and F, units to zero

Calculate norm of “s™
s = Zs,

Send ifp signal from F(a) to F (b}
X=35,

o For each node that is o
o nol inhibited

1

L

]

'

i

1

T Calculate net input
{y, = LBX™

1: /)

1

1

]

.

e — e A= — =
e —

------------- Continue -

Figure 5-24 Flowchart for mraining of ART | nerwork.
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pheck False Inhibit
for

nede j
fesel,
True|
Find j, where Y = Y,
for all node §
-
Ali nodes inhibiled and

pattern cannok be clustered

Recalcutate activation X of F (b)

X= 51’,‘.'
Calculale norm of x
Ixi=2x A
A -~
£
AV
Y,=—1 False -
inhibit node J ) >
True
Weight updation
ax
b {new) = ——t—
» (W) = T x
L {new) = x,
® - - - ----®

Test for
stopping condition
1. no weighl change
2. no unils raset
3. more no. of

epochs

Figure 5-24 (conrinued).
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The optimal values of the initial parametersare =2, p = 0.9, &5 = U/l + nand g = 1. The algorithm 1

uses fast learning, which uses the fact that the input pattern is presented for a longer period of time for weights
1o reach equilibrium, . i

I 5.6.3 Adaptive Resonance Theory 2

Adaptive resonance theory 2 {ART 2) is for continuous-valued input vectors. In ART 2 network complexity :
is higher than ART | network beeause much processing is needed in Fy layer. ART 2 nerwork was developed !
by Carpenter and Grossberg in 1987, ART 2 network was designed to self-organize recognition caregories
for analog as well as binary input sequences. The major difference between ART 1 and ART 2 nerworks is
the input fayer. On the basis of the stability criterion for analog inputs, a three-layer feedback systém in che
input layer of ART 2 network is required: A bottom layer where the input patterns are read in, a top layer
where inputs coming from the output layer aré read in and a middle layer where the tap and bottom parterns
are combined rogether to form a marched patrern which is then fed back to the rop and bortom inpur layers.
The complexity in the Iy layer is essential because continuous-valued input vectors may be arbirrarily close
together. The Fy layer consists of normalization and noise suppression parameter, in addicion to comparison
of the bottom-up and top-down signals, needed for the reser mechanism.
The continuous-valued inputs presented to the ART 2 network may be of two forms. The first form
is a “noisy binary” signal form, wherse the information about patterns is defivered primarily based on the
components which are “on” or “off,” rather than the differences existing in the magnitude of the components
that are positive. In this case, fast learning mode is best adopted. The second form of patterns are those,
in which the range of values of the components carries significant information and the weight vector for a
cluster is found to be interpreted as exemplar for the patterns placed on that unit. In this rype of pattern, slow
learning mode is best adopted. The second form of data is “eruly continuous.” Figure 5-25 Architecrure of ART 2 nerwork.

Input
units

S;(input patiem)

5.6.3.1 Architecture

A typical architecture of ART 2 network is shown in Figure 5-25. From the figure, we can notice that Fy layer
consists of six types of units—- W, X, U, V, P, Q —and there are “#” units of each type. In Figure 5-25, only
one of these units is shown. The supplemental parr of the connection is shown in Figure 5-26.

The supplemental unit “N” between units W and X receives signals from all “W” units, computes the
norin of vector w and sends this signal to each of the X units. This signa! is inhibitory signal. Each of this
X1y ... Xiv ..., X,) also receives excitatory signal from the corresponding W unir. In a similar way, there
exists supplemenal units between U and V, and P and Q, performing the same operation as done beaween W/
and X. Each X unit and Q unit is cannected to V unit. The connections becween P; of the Fy layer and Yj of
the Fy layer show the weighted incerconneceions, which multiplies the signals transmitted over those paths.
The winning Fz unics’ activation is (0 < & < 1). There exists normalization between W and X, V and U,
and P and Q. The noemalization is performed approximately o unit length.

The operations performed in F; layer are same for both ART 1 and ART 2. The units in F; layer compete
with each other in a winner-take-all policy o leatn each input pauern, The testing of reset condition differs
for ART 1 and ART 2 newworks. Thus in ART 2 network, some processing of the inpur vector is necessary
because the magnitudes of the real valued input vectors may vary more than for the binary input vectors.

5.6.3.2 Algorithm

A derailed description of algorithm used in ART 2 network is discussed below. First, let us analyze the
supplemental connection berween W; and X; unis.

Figure 5-26 Supplemental part of connection berween W and X.
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Supplemental connection between W; and X; units

_ As discussed in Secrion 5.6.3.1, there exist supplemental connecrions berween W and X, U and V, and P and
Q. Each of the x; receives signal from w; unics. After receiving, it will caleulace the norm of w, ||| and then
sends thar signal to each of the X units, Normalizacion is done in the F{ units from Wto X, Ve Uand P 1o
Q. Each of the X; units are connected 1o V; and Q; units are also connected to V;. The weighes a, b, ¢ shown
in Figure 5-25 are fixed. The weights on the connection path indicate the transformation waking place from
one unit w0 other {no multiplication takes place here), i.., u; is rransformed to ax; but not multiplied. When
signals are wransferred from Fy units w F; units, Le, from Py to ¥j, the multiplication of weights is done.
The activation of the F; unic is “4™ which ranges between 0and 1 (0 < & < 1). It should be noted that these
activations are continuously changing,

Processing of By layer and Fy layer

For understanding the training algorichm of ART 2 necwork, it is important o know the processing of
Fj and Fy layers. In Fy layer, the outpur activation from P; is p and output activation from Q; is 4. The
activation vector 4, which is the activation of Q; units, should be equal to vector p, activacion of P; units thac
is normalized approximately for unic length. U; unic performs similar process of Fy(a) layer of ART 1 and
P; unit performs similar process of Fy(b) layer of ART 1 network. The activation function used here is the
functional representation of noise suppression parameter “Q,” and is given by

x x=8

fla= 0 x<8

The noise suppression parameter Q is defined by the user and is used to achieve stability. Seability occurs where
there is no reset, i.c., the same winner unit is chosen in the nexc erizl also. Units x; and Q; apply activarion to
Vi, which sippresses the components to achieve suabiligy. Hence Q is used here.

In ART 2 network continuous processing of the input units is done. The continuous-valued inpur signals
§ = [s1,..., 8. .., 5,) are sent continuously, For each learning trial, one input pattern is presented. Ac the
beginning of training, the activations are set o zero, i.e., inactive not inhibit. The compuration cycle for a
particular learning trial within Fy layers starts with n; which is equal to acrivation of V; approximated 1o unit
length. Unit x; is given by

vi

T

where “¢" is a small parameter for preventing the division by zero when ||#]| becomes zero. Also g; and x; are
given by

W
e+ {pll”

;= X =
4 el

The noise suppression parameter is applied only o x; and g;.
The signal will be sent from each unit of #; o w; and p;. The activations of units w; and p; have to be
done. The activation of w; is the sum of inpur signal received (5) and au;:

wi = 5+ au;

P; is found o receive signals from #; and top-down weights, i.e., sums #; (activaton of #;) and top-down
weigh (£7), and Is given by

Pi=w+ a’tj,-
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where 4 is the activation of winning Fa unit. Before entering inco V;, activation function is applied to each of
%; and Q; units. Unit V; sums the signals from x; and Q; which receive signal concurrendy:

v = flx) + 6 (g)

Activation function is designed to select the noise suppression parameter (user specified “Q"). Accord-
ing to Carpenter and Grossberg, the activations of P; and Q; (i.e., the ourputs) will reach equilibrium
(stable set of weights) only after two updates of weights. This completes the phase I or one-cycle pro-
cess of Fy layer. Only after Fy units reach equilibrium, the processing of Fz layer starts (i.e., after three
updates).

F; layer being a competitive layer uses winner-take-all policy to determine its winner. Dot product method
may be used for the selection of the winner. When the top-down and weight vector remain similar, then thar
unit is the winner (active). If for a unit, the top-down and input vectors are not similar, then that unit becomes
inhibit. This layer receives signals from P; units via bottom-up weights and P; units in turn send signals 1o F;
unit. Here only the winner unic is allowed to learn the input partern S;.

The reser mechanism controls the degree of similarity of the inpuc patterns. The checking for reset con-
dition in ART 2 differs from ART 1 nerwork. The reset is checked every time it receives signal from #;
and P,‘.

In fast learning mode, the updation of weighes is continued until the weighes reach equilibrium on each
trial. It requires only less number of epochs, but a large number of iterations through the weight update-F,
portion must be performed on each learning trial. Here, the placement of pacterns on clusters stabilizes, but
the weight will change for each pattern presented.

In slow learning mode, only one iteration of weight updates will be performed on each learning trial.
Large number of learning trials is required for each pactern, but only little compuration is done on each rial.
There is no requirement that the patterns should be presented in the same order or that exactly the same
set of patterns is presented on each cycle through them. Thus it is preferable to have slow learning than fast
learning.

Computations for algorithm

The following computations have 1o be performed in several steps of the algorithm and are referred as

“updation of F; activations.” Unit J is the winning F3 unit after competition is completed. If no winning unit

is chosen, then “4™ is zero for all units. The calculations for P; and wy, and x; and g; can be done in parallel.
Fy layer consists of six units; the update Fy activations are given by

vy

w = m: P;=u+dy
—_— + .- J— wi
W =S au; A= et ol
pi
i = ——— v = ) + bf (g
g e+ 7] v = flx) + 6f ()
The activation function is given by
x flx) =20
=10 r<o

|
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5.6.3.3 Flowchart ".
The flowchart for the training process of ART 2 network is shown in Figure 5-27. The flowchart clearly '
depicts the flow of the training process of the network. The check for reser in the flowchart differs for ART 1 ‘ Update of F, unis activations again
and ART 2 nerworks, v LT
Te] (el
b

o)

Iniliatize the parameters
abedeapq ———-

specify i A
No. of epochs of training - nep

No. of learning iterations - nit

1

1

1]

‘

1

! ICalculate signals to F, units|
H y=LbP

]

1
:
1

Inhibit j,
that pattern|
will not be

clustered

r

Present input veclors

@ N Find winner F, unit y,
where y = ¥,

P
'etlvl

® ————— { Fori=1ton 3 ————— —® p=u+d,

= u+ep,
et +clipl

Calculale p-o

Update activations of F, unit

{u=0] [w=s |
" er|lsl]

= : y=11
tnhibit §

Figure 5-27 Flowchare for training of ART 2 network. Figure 5-27 (cominued).
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W',= sf + aul
W

%™ o+w]
P
Y= o+ ]ol

v,= fx) + bilq)

- For no. of learning iterations nit > - -
< lg e it

Update weights for learning unit /
f,= adu+ {i+edid-1}} 1,
b, = gdu,+ {1+ad{d-1} b,

!

Update F, activations
./ x= W
] et
P

ol

for no. of
apochs

True

Figure 5-27 (conunued).
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5.6.8.4" Training Algorithm
The training algorithm of ART 2 necwork is shown below.

195

| Step 0: Inirialize the following paramerers: a, b, ¢, d, ¢, @, 0, 8. Also, specify the number of epachs of

training (nep) and number of learning iterations (nir).
Step 1: Perform Steps 2-12 (nep) times. 7
Step 2: Perform Steps 311 for each input vector ».
Step 3: Update Fy unit activacions:

u;=0; w;=:;; Pi=0; 4=0; »=fla)h

5
xXp= —
e+ il
Updare Fy unic activacions again:
v; +
u = T =5+ aug)
B T
wi
Pi=ny x=—m—;
T e+ [l
pi
;= voow = ) + 6f (g
qi et "P" i f( l) f%

In ART 2 newworks, norms are calculated as the square root of the sum of the squares of the

tespective values.

Step 4: Calculare signals to F3 units:

5= bipi
=1

Step 5: Perform Steps 6 and 7 when reset is true.

Step 6: Find F3 unit Yy with largest signal (] is defined such that 5 2 5,7 = 1 o m).
Step 7: Check for reser:

v 1 + P;
w=——- Pi=witdy ri=———
e T T T e+ il

If)|rl < (p —e), then yy = —1 (inhibit J). Resec is true; perform Step 5.
If |7l = (p —é), then

+ i
p= g b Ay = ————
w, 5, ¢, X, "+”w”
Pi
i = iovi= o) (g
5= iR

Reset is false. Proceed to Step 8.

Step 8: Perform Steps 9-11 for specified number of learning iterarions.
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Step 9: Update the weights for winning unic J:

= ad; + {[1+adld — 1))y
by = adu; + {[1+adld - D]}y

Step 10: Updare Fy acrivarions:

U,. - s = i o
;= ;—+—"Lﬁ_ w; = §; 4 au;,
Pi=witdyn xi= -—LZ
e+ lwl|
P:
i = ——— wi=flg) + bflg)
5= f f g

Step 11: Check for the stopping condition of weight updarion.
l Step 12: Check for the stopping condition for number of epochs.

In the above algorithm, at resonance period, reser will not occur and new winning unit cannot be chosen.
Since in slow learning number of learning iterations is 1, Step 10 in training algorithm need not be processed.
Perform Step 8 unil the weigh changes are below some specified tolerance. If slow learning is performed,
then repeat Step 1 until the weight changes are below some specified tolerance. If fast learning is adopred,
then repeat Step 1 until the patierns placement on the cluster units do not change from one epoch to the next.

5.6.3.5 Sample Yalues of Parameler
The sample values of the parameters used in ART 2 nerwork and their role in effective training process are
mentioned below,

n = number of F; layer inpur units

m = number of F layer cluster units

a b= fixed weights present in the Fy layer. The sample values are 2 = 16 and 6 = 10; when @ = ¢
and # = 0, the ner becomes instable

¢ = fixed weight for esting of reser. The sample value is £ = 0.1. For small ¢, larger effective range
of the vigilance parameter is achieved

d = activation of winning F; unit. Sample value is & = 0.9. The values of c and d should be selected

satisfying the inequality cdfl — & < 1. The value of cdf1 — 4 should be closer ro 1, so that

effective vigilance could be achieved

a small parameter included to prevent division by zero error when the norm of vector is zera.

8= noise suppression parameter. A sample value of noise suppression parameter is @ = 1/./n. The
components of the normalized input vector, which are less than this value, are set 1o zero.

o = learning rare paramerer. In both slow and fast tearning methods, a small value of @ slows down
the learning process.

p = vigilance pafameter used in reset condition. Vigilance parameter can range from 0 to 1. For
effectively controlling the number of clusters, a sample value of 0.7-1 may be aliowed. The
range of p may also be affected by the values of cand &

4;i{0) = Tnitial top-down weights. The initial weights of this weight vectors are given by £;(0) = 0.
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60} = inicial buttom-up weighcs. These should be chosen to satisfy the inequalicy £;;(0) < 1/(1—4) /.
High values of & allow the net to form more clusters.

On the basis of all cthese roles of parameters and their sample values, care should be taken in selecting cheir
values for effective training of the nerwork.

I 5.7 Summary

Unsupervised learning nerworks are widely used when clustering of units is performed. In case of unsupervised
learning nerworks, the information abour the output is not known; when the weights of a net remain fixed
for the entire operation then it results in fixed weight comperitive nets. Fixed weight competitive nets include
Maxnet, Mexican hat and Hamming net. In case of Hamming net, Maxnet is used as a subner. The most
important unsupervised learning nerwork is the Kohonen self-organizing fearure map, where clustering is
performed over the training vectors and the network training is achieved. An extension of KSOFM, Kohonen
self-organizing motor map is also included. An unsupervised learning necwork with targets known is che
learning vector quantization {LVQ)) nerwork. A study is made on LVQ net with its architecture, flowchare for
training process and training algorithm. The variancs of LVQ ner are also included. The compression network
discussed in this chapter is the counterpropagation nerwork (CPN). The rwo types of counterpropagation
neoworks - full CPN and forward-only CPN - are discussed. The testing algorithms for these nerworls are also
given, Another important unsupervised learning necwork is the adaprive resonance theory (ART) necwork.
Irv this chapter, ART 1 and ART 2 nerworks with all relevanc information are discussed in derail.

er.s Solved Problems

1. Construct 2 Maxner with four neurons and
inhibitory weighs £ = 0.2, given the initial acu-
vations {inpur signals) as follows:

= £10.3 = 0.2(0.5 + 0.7 + 0.9)}
=_f(0.3 - 040 = [(-012) =0

al0) =03 @0 =05 (0) = 0.7: o) =f| al®)-£ Y apl0)

ag{0) =909 bf
= ~02
Solurion: Update the acrivations for each node, i.c.. F10.5-0.2(0.3+07 +0.9))
= 0.1 = 0.12
dilnew) = u,(old)fpz,q.(old) all) = f ﬂ\(o)—é‘z.ﬂ-(m
a ' . b
The activation funcrion is given by = £10.7 = 0.2(0.3 + 0.5 + 0.9]
x ifx>0 = f10.36) = 0.36
f= lo ifx<o
First fierrion: aa{l) = fl asi0)~¢ Z a0}
k)
(1) = fl m(0)=¢ ) | ayl0) = 109 - 0.2(0.3 +0.5 +0.7)]
bj =f{0-‘) -0.3) =f(0.6] =0.6
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Second iteration:

a@)=f alm—sz-a;,{n}

L kit
= f[0 — 0.2(0.12 + 0.36 4 0.6)}
=f(0-0216) =0

.
22 = f] axll)—¢ Zakm]

| A
1012 — 0.2(0 + 0.36 + 0.6)]

a3(2) = f|:ﬁ3(l)—€ Zakm}

HA
= £10.36 — 0.2(0 + 0.12 4+ 0.6)]
=£(0.216) = 0216

24(2) =fl:a4(1)—£ qu,(l):l
i
= £10.6 — 0.2(0 + 0.12 + 0.36)]
= £{0.504) = 0.504

Third iteration:

2)(3) =f|:rz| (2)—¢ Z ru.(l):l

kwf
=£{0-0.2(0+ 0.216 + 0.504))
=f(0—-0.144) =0

i

mB) =f|a@)~eY 42
L kj .
= f0 - 0.2(0 + 0.216 + 0.504))
=f{0-0.144) =0
I ]
a(3) = f|m2—e Y a2)
L LA
= f[0.216 — 0.2(0 + 0+ 0.504}]
= f(0.1152) = 0.1152

aa(3) = f| &4(2)—£ Y a(2)
L ity

= F10.504 -~ 0.2(0 + 0 + 0.216)]
= f(0.4608) = 0.4608

Fourth iteration:

aj(d) = f| a1(3)—¢ Zake)jl.

oy
= [0 - 0.2(0 4+ 0.1152 + 0.4608)] = 0

-

23(4) = f| a2{3}—~¢ z a,g(S):l
ety

=f10—0.2(0 + 0.1152 + 0.4608)] = 0

a3(4) =fi:a3(3)—£ Znﬁ@):l

k#j
= f{0.1152 ~ 0.2(0 + 0 + 0.4608)]
= f{0.02304) = 0.02304

a4l =f [m; B)-e) af,(S)}

e
= £10.4608 — 0.2(0 + 0 + 0.1352)]
= £(0.43776) = 0.43776

Fifeh iteration:

mis) =fla@)—£_ 44
L &j
= 10 — 0.2(0 + 0.02304 + 0.43776)) = 0

@} =f| a@)-e ) 44)
L ke 4

= f[0 — 0.2(0 4 0.02304 + 0.43776)] = 0

T

a3(5) = f':a3(4)—-s pIC)
Lol N
= £[0.0234 — 0.2(0 4 0 + 0.43776)]

= f(—0.0645) = 0

as(5) =f[a4(4)—32a;,(4)]
. by

= F0.43776 ~ 0.2(0 + 0 + 0.02304)]
= £(0.433152) = 0.433152
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Even though if further iterations afe made, the value
of 24(5) remains the same, since all the other values
a1(5), a2(5) and 23(5} are equal 10 zero. Thus the

convergence has occurred,

2. Construct and rest the Hamming network to
cluster four vecrors. Given the exemplar vecrors,

M=[-1-1-1} )=[-1-1~-11]

thebipolar input vectorsarex) = [~1 —11 -1}
g=[-1-111k =[-1-1-1%1k
a={11-1~1].

Solution: Number of components in input vector
n=4.

Number of exemplar vectors m = 2.

Serting the inirial weights to 1/2 of the exemplar
vectors, we get

e (e(l) ,(2))

0.5
—-0.5
-0.5
-0.5

=2-05+05-05+05=2

=24+[-1 =11 ~1]

Thevalue y;y; = 2 is the number of com-
ponents at which the input vector x; and
€(1) agree. Now

Yo = byt Y xwg
i

-05
-05
-0.5
+0.5

=2+4+054+05-05-05=2

=24[-1 —11 1]

The value y;;2 = 2 is the number of com-
ponents at which the input vector x; and
€(2) agree.

Inicialize the activations of Maxner as
n(=2. plo)=2

Since y1(0) = y2(0), Maxner will find
the unit with the smallest index as the
best macch exemplar for npur x =
[+1 —~1 t —1]orinsome cases both
may be chosen as best march exemplars. '

2 2 2
where Step 3:
M= -1~) -1} e=[-1-1-11]
: Step 4:
'?UEP 0: The weights are given by 1 P
05 -0.5
__1-05 —05
Y= 05 0.5 |
~-05 05

Second inpnt vector:

Serting rhe bias to #/2, we obrain

l Step 1:

Step 2:

Firse input vector:

I Stepl: Forzy = [~1 -1 1 —1], perform '
Steps 2-4.
Step 2:

Yim =5 + inwil
;

For xy = {—1 — 11 1}, perform Steps ]
24,

Finl = b1 + Z-\'i wi)
7

+0.5
=05
—0.5
~0.5

=2~05+05-05-05=1

=2+]~1 ~111]
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Y = b2+ Z-"r’ Wiy
K .

-0.5
-0.5
~0.5

0.5

=(24+05-05+05+05)=3

=24[-1 =111]

Step 3: Initialize the acrivacions of Maxner as
n=1 p0=3

Step 4: NSince p(0} > yi{0). Maxnet will find
that the unic ya has the best match exem-
' plar for input vectorxa = [~1 ~ 11 1L l

Third inpur vectar:

l Step I: Forxy =[~1 ~1 —~ 11}, perform Stcpﬂ
2-4,

Step 2:

Jut = b1+ Z-\} 1)
F

0.5
-05
~0.5
~0.5

=2-054+054+05-05=2

Y=+ E X
;

=241-1 =1 —11]

—0.5
—0.5
—0.5

0.5

=2+4054+054054+05=4

=14(—) -1 —11]

Step 3: Inidialize the activations of Maxner as

y,(U) =2: )'1(0} = 4

Fourth input vector:

!?tep t: Forxg=[11 -1 - 11, perform Steps I
24,

Step 2:

Fm=b + fo wi)
;

=2+111 =1 —1) [:gg
f-05

=2405-05+05+05=3
yur = b4 Y

-0.5
-0.5
-0.5

0.5

=2-05-054+05-05=1

=24011 -1 -1]

Step 3: Inirialize the activations of Maxner as

n(0) =3 p(0) -

Step 4: Since 3(0) > y2(0), Maxner will find
that the unic y, is the best macch exemplar
L for the input vectorxg = {14 —1 — l].J

The archirecture for the Hamming ner for this
problem is given by Figure 1.

Figure 1 Hamming net architecrure.

Step 4: Since y2(0) > »1(0), Maxnec will find the

unit y1 as the best march exemplar for
l tnput vector x3 = {~1 ~ 1 — 1 1], J

3. Lonstrucr a Kohonen self-organizing map to clus-

o/ ter che four given vectors, [0 0 1 1], [1 0 0 0],

1011 0}and [000 1]. The number of clusters to

5.8 Sclved Problems
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be formed is two. Assume an initial learning rare
of 0.5,

Solution: The number of input vectors is four and

number of clusters o be formed is two. Thus, # =
4 and m = 2. The architecture of the Kohonen
self-organizing feawre map is given by Figure 2.

Figure 2 Architecture of KSOFM.

| Step 0: Initialize the weights randomly berween ]

Oand 1. —
02 09
104 07 . .
Wy = 0.6 0.5 \ R——O,Q(O)—O-s
08 03
I 4x2 J
Firse input vector:

l Step 1: Forx=1[001 1], perform Steps 2-4. ]
Step 2: Calculare the Euclidean distance:

DGY=Y  (wy~ x)?

4
Dy = Z(Hm —x)?

=1 -
={0.2 — 0)* 4 (0.4 — 0)%

+ (0.6 — 1P+ (0.8~ 1)?
= 0.04 + 0.16 + 0.16 + 0.04
=0.4

4
D2) = Z (w2 ~ x)?
=1

={09-0P+ (0707
+©05-1)2+03~-1)?
= 0.81 + 0.49 + 0.25 + 0.49
=2.04
Step 3: Since D(1} < D(2), therefore D(1) is

minimum. Hence the winning cluscer
unitis 11, ie, J= 1.

Step 4: Update the weights on the winning
cluster unic J = 1.
wi(new} = wylold)+ alx; — wylold)]
wi1(new) = wyt{old) + 0.5 [x; — wy(old)]
wit(n) = w1 (0) + 0.5 [xi — wn1 (0})
=02+ 0500 ~02) =0.1
wn (1) = 1021 (0) + 0.5 [xz — 1y (O]
=04+ 0.5(0—04)=02
w31 (m) = w3 (0) + 0.5 [x3 — 109,(0)]
=0.64+0.5(1 ~0.6) =08
wq1 () = wg1 (0) + 0.5 [xg — 1041 (0)]
=0.8+05(1 —0.8) =09
The updated weight matrix after presen-
tation of first inpur pattern is
0.1 0.9
02 07
08 05
0.2 0.3 J

Second input vector:

I Step 1: Forx= {100 0], perform Steps 2—4.

Step 2: Caleulate the Euclidean distance:

D)= (wy~x)’

4
D) =Y (wp — =)

i=1
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= 0.1 - 1)+ (02 -0

+ 08~ 02+ (0.9~ 0
— 0.81 + 0.04 + 0.64 +0.81
=23

4
D=y (wa =5
=l
= (05— 12+(07—07
+(0.5— 0 + (0.3 - 0Y
= 0.0} + 0494 0.25 + 0.09
= 0.84

Step 3: Since Di2) < DQ1), therefore D) is
minimum. Hence the winning cluster
unit is ¥, 1e, f=2.

Step 4: Update the weights on the winning
cluster unit / = 2.

wy(new) = wiglold)+ orfxi — wylold)]
wplnew) = wilold) + 0.5 [ — wplold)]
wa(m) = wn2(0) + 0.5 [xy ~ wi2(®)]
=09+05(1-09=09
wpa(n) = wa(0) + 0.5 [xa — wa(0))
=07+050-07) =035
w3a(n) = w32(0) + 0.5 lx3 — wn(0)]
=05+ 0.5(0 05 =025
war{m = w4(0) + 0.5 [y — w42(0)]
=0.3+0.5(0-03)=015

“The updared weight matrix after presen-
tarion of second input pattern is

0.1 0.95
0.2 035
08 025

09 0.15
i |

Third inpat vector:

G&p 1: Forxz =101 1 0], perform Steps 2—4. ] l

Step 2: Calculate the Euclidean distance:

D(j}= Z (i — %

4
D) =Y wn — 2
=t
=(0.1-02+02-1)"
+(0.8 1) +(0.9~-07
=00l +064+004+081 =15

4
D= (wa - =)
=1
= (0.95 ~ 0) + (0.35 = 1)*
+(0.25 — )2 +(0.15 — 0
= (0.9025) + (0.4225) + (0.5625)
+ (0.0225) =191 -

Step 3: Since D(1} < D(2), therefore D(1) is
minimum. Hence the winning cluscer
unitis ¥y, e, f= L.

Step 4: Update the weights on the winning clus-
ter unit f = 1:
wilnew) = wiflold)+alx; — 10j(old)]
oy (new) = wyplold) + 0.5 [x; — ron (old)
wn () = 1011(0) + 0.5 by — wiy (0]
= 0.1 +0.5(0 — 0.1) =0.05
wny () = wn (0) + 0.5 1xz — war (0]
=0.2+05{ -02)=006
wy1 () = w31 (0) + 0.5 [x3 — wa1 (0]
—0.8+05(1 -08 =09
wyy (m) = way (0) + 0.5 [xs — w4y (0)]
=0.94+05(0—09) = 0.45

The weight update after presentation of
third inpuc pattern is

0.05 0.95
_los 035
YiZ= 109 025

045 0.15 _j
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Fourth inpur vector:

I—Step 1: For x=[00 0 1], perform Steps 2-4. —I

Swep 2: Compute the Euclidean distance:-

4
Dijy = (wj— %)

=1

4
D) = Z (wp ~ %Y’
=Y
={0.05 — 0 + (0.6 - 0)°
+(0.9—0)* + (0.45 — 1)
= 0.0025 + 0.36 + 0.81 + 0.3025
= 1.475

4
D2y = Z (wp — %)

=}

= (0.95 - 0)* +(0.35 - 0)°
F(0.25 -0 +(0.15 - 1Y

= (0.9025) + (0.1225) + (0.0625)
+ {0.7225)

=1.81

Step 3: Since D{1) < D(2), therefore D(1) is
minimum. Hence the winning cluscer
unitis ¥y, le, f=1.

Step 4: Update the weights on the winning clus-
ter unit f = 1:

wig(new) = wifold)+ ee[x; — wylold)]
wil{new) = wy (old) + 0.5 Ix; — w;) (old)]
wii(n) = w0} 4 0.5 [x — wn1 (0)]
= 0.05 4 0.5(0 — 0.05) = 0.025
wa) (n} = wy(0) + 0.5 {x2 — w2 (0}]
=06+0.5(0-0.6)=03
wyt(n) = w3 (0) + 0.5 [x3 — w91 (0)]
= 0.9 + 0.5(0 ~ 0.9) = 0.45
wyr(n) = wy (0) + 0.5 [xg — 14y (0)]
=0.454+0.5(1 — 0.95) = 0.475

v

The final weight obtained after the pre-
sencation of fourth input partern is

0.025 0.95
0.3 035
045 025
0.475 0.15

wy =

Since all the four given input patrerns are
presented, this is end of first iteration or
I-epoch. Now the leatning rate can be
Tpdated as

a(t+ 1) =0.5a(n
a(l) =05a(0)=05x0.5=025

————— |

With this learning rate youtin pro-
ceed further up to 100 iterations or «ill
radius becomes zero or the weight matrix
reduces to a very negligible value. The
net with updated weighes is shown by

| Figure 3. 4‘

Figure 3 Net for problem 3.

4 For a given Kohonen self-organizing feature map
with weights shown in Figure 4: (a) Use che square
of the Euclidean distance to find the cluster unit
¥} closest to the inpurt veceor (0.2, 0.4). Using a

learning rate of 0.2, find_the new weights for unit_

7 {b) For the inpur veceor (0.6, 0.6) with learn-
Ing race 0.1, find the winning cluster unit and its
new weights.

Solution: (a) For the inpucvector (0.2, 0.4) = (x1,x2)
and = 0.2, the weight vector Wis given'by

W 03 02 0.1 08 0.4
=105 0.6 07 09 02

—-
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Figure 4 KSOFM net for problem 4.

Now we find the winner unit using square of
Euclidean distance, Le.,

2
D{j)= Z(H},} - x,-)2 = (wU - xl)z + (wlj "32)2

=1
Forj=1103

D(1) = (0.3 — 0.2)° + (0.5 — 0.4)°
=001 + 001 =0.02

D) = (0.2 — 0.2)% + (0.6 — 0.4)°
=0+04 =0.04

D(3) = (0.1 — 0.2)? + (0.7 - 0.4)*
=001+009=001 ¢

D(4) = (0.8 - 0.2)7 + (0.9 ~ 0.4)?
= 0.36 - 0.25 = 0.61

D(5) = (0.4 - 0.2)% + (0.2 ~ 0.4)°
= 0.04 4+ 0.04 =0.08

Since D(1) = 0.2 is the minimum value, the winner
unit is / = 1. We now updare the weights on the
winnee unit / = 1. The weight updation formuta is
given by

wijlnew) = iy (old)+ alx; ~ wylold)]

Substiruring / = 1 in the equation above, we obrain

wir (new) = wylold)+afx —wp (old)]

Fori=1102,
wyy{m) = wy O+ afxy = w1, (0)]
=0.3+02(0.2-03)=0.28
way () = wz1 (O alxy — w1 (0)]
=054+02(04-~05) = 0.48

The updated weight matrix is given by

W [028 02 01 08 04
=l048 0.6 07 09 02

« For the input vector (e, x2) = {0.6,0.6) and
@ =0.1, the weight matrix is initiatized from
Figure 4 as

w03 02 0108 04
=105 06 07 09 02

Now we find the winner unit using square of
Euclidean distance, i.e.,

2
DUy =Y Gy ) = wnj— m) 4 (g~ )

=}

Forj=1w5
D(1) = (03 — 0.6 + (0.5 — 0.6)°
=0.09+0.01 =0.1
D(2) = (0.2 — 0.6 + (0.6 ~ 0.6)"
=0.08+0=008

DY = (0.1 — 0.62 + (0.7 ~ 0.6)°
=025+ 001 =0.26

D(4) = (0.8 — 0.6} + (0.9 — 0.6)°
=0.04+-0.09 =013

D(5) = (0.4 ~ 0.6 + (0.2 ~ 0.6
=0.0440.16=0.2

Since D(2) = 0.08 is the minimum value, the winner
unicis / = 2. We now update she weights on the win-
ner unit with @= 0.1, The weight updation formula
is given by

wilnew) = wi{old)+ a[x; — wilold)]
Substicuting / = 2 in the equation above, we obtain

wiz(new) = wilold)+ alx — wp{old}]

5.8 Solved Problems
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Pori=1to02,

wi2{n) = wia(0)+ elx) — wi3(0)]
=0.240.1{0.6 — 0.2) = 0.24

waz(n) = wn(0)+ alx — wn(0)]
=0.6+0.1{0.6 - 0.6) =0.6

The new weight macrix is given by

wo[03 024 01 08 04],
=105 06 07 09 02

5. Consider a Kohonen self-organizing net with two

- ter units and five inpur units, The weighpj

vectors for the cluster units are given by 5

7/
Now we find the winner unic using square of
Euclidean distance, i.e.,

D{j) = Z(wy' —x)?

i

“Fori=1lw5andj= 1102,

D{1) = (1 — DY + (0.9 — 0.5 + (0.7 — 1)
+{0.5-0.5% + (0.3 - 0)2
=1+016+009+0+0.09=134
D) = (0.3~ 0)* + (0.5 — 0.5 + (0.7 — 1)?
+(09-05° +( -0y
=009+ 0+009+0.16+1=1.34

. Aswe can see, in this case D(1) = D(2}, so the winner

wy = [1.00.90.705 0.3] ,l\‘lu/ unit is the one with the smallest index. Thus, winner

wy = [0.30.50.7 0.9 1.0

Use the square of the Euclidean distance ro find
the winning cluster unit for the inpur pattern
x=1[0.00.5 1.0 0.5 0.0]. Using a learning raze of
0.25, find the new weights for the winning unir.

* % Xy X X

Figure 5§ KSOFM ner.

Solution: The net can be formed as shown in Figure 5.
For the input vecror x = [0.0 0.5 1.0 0.5 0.0] and

the learning rate @ =0.25, the weight vecror W is
given by

1.0 0.3
0.9 0.5
W=107 07
0.5 0.9
03 1.0

unit is ¥, i.e.,, J = 1. We now update the weights on
the winner unit with & = 0.25. The weight updation
formula is given by

wi(new) = wylold}+a [x; — wifold}}
Substituting f = 1 in the equation above, we obuain
wi (new) = wy {old)+ efx; — wii (old)]

Fari=1ltw5,

wy1(n) = w (0)+o [ — w11 {0))
=14+0250~-1} =075
way{n) = way{0)+ o [x — w2, (0)]
=0.9+0.2505-09) =08
w3 (1) = w1 (O)+ o (x5 ~ w31 (0)]
=07+ 0.25(1 — 0.7) = 0.775
wsr{n) = wy) (0)+ o [ — w41 {0)]
=0.5+0.25(0.5 - 0.5 =05
ws1{n) = ws) (0)+ ot [xs — w51 (0)]
=034+ 0.25(0 — 0.3) = 0,225

The updated weight matrix for the winning unic is
given by

075 03
08 05
W=10775 0.7
05 09
0.225 1.0
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6. Conscruct and test an LVQ net wich five vectors
igned o two classes. The given vectors along
ith the classes are as shawn in Table 1.

- . Tablet

Vector Class
S8 ol 1 1

AN 1000 2

I 0001

. [1 100 1

o4t vo .1

Solution: In the given five vectors, first woyecrors are
used as inicial weight vectors and the remaining three
O} . .
vectors are used as inpur vectors. Based on this, LVQ
net is shown in Figure ©, along with initial weights.

Figure 6 LVQ new

Inicialize the reference weight vectors as

w =0 0 1 1} wp=fl 0 0 0
. RS s SR
Let the learning rare bear = 0.1. N (‘Q 9 ;

P
L‘Oj

For [0 0 0 1] with T = 2, calculate the square of the
Fuclidean distance, i.e.,

_______ “

i Dif) = Z(w{;'_ xD

R

Firse inpus vector

Forj=1102,
DY =0~02+(0—-02+(1—0?
+1-1F=1
D)= —-02+(0—-07+©0—07
+o~1=2

Since D(1) < D{2), D(1) is minimum;_hence the
winner unir index is J = 1. Now thag T % J, dje
weight updation is performed as e

wylnew) = wylold)— efx— wy(ald)]
wii{n) = wy1 (0}— efx; — wn1{0)]
=0-010-0)=0
wy (m = woy (O~ atler — w1 (O}
=0-010-0)=0
wy1{n) = w5y {0)—alx — w3 (0]
=1-010-1)=1.1
w41 {n) = wg1{0)— etlxg — g (0)]
=1-01{I-N=1

After the presentation of first inpur pattern, the
weight matrix becomes

—
Qo O -

Second inpur vector

For [1 100} with T = 1, calculate the square of the
Euclidean distance, Le.,

4
Dj) =Y tw— )
=1
Forj=1w2,

D1y = (0 — 1) + {0~ 1?4+ (1.1~ 0

+{1 -0 =421
D) = (1 =12+ (0 - 12+ ©0-0F
+0-0Y=1

5.8 Solved Problems
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Since D(2) < D(1), D(2) is minimum; hence the
winner unit index js / = 2. Again since T # /, the
weight updation is performed as
wylnew) = wylold)— erfx — wy(old)]
wia(m = wi2{0)— el — w2(0)]
=1-01l~-1)=1
w2 (n) = w20}~ el — wy2(0)]
=0-01(1 -0) =-0.1
w3 (n) = w2 (0)— erfxy — w3, (8)]
=0-010-0)=0
wiz{n) = wia{0)— g ~ (03]
=0-01{0-0=0

After the presentation of second inpuc parten, the
weight matrix becomes

0 1
0 -01
W= 1.1 0
0
Third input vector

For [0 110} with T = 1, calculare the square of the
Euclidean distance as

4
D(j) =) (wy~ x)?

i=]

Forj=1rt02,
D) =O~02+ (0~ +(11—1)?
+{l1-0)* =201
D)= (1 =0 4+ (0.1 - )} + (0 —1)?
+(0-0? =321

Since D(1) < D(2),D(1) is minimum; hence the
winner unit index is / = 1. Now that T = J, the
weight updation is performed as

wi{new) = wylold)+ cx — w)(old)] ’

Updating the weights on the winner unit, we obrain

wn(n) = wy (0} alx; — wir (0)]
=0+010-0)=0

wpi{m) = w{0)+ g — wy (0]
=040.1{(1 -0} =0.1

w3y {m) = w1 (O)+ elxs — w3 {0)]
=1.14+01(1-1.1)=1.09

w1 (m) = wg1{0)+ exlxg — w4 (0)]
=1 +0.1(0—-1) =09

After the presenation of third input pattern, the
weight matrix becomes

0 1

0.1 -0.1
W= 109 0O

0.9 0

Thus the first epoch of the training has been com-
pleted. It is noted thar if correct class is obtained for
first and second input parterns, further epochs can be
performed uneil all the winner nnits become equal to
all the classes, L.e., all 7=/

7. Copsider an LV(Q) net with two inpuc units and
r four target classes: |, ¢z, ¢3 and ¢4, There exist

16 classification units, with weight vectors indi-
cated by the coordinates on the following chare,
read in row—column order. For example, the unit
with weight veccor (0.2, 0.2), (0.2, 0.6) is assigned
to represent class 1 and the classification units for
class 2 have initial weight vecrors of (0.4, 0.2},
(0.4, 0.6}, (0.8, 0.4) and (0.8, 0.8). The chart is
given in Table 2.

Table 2

X2

1.0

08 3 o o o

06 a0 o 3 g t )
04 a6 o g o

02 aq o a

0.0
00 0.2 04 06 08 10 x

Use square of Euclidean distance to measure the
changes occurring.

* Given an input vector of {0.25, 0.23) }cp
menting@d using a learning rac
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of @ = 0.25, show which classification unic
moves where (i.e.,, determine is new weight
vector).

Given the inpur vector of (0.4, 0.35) repre-
senting dlass 1, using initial weight vector and
learning rate of & = 0.25, note what happens?
Given the input vector of (0.4, 0.45), deter-
mine the performance of the net. The input
vecior represents class 1.

Solution: The LVQ net for this problem with two
inpur unitsand four cluster units is shown in Figure 7.
“The initial weight vectors for the respective classes are
shown below.

Figure 7 LVQ net (with nwo inpur units,
four cluster units).

Class 1

Initial weight vector

02 02 06 06
w‘=[0.2 0.6 0.8 0.4]

with arget # = 1.

Class 2:

Initial weight vector

04 0.4 08 08
%:[0.2 06 038 0.4]

with targer £ = 2.

Class 3.

Initial weight vector

0.2 02 06 06
Wa:[oA 0.8 0.6 0.2]

with target ¢ = 3.

Class 4:

Initial weight vecror

04 04 08 08
W4=[o.4 08 06 o.z]

with target £ = 4.

+ For the given input vector {#1, #2) = (0.25, 0.25)
with @ = 0.25 and ¢ = 1, we calculate the square
of the Euclidean distance using the formula

2
D(j =Y (wj— =) = (wy— af + (g~ =)

=1
Forj=11w4,
D(1) = (0.2 - 0.25) + (0.2 — 0.25)* = 0.005
D(2) = {02 - 025)% + (0.6 — 0.25)* = 0.125
D(3) = (0.6 — 0.25)% + (0.8 — 0.25)% = 0.425
D) = (0.6 — 0.25) + (0.4 — 0.25)* = 0.145

As D{1) is minimum, therefore the winner unic
index is / = 1. Now we updare the weights on the
winner unic, since ¢ = f = 1, & = 0.25, using the
weight updarion formula

wylnew) = w{old}+a[x — wjlold)]

Updating the weights on the winner unit, we
obtain
wy (new) = wy {0)+ afxy — w11 {old)]
= 0.2 +0.25(0.25 — 0.2) = 0.2125
wy) (new) = w71 (0)+ etfxz — w21 {old)]
=0.2+0.25(0.25 — 0.2) = 0.2125

Thetefore, the new weight vector is

[0.2125 0.2 0.6 0.6]

Wi=102125 06 08 04
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* For the given inpuc vector (4, ) = (0.4, 0.35)
with & = 0.25 and £ = 1, we calculate the square
of the Euclidean distance using the formula

2 S
DY =Y {wy— =) = oy — =) + gy =520

=l
Forj=1to4,
D() = (0.2 — 0.4)% 4 (0.2 ~ 0.35)* = 0.0625
D@) = (0.2 — 0.4% + (0.6 — 0.35)? = 0.1025
D(3) = (0.6 — 0.4 + (0.8 — 0.35)% = 0.2425
D) = (0.6 — 0.4)% + (0.4 — 0.35)* = 0.0425
As D{4) is minimum, therefore the winner unit
index is / = 4. Thus, fourth unit is the winner
unit that is closest to the input vector. Since # 3 J,
the weight updation formula used is
wylnew) = wylold)~ o [x — wy(old)]
Updating the weights on the winner unit, we
obrain
w4(new) = 1w14(0)— atfx; — wi4(old)]
= 0.6 —0.25(0.4 — 0.6} = 0.65
wag(new) = wiq(0)— alx — wz4lold)]
= 0.4 —0.25(0.35 — 0.4) = 0.4125

Therefore, the new weighe vector is

W, _ [0:2 02 06 065
1= 102 06 0.8 04125

* For the given inpur vecror (r), 42} = (0.4, 0.45)
with @ = 0.25 and ¢ = 1, we calculare the square
of the Euclidean distance using the formula

2
)= E (wy — =¥ = (wy;— ) 4 (g — x)*

=1
Forj=1vw4,
D(1) = (0.2 — 0.4)% + (0.2 — 0.45)% = 0.1025
D(2) = (0.2 — 0.4)* + (0.6 — 0.45)% = 0.0625
D(3) = (0.6 — 0.4)? + (0.8 — 0:45)* = 0.1625
D(4) = (0.6 — 0.4)% + (0.4 — 0.45)* = 0.0425

As D(4) is minimum, therefore in this case also
the winner unit index is J = 4. Since £ # J, the
weight updartion formula used is

wylnew) = wylold)— alx — wylold)]
Updaring the weights on the winner unit, we obtain
wi4(new) = wn4{0)— afx — wi5{old)]
= 0.6 -0.25(0.4 ~ 0.6) = 0.65
wn4(new) = w4{0)— alxz — wa4lold)]
= 0.4 — 0.25{0.45 — 0.4) = 0.3875

Therefore, the new weight vector is

o, — [02 02 06 065
'= 102 06 0.8 0.3875

8. Consider the following full CPN shown in
Figure 8. Using the input pair x = [1 00 0] and
y = [1 0], perform the phase I of training (one
step only). Find dhe activation of the cluster layer
units and update the weights using learning rates

Figure 8 Instar model of CPN net.

Solution: The input pairisx = [1000]and y = [10]
and the learning rates areor == 0.2 and f=0.2.

Phase I of training: The initial weights are obrained
from Figure 8 as

0.6 04
0.6 0.4 05 0.5
V=lo4 06| * W=[o.5 0.5]
04 06

R S
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Now we calculate the square of the Euclidean distance
using the formula :

4

2
D) =Y ta= v+ Y (e — wy)?
=1

=1

Forj=1102,

4 2
D= ti—wl+ ) (n—wnl
=1

i=l
= (r — o) + Gz — o)+ Gy — om)?
+ e — o) + (1 —wi) o+ G — war )
=(1—0.6?+{0— 067 +(0—0.4?
+(0—042%+ (1 —052+ 10— 057
=0.16+0.36+0.16 +0.16 + 025+ 0.25
D(1) = 1.34

4 2
D2y =Y v~ w2l + Y i — i)
; =1

=1
= (1 — o12) + b2 — v2)? + (3 — vm2)?
o+ (e — va2)? + (g — w2 + (2 — wn)?
= (1= 0.4% + (0 - 0.4 +{0 - 0.6)°
+(0 06?7+ (1 - 0352+ (0 - 0.5
=036+0.16+036+036+0.25+0.25
D(2) = 1.74
Since, D(1} < D(2), therefore the winner unit index

is ] = 1. We now update the weights on the winner
unir.

Waight updarion: The weight updation between the

x-inpurand cluster layer is performed as shown below:
vif{new) = wylold)+afx — zylold)]
Fori=1to4and /= 1, we obrain

1 {new) = vy (04 alxy — vy (old}]
=0.6+0.2(1 — 0.6) = 0.68

1 {new) = o1, (Ol — w21 {old)]
= 0.6+ 0.2(0 — 0.6) = 0.48

v31{new) = va1{0)+ arfxs — e31(cld}]
=04+02(0 —04) =032

gy (new) == 24) (0)+ afxs — vg {old)]
=044 020 -04) =032

The weight updarion berween the y-inpur and cluster
layer is performed as shown below:

wy(new) = w,g[old)+_ﬂ[7;, — w;,](old)]
For £ =1to 2 and f = 1, we obuain

wiy{new) = wy {0)+8 [y - wni(old)]
=05402(1-05 =056
wy (new) = w21 (0)+8 [z — w1 {old)]
=05+02(0-05) =04

Thus the updated weights are

0.68 0.4

0.48 0.4 _ o6 05
V=103 06| ™ W‘[o.é 0.5]

032 0.6

9. Consider the CPN net shown in Figure 9. Using
the input pair x = [0 1 1 0] and y = [0 1}, per-
form phase | of raining (one step only). Find the
activation of the cluster layer units and updare the
weights using learning rates o = 0.2and £ = 0.3.

Figure 9 Instar model of CPN net.

Solution: The inpur pairisx=[0 [ 10}, y=[01]
and learning rates are @ = 0.2 and §=0.3.
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Phase I of rraining: The initial weights obtained from
Figure 9 are

0.7 05
0.7 05 2 02
V= and W= 020
05 07 02 02
0.5 0.7
Now we calculate the square of the Euclidean distance
using the formula ‘

4 2
D(j) = Z (x; — If.-j)2 + Z e — w,gj):z
i=1 k=1

Forj=11w2,

4. z
DY = s — )+ Y (i — w)*

=1 =1
=(0-07P+(1 -0+ (1 - 057
F+(0—052+(0-02%+(1-02?
= 0.49 + 0.09 + 0.25 4 0.25 + 0.04 + 0.64
D(1) =1.76

4 2
D=3 (i—wt+ Y (n—we)
=1 =l

={0-052+(1-05"+({-077
+0 =072 +(0-02?% + (1 — 0.2
=0.25+0.25+0.09 + 0.49 + 0.04 + 0.64
D(2) = 1.76
In this case, D(1) = D(2) = 1.76, i.e., both the dis-
rances are equal. Hence the unitwith the onallesr index

is chosen as the winner and weights are updated, Le.,

we take J = 1 and updare the weights on this winner
unit,

Weight updation; The weight updation between the
x-inputand cluster layer is performed as shown below:
v;1(new) = vi{old}+ alx; — vylold)]

Fori=1t 4and =1, we obmin

vy {new) = v11(0)+ o[y — 211 (old)]
= 0.7 +0.2(0 — 0.7) = 0.56

1 {new) = v (0)+ afx2 = vn{old)]
=07+02(1 —0.7) =076
v3) (new) = v31{0)+ aelxs ~ v3)(0ld)]
=0.5+02(1 —0.5) = 0.60
41 (0} ety — vg1(old)]
=10.5+02(0 —0.5) = 0.40

vi1{new)

The weight updadon berween the ¥-inpuc and dluster
layer is performed as shown below:

wiy(new) = wiy(old)+-Aly — wylold)]
For #=1to 2 and / = 1, we obrain

wi{new) = w1 (0)+80n — 21 (old)]
=0.2+03(0-02)=0.14

wai{new) = wy) (0)+B[y2 — w2 (old))
=0.2+0.3(1 —0.2) = 0.44

Thus the updated weights are

0.56 0.5
_ {076 05 _f014 02
V=las o7| @ V= [0.44 0.2]
04 07

10. Consider the forward-only CPN netr shown in
Figure 10. Using the input pair x = [1 0 0 0]
and y = (1 0], perform phases I and II of train-
ing and update the weights using learning rates
a=a=102.

cluster y-oulpul
layer layer
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Solution: The given input pairisx =1 0 0 0]
andy=[1 0] with learning rates 0 = 2 = 0.2,
The inicial weights obrined from Figure 10 are

0.8 0.2
0.8 02 0.5 05

V=102 og| ™ W’[o.s 0.5]_
02 08

Phase I of rrasming: We calculate the Eudlidean dis-
tance using the formula

4
D(j) = (i — )

=1

Forj=1102,

5
D) =) = wn)
=1
=(1 - 087 +0—-087%+(0-02)7°
+(0—-0.27?
= 0.04 + 0.64 + 0.04 + 0.04
D(1) = 0.76

4
DRy=) (5~ vV

=1

={1-027+{0—-02%+(©-08)?

+ (0 — 0.8)?
=0.64 + 0.04 + 0.64 5+ 0.64
D(2) = 1.96

Since D(1} < D(2), the winner unit index is J == 1.
Weight npdation: The weight updation on the winner
unit is given by
vylnew) = vylold)+ e[x; — v;/(old)]
Fori= 110 4and f =1, we obuain
vy (new) = vy O e — 21y {old)]
=0.8+02(1~-0.8) =084

31 (new) = 11 (0)+ o[x; — 21 (old)]
=0.8+402(0 - 0.8) =0.64

vy (new) = v3(0)+ exxs — w3y {old))
=0.240.2(0~0.2) = 0.16

vir{new) = v4y (0)+ afxs — v45{old)]
=02402(0—-02) =014

The wpdared weight marrix is,

0.84 0.2
0.64 0.2
0.16 0.8
0.16 0.8

V=

Phase IT of training: We calculare the Euclidean
distance using the formula

94
D) = ) i — wg)?

i=}

Forj=11w2,

4
D)y =~ oa)?

=1
= (1 - 0.84)% + (0 — 0.64)* + (0 — 0.16)"
+(0—0.16)°
= 0,0256 -+ 0.4096 + 0.0256 + 0.0256
D(1) = 0.4864

4
D)=y (xi~ v

=1
=(1-02%+(0-02?%+(0-0.8)?
+(0-08?
= 0.64 + 0.04 + 0.64 + 0.64
D(2) =196
Since D(1) < D{2), the winner unit index is / = 1.
Weight updarion on winner unit:
* Updating the weights into unit zp:
viflnew} = vylold)+ alx; — vylold)]
Fori= 1t 4and /=1, we obnin

i1 (new) = vy {0+ alx) ~ pqy (0ld)}
=0.84 + 0.2(1 — 0.84) = 0.872

I

L
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v21(new) = v21 {0+ ey — vy (old)]
= 0.64 + 0.2(0 — 0.64) = 0.512

v31(new) = v31{0)+ ax3 — v31(old)] ‘
=016+ 0.2(0 — 0.16) = 0.128
iy (new) = gy (0)+ afxeg — 141 (0ld)]
=016+ 0.2(0 — 0.16) = 0.128
» Updating the weights from unit ; to output layer:
wi{new) = wyold) + 2 [y — w,(._;(ola)]
Forle=.1 o 2and [ = 1, we obuain
w1 {new) = w10} + 2y — wi{old)}
=05402(1 -05) =06
wa{new) = w1 (0) + aly2 — war (old)]
=0.5+0.2(0 — 0.5) = 0.4

Thus, the updated weights are after phase II of

trajning are

0.872 0.2

_ 0512 02 _[o6 05

V=lo1s 0g| w_[M 0.5]
0.128 0.8

/ll./fonscruct an ART 1 nerwork for clustering four

input vectors with low vigilance parameter of |,

0.4 into three cluscers. The four input vecrors
arc (0001, [0101],(0011}and[1000).
Assume the necessary parameters needed.

Solution: The values assumed in this case are p=
0.4, @ = 2. Also it can be nored that n.=_4 and

m=3 Hencc,
Bnttbfﬁ-up—weights, bi(0) = 1A 4+ A)=1/1 4+ 4 =
0.2. o

Top-down-weights 50y =1.
Fori=lwdandj=11w02,

f02 0.2 0.2
0.2 02 0.2
0.2 0.2 02
102 02 0.2
3 1
1
I

AT
bii =,
'3
&

4x3

]3x4

and tj,'

bt — et
—
—

r Step 0:

Step 1:
Step 2:
Step 3

Step 4:

Step 5:

Step 6:

Step 7:
Step 8:

Step %:

Initialize the pa:amcters:

p=04; a=2
Inirialize weights:
5{0)=02; £{0)=1

Seart compueation.

For the first input vector [0 § 0 1],
petform Steps 3-12.

Set activations ofall F; units to zero. Set
activations of F} (a) units to inpuc vecror
s=[0001).

Compute norm of 5 :
sl =0+0+0+1=1

Compute activations for cach node in
the Fy layer:

x=[0001]

Compute net input to each node in the
Fy layer:

4
%= by
=l

Forj=1103,

71 =0.2(0) 4+ 0.2{0) + 0.2(0} + 0.2(1)
=02

y2 = 0.2(0) + 0.2(0) + 0.2(0) + 0.2(I)
=02

¥3 = 0.2(0) + 0.2(0) + 0.2(0) + 0.2(1)
=02

When resct is true, perform Steps 8-11.

Since all the inputs pose same netinpur,
there exists a tie and the unit with the
smallest index is the winner, ie., f=1.

Recompute the F) activations (for f=1):
x;;s,-zj,-

x=sntn=[0 00 1]t 1 1 1]
=000 11"
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Step 10: Calculate nonm of x:
fl«ti =1
Step 11: Test for reset condition:

el 1
W_ N =1.0>04(p)

Hence resec is false. Proceed to Step 12.
Step 12: = Update battom-up weights fora = 2
i

o
bylnew) = —————
o) =

_ 2x; _ 2x;
2-1+[x] L+l
2x0
n=_———=0
1+1
2x0
by = =0
21 Tx1 ;
2x0
31:.- =0
2N 141
g 2xi 2
bii= = =
1+1 2

Therefore, the bottom-up weighr
matrix by becomes

0 02 02
0 02 02
0 02 02
102 62

by =

+ Update che top-down weights:

i (new) = x;

—_—
—— O
—_ e

0

=1

1

| |

Steps 0 and 1 remain che same.

I—Step 2: For the sccond input vecror [0 1 0 1ﬂ
petform Steps 3-12.
Step 3 Set activations of all Fz.unirs ro zero.
Sec activations of Fy(a} units to inpur
vecrors=[0 } 0 1].

Step 4: Compure norm of s:
Bl=0+1+0+1=2

Step 5: Computeactivations of each nodein the

F1 layer:
x=[0101]
Step 6: Compute net inpur to each node in the
F3 layer:
4
Y= E by
=1
Forj=1103,

n=00+01L+00)+i(l)=1

r =02(0) +0.2(1) + 0.2(0) + 0.2(1)
=04

73 = 0.2(0) + 0.2(1) + 0.2(0) + 0.2(1)
=04

Step 7: When resex is true, perform Steps 8-11.

Step 8: The unit with largest nec inpur is the
winner, Le., /=1,

Step 9: Recompure Fy activarions (for / = 1):
x=s5=[0101][0001]=[0001]
Step 10: Calculate norm of x
Il =0+0+0+1=1
Step 11: Test for reset condition:

I« 1
— ==-=05=04(
2 Pl

Hence reset is false. Proceed o Step 12.

Step 12: « Update botcom-up weights for o = 2;

2x,
b,-(new):. !
d 1+ i
by =220 o
T T
2x0
by = =0,
1T
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L

2x0

= =0,
=17

2x1 2
b= =1
=172

Therefore, the bowom-up weight

matrix by becomes

0 02 0.2
0 02 0.2
0 02 02
1 02 02

by =

* Update the top-down weights:

ilnew) = x;

0001
tj,-::ll]l
1111

Steps 0 and 1 remain the same.

l

Step 2: For the third input vecror [0 0 1 1], l

Step 3:

Step 4:

Step 5:

Step 6:

perform Steps 3-12.

Ser acrivations of all F; units to zero.
Set activarions of Fy(a} units to input
vecrors= [0 0] 11.

Compute norm of st
Il =0+0+141=2

Computeactivations of each node in the
Fy layer:

x»=f0011)

Compute ner input to each node in the
F7 layer:

4
%=y by
=1
Forj=11w3,

A =00)+00+0()+1{(I)=1

2 = 0.2(0) + 0.2(0) + 0.2(1) + 0.2(1)
=04

y3 = 0.2(0} + 0.2(0) + 0.2(1) + 0.2(1)
=0.4

Step 7: When reset is true, perform Steps §-11.

Step 8: The unit wich largest ner input is the
winner, L.e, f= 1.

Step 9 Recompute Fy activations {for / = 1):

H=spp=(0 0 1 1[0 0 0 1]
=[0 0 0 1]

Step 10: Calculate norm of x:
I =0+0-+041=1

Step 11: Test for reset condition:

fhl

sl

Hence reset is false. Proceed o Step 12.

1
—=0. 04
5 5204(p)

Step 12: * Update bottom-up weights for o = 2:

bif(new)
i U+ i
2x0
by =——=0
41
2
by = xo=0;
141
2x0
by = =0;
T
2x 1 2
by = ———=—-=1}
“ETEI T 2

Therefore, the borrom-up weight
matrix by becomes

0 02 02
0 02 02
0 02 02
1 02 02

by =

* Updare the top-down weights:

ti{new) = x;

—— O
—_— D

—_— O
— e
| I
L
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Steps 0 and 1 remain the same,

Step 2: For the fourth il'l.put vector [1 0 0 0], I

perform Steps 3-12.

Step 3: Ser activarions of all F; units o zero.
Ser activations of F1(a) unics to input
vector s = [1000).

Step 4: Compate norm of 5
Isf=14+0+0+0=1

Step 5: Compure activations of each nodein the

F| layer:
x=[1000]
Step 6: Compute net input to each node in the
Fa layer:
4
%= Z bjpxi
=1
Forj=11w3,

1 = 0(1) + 0(0) + 0{0) + 1(0) = 0

12 = 0.2(1) + 0.2(0) -+ 0.2(0) + 0.2(0)
=02

33 = 0.2(1) + 0.2(0) + 0.2(0) + 0.2(0)
=02

Step 7: When reset is true, perform Steps 8-11.

Step 8: The unit with largest nec input is the
winner, L.e., f = 2.

Step 9: Recompute Fy activarions:

=stg=[1 00 0]l 1 1 1]
=(1 0 0 0]

Step 10: Calculate norm of x:
bxl =14+0+0+0=1

Step 11: Test for reset candition:

fisl

Hence reser is false. Proceed to Step 12.

Step 12: * Update bottom-up weights for a = 2:

by(ncw)=i—_ih
2x1 2
== =0
2x0
511=-1—_|:T=0;
2x0
531—m=0.
2x0
=11 =

Therefore, the bomom-up weight
marrix ;7 becomes

0102
00 02
00 02
1002

by =

* Update the top-down weights:

gilnew) = x;

0001
p=|1000
1111

Step 13: Test for stopping conditien. (This com-
| pletes one epoch of training,) B

‘The nerwork may be crained for a particular number
of epochs on the basis of the stopping condition.

12. Fonsider an ART 1 neural net with four F;
unics and chree Fp units. After some training,

the weights are as follows:

Bottom-up weights Top-down weights

067 0 0.2 {000
o0 0 02 _
0 0.67 6.2 3 Ixd

Determine the new weight matrices after the
vector [0, 0, 1, 1] is presented if

* The vigitance parameter is 0.3.
* The vigilance paramerer is 0.7.
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Solution: [t can be noted that n = 4, m = 3 (clusters)
anda=2.

* Vigilance paramerer p = 0.3.
Bottom-up weight,

1 1
bj(0) = —— = —— =02
50) L+n 1+4
Top-down weight”
5(0) =1

Note: These are not necessary as by and t; weights
are already given.
We now compute normof s = [0 0 1 1];

[M=0+0+1+1=2
Then we compute the activations of F) layer:
x=[0 01 1]
Now, calculate the net input:

4
y= D b
=1
4
B =Y xiby
=1

=067x04+0x0+1x0+1x0=0

4
y= %o
=1

=0x0+0x04+1x0+1x0.67 =067
4

B=y xbs

=1
=0x024+0x024+1x02+4+1x02
=0.4

Since yy is the largest, hence the winner unit is
J=2
Compurte Fy activations again,

G=gtr=[0 0 1 1J0 0 0 1]
=0 0 0 1]

Computing the norm of x we obtain

€] =0+0+0+1:=1

We now test for reset. Since

< 1 -y

— =-=0.5>03()
sl 2

we update the weights, Updare bortom-up weights

bij(new) :z:f“I" e=12)
2x 0
bu=5;1€1—ﬁ
x
br = 2;131 =0,
x
b52='i':'f“_'_—l=0;
2x1
b42=m =

Update top-down weights, #r{new) = x;.
The new top-down weights are

4=

— O

0
0
1

— 00
—_—_—o

The new bottom-up weights are

0.67 0 0.2
b | 0 002
=190 ¢ 02
0 1 02

* Vigilance parameter p = 0.7. The inpur vecror is
s=[001 1]. Now calculate norm of 5,

Isi=0404+1+1=2

Set acrivations of Fy layer as

x=[0011]
Calculating the net input we obrain

4

Y= Z x,‘bﬁ‘
i=1
4

n= Exibil
=

=067%x0+4+0%x0+1x04+1x0=0



218

Unsupenvised Leaming Networks

4
n=2 xba
=1

=0x0+0x0+1x0+1x067=067
4

y =9 xibn

=1
=0x02+0x0+1x02+1x02
=04
As y is the largest, therefore the winner unit index
isJ=2.
Recomputing the activations of Fy layer we ger
=2
s=stp=[0 0 1 1[0 0 0 1]
=[0 00 11

The norm of x is
el =0+0+0+1=1

We now test for reset condition. Since

1
2

y2 = —1{inhibic node 2). Therefore, the netinpur
becomes

=05<07{p)

n=0 np=-L =04
As the largest is y3, the winner unit indexis /= 3.
Recompuring Fy layer activations, we get
x = sty = {0 01 131111
=0 01 1]

From this we get that the norm of ||} = 2. Testing
for reser we obtain

W2

Hence we update the weights, The bottom-up
weights are (x=[0011L7=3)

b( )_' &x;
P = T+ Il
2x0
by = e =0;
B=3 1+2

2x0 _
2142

2x1
=—-—x-—-=0.67;
2142

2x1
byy = ————— = 0.6
=7 732 ¥

3 =

b33

The updated botcom-up weights are

067 0 0

poo|0 00

=10 o0 067
0 067 067

The cop-down weights are given by gr(new) = x;.
Hence the updated top-down weights are

00
61
11

~13,.Consider an ART 1 nerwork with nine inpuc F
%/uni[s and two cluster Fy unis, After some train-

ing, the boctom-up weights &; and top-down
weights 4; have the following values:
The botcom-up weights

[1/3 1/10 ]
0 110
13 110
0 1710
byj=|1/3 110
0 110
1/3 110
0 110
L1713 110 ]

Top-down weights 5;

The pamern (1 1 11 0111 1)is
presented to the nerwerk. Compute the action
of the network if

+ the vigilance parameter is 0.5;

« the vigilance parameter is 0.8.
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Solution: Here n = 9, m = 2.

* Vigilance parameter p = 0.5. The initial weighc
fmatrices are

(113 1107
0 1/10
113 1/10
0 1/10
by=|1/3 1/10
0 1/10
1/3 110
0 110
LII.’; 1110

L_ftorerorol

X 111111111
The input pattern is s = [1 1110111 1)
Calcularing the norm of 5, we obeain

9

o= si=8

=l
We now compute the activations of F) layer,
x=[111101111]

Calculating the ner input, we obtain

9

5= D by
i=1
9

)‘l=zxibil
=1
= 1(1/3) + 1(0) + 1{1/3} + 1(0) + 0{1/3)
+ 100} + 1{1/3) + 1{0) + 1(1/3)
1 1 1 1 4

=—4 -4 - -_—= ==
33 3+3 3 13

9
n= fobﬂ
=1

= 1{1/10} + 1{1/10} + 1{1/10) + 1(1/10)
+0(1/10) 4 1(1/710) + 1(0/10) + 1{1/10)

+ 1(1/10)
=2 s
T

-IE can be seen that y; > y;, so the winner unic
indexis /= 1. Recomputing the acrivations of F;
layer, we obtain {for J = 1)

s=gp=[1 11101111
10101010 1]
x=(1 0100010 1]

Calculating the norm of x, we obtain
fell =14+04+14+04+04+04+14+04+1=4
Testing for reset implies

B _4_ 1655 050
W82 070

Reser is false. Hence we update the weights.
Updating bottom-up weights for a= 2 we get

bynew) = — 5 _ 2o
a1+ x}  2—14]x]
1+ Jlx]l
21) 2
1+4 5 1+4
A1 2 2(0)

b = — = = = — =
W=7y =gl
20) 2(0)
by e 2 g g = 2O
=g =% ==
oy 2 2(0)
bh=113"5 =130

Ay 2
=155

The updated bottom-up weights are

(215 1/10)
o 110
215 1/10
0 V10
b,-_,'= 0 /10
0 110
2/5 110
0 110
L2/5 110
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We now update top-down weights using £ (new)
= x;. The new updated top-down weighr are

101000101
=111 111
Vigilance parameter p = 0.8. The input parern

ss=01 1 1101 1 1 1) Calculating
the norm of susing the formulaas in (1), we obrin

sl =8

We now compute the activations of Fy layer,
¥x=1 11101111

Calculating the net input, we get

%
PRSI
=1
9
y1=3 xibi
=1
= 1{1/3) + 1(0) + 1(1/3) + 1{0) + 0(1/3)
4 10) + 1(143) + 1{0) + 1(1/3)
1 1 1 1 4
iyt o4o=13
3 + 3 * 3 T 3 3
9
n= inbr‘z
i=\
= 1{}/10) + 1{1/10) + 1(1/10) + 1(1/10)
+ 1{1/10) + 1(1/10) 4+ 1(3/10)
+ 1(1/10) + 1(1/10) + 1(1/10)
= i =038
10

It can be seen thaty; > y;. Hence the winner unic
index is J = 1.
Recompuring the activations of Fy layer, we obrain

(for f=1)

x,-::;g;:[l 1110111t
ro1o1ot1olj
x={101000101]

Computing the norm of x, we have

Il =1+0+14+0+0+0+1+0+1=4

Testing for reset we obtain

i

Hence y; = —1 (inhibit node 1}. Therefore, the
dor products become

A _4_L_ o508
8

ko | —~

n=-L n=08

Since y2 > y1, the winner unit index is / = 2.
Recomputing activations of Fy layer (for / = 2)
gives

y=s55=[0 111 01111
xp 1111111 1]
x=[111101111]

Again computing the norm of x, we pet
fel=14+1+1+140+1+1+1+1=8

Testing for reset gives

l!x—"‘—‘§=l‘>0.8
s 8

Hence we update the weights.
Update bottom-up weights, for & = 2, using the
formuia

ax;
a—1+ |
2x; X
T2~ T4l 1l

b,-](ncw) =

Foralz; = 1 (wherei = l o4 and 6 10 9, and
Jj=2),
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The updated bottom-up weights are

T1/3 2/97] ‘
0 29 :
113 209
0 2/9
0 2/9
1/3 2f9
0 219
| 113 209

Updated top-down weights can be calculated
using the formula z5{new) = x;.
The new updated top-down weights are

ir__[101010101]

110111

i4. Consider an ART 2 network with two input
units. (# = 2). Show that using & = 0.7 will
force the input patterns (0.71, 0.69) and {0.69,
0.71) to different clusters. Whar role does the
vigilance parameters play in this case? (Do not

calculate the weights, stop with checking of reset
condition.) Assume the necessary parameters.

Solution: The parameters are assumed to be

a=b=10,c=01,4=09, =0, a= 06,
p=09,0=07n=2 5=(0,0),

b = I (7.0,7.0)
1" parern:
s={0.71,0.69)
v
= ={0,0
er i = O0

w= s+ an == (0.71,0.69)
p=u+dy=(0,0)
w  (071,0.69)

= o = (0.717, 0.6
et el 0.99 (0717, 0.697)
(where il = +/(0.71)2 + (0.69)2 = 0.99)
p
= = (0,0)
=i~

v=fx)+&f(g)
= £(0.717,0.697)
v=(0.72,0)

Here the activation funcrion is

x flx) =0
f(")=[o fl<0

Stnce @ = 0.7, the ocurput v = (0.72,0). Updare F;
activations again:

v (0720
e+ol 072
w=7s+az = (0.71,0.69) + 10(1,0) = (10.71,0.69)
p=u+dy=1{(10
w (1071, 0.69)

T etlwl T 10732
__p Ly
= T
v = flx;) + bf(g3)

= £(0.998,0.064) + 10f(1,0)

= (0.998,0) + 10(1, 0}
v = (10.998,0)

={L,0)

= (0.998, 0.064)

= (1,0}

Calculating signals to F2 units, we gec

¥=Tbipi= (77} x (1,0) = (7,0)

The winner unitis f = 1, since 3 has a larger value,
ie. 7, thanyr = 0.

Check for reser:
v (10.998,0)
= = =(1,0
“= il T 10008~ 0
e=u+dy=1(1,0)+0.90,0 = (1,0)
u+cp (L,O)+0.1(1,0)
r= =
et fluf +cell 04+1401x1
(1.1,0)
_—I.—l =(1,0)

Computing norm of r, we get

=1 {p—&)=1>09
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This implies

w=s+an={0.71,0.69) + 10(1,0)
= (10.71,0.69)

2 _ (0.998,0.004)

T et
P

=—2 =10

1= T = 00

o= F0) + bflg) = (10.998,0)

2nd partern

5= (0.69,0.71)

v
=——=0
e+ |lel|
w=s+au = 0.69,0.71)
p= u+dg=(0,0)
_ 1 _ (0.69,0.71)
Tt el 099

o
= =(0,0)
= el

v=f(x)+ bf(g) =f(0.697,0.717)
= (0,0.717) = (0, 0.71)

X =(0.697,0.717)

Update Fy activations again:

,0.72
U (V1) B
e+ vl 072
w =5+ au = (069,071 + 100, 1)
= (0.69,10.71)

p=utdy=1{0,1)
w0690
el 10732
P 01
Fero 1 e
v = £0) + bfg) = F(0.064,0.998) + 10£(0,1)
= (0,0.998) + 10(0, 1)

v = (0,10.998)

= (0.064,0.998)

q:_'

Caleulating signals to Fz units, we get

% =K by pi= (7, 71 % 0,1=007)

The winner unit is / = 2, since jo > y lie, 7> 0]
Check for reset

v (0,10998) _

= = =1{0,1
“= Tl 10998 ©D
p=u+dy=01)
_ +ep _ (0, 1) +0.1(0, 1)
T et lul+ellell 0+1401%x1
{0,1.1)
- = (0,
1.1 ©1)
=1> (p—g=09.
Then,
w =1+ au = (0.69,0.71) + 10(0, 1)
= (0.67,10.71)
w (0.69,10.71)
= = = (0.064, 0.998
et [l 0z 9%8)
o
= ={0, 1)
=%l

»=flx)+ bf{g) = (0,10.998)

Thus the vigilance parameter assumed o = 0.9 docs
not affect the solutions for first and second pattern.
It activates the same for both the input pauerns.

15. Consider an ART 2 nerwork to cluster the
input vecrors (0.6, 0.8, 0.0) and (0.8, 0.6, 0.0)
together? When will it place {0.6, 0.2, 0.0)
together with (0.0, 1.0, 0.0)? Use the noise sup-
pression parameter value § = 1¥/3 = 0577
and consider different values of the vigilance
and different initial weights. Assume necessary
parameters.

Solurion: Case (i) Taking p = 0.9 , presenting (0.6,
0.8, 0) and (0.8, 0.6, 0)
a=10,6=10,e=01,d=09,6=0,p=03,
1 _ 1
(A—dyn (1-09)3
=(5.0,5.0,5.0}, = (0,0,0), =056

§=0577.4 =

s passern:

s=(0.6,0.8,0.0)

5.8 Solvad Problems
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"
= ——= O, B k 3
= o (0,0,0) Chet ﬁ)r reset
bt 66880 o
w =35+ an = (0.6,0.8,0.0) e+l - 0+11 T T )
p = u+dy =(0,0,0) pi'= ui+dy
w (0.6,0.8,0.0) ] 7 =1(0.6,0.8,0) + 0.9(0,0,0) = {0.6,0.8,0)
X = = =
e "w" 0+ l (0 ,0.8, 00) e i+ cp;
_ e+ |lull +cllp
1= el (0,0,0) . _ 06,08,0) +0.1{0.6,038,0)
0+1+01x1
v =f )+ bf (g;
fled +4f(g) _ (0.66,0.88,0)
= £(0.6,0.8,0) + 10£(0,0,0) =~ 06080
# =055 Computing norm of r, we gc;:
F =15 faz=0
0, <@ Il =1> (p—e) = 0.9
%= (06,08,0) p_06080
= = = (0.6,0.8,
Ty R
Update Fy activations again: =Y
v (0.6,0.8,0) o el
= ! = e = = 0.6.0-8,0 1 .6, . = X
el o (0.6,0.8,0) { )+ 10(0.6,0.8,0) = (6.6,8.8,0)
_w (6.6,8.8,0)
w= s+ an = (0.6,0.8,0) + 10(0.6,0.8,0) = el T orn - 06080
= {6.6,8.8,0) v=flx) + bf{g) = (6.6,8.8,0)
p=n+dy=1(06,08,0) Upldarion af weights: Weights are updated for winning
w (06,880 unit/ = 2.
=T orn (0.6,0.8,0)
gi{new) =adu; + {1+ ad(d — 1)}¢; (old)
0.6,0.8,0 =0 .
4= o =( ')=(0.G.0.B,O) 06x09x0.8
et el 0+1 +{14+06%x090.9-1)} x0
v = [} + 6f (g7) = 0.432
— £(0.6,0.8,0) + 10(0.6,0.8,0) biflnew) =atdr; + {1+ eedld — 1}}(o0ld)
= (0:6,0.8,0) + (6,8,0) B O'G{X 022 o8 (
_ +{1+06x0909-1)} x50
vi = (6.6,8.8,0) =35.162
Calculate the signals to Fz units: 2nd partern:
3 =E b pi= (5.0 x 0.6,5.0 x 0.8,5.0 x 0) +=08060
v
_ = = (0,0
{3.0,4.0,0) e+ el ©.9

The winner unit index is / = 2, since the largest net
inpu is 4.0.

w=s5+au=(0.8,06,0)
p=ut+dy=(0,0
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-2 —(0.8,0.6,0.0

= iy~ 080600
p

= ——= 0,0,0

1= Typp - 000

v=f(x) + bfgi)
= £(0.8,0.6,0.0) + 0 = {0.8,0.6,0)

Update Fy activations again:

v (0.8,06,0)
E T o+t
w= s+ qu = (0:8,06,0) + 10(0.8, 0.6, 0)
= (88,6.6,0)
p = u+dy = (0.8,0.6,0)

=(0.8,0.6,0}

=(0.8,0.6,0)

w
x=—
e+ |l

-7
EASPYT
v =£(9 + bf(g)

= £10.8,0.6,0) + 10£{0.8,0.6, 0)

= (0.8,0.6,0) + (8,6,0)

= (0.8,0.6,0)

w
x= ;I-"';"' = (08, 06. 0)

v =19+ bflg) = (8.8,6.6,0)

Updasion of weights: Weights are updated for winning
unit /= 1.

ti(new) =wdu; + {1+ edld — 1)}z;(old)
=06x09 %08
+ {1406 %0909~ 1)} x 0
=0.432
bij(new} =adu; + {1+ ad(d — 1)} b;(old)
=06x09x%038
+{14+0.6x090.9-1)} x50
= 5162

Thus from the results for presenting the parerns
(0.6, 0.8, 0) and {0.6, 0.8, 0) with the assump-
tion of p= 0.9, even though the winning clus-
ter unit is differen:, due to the components of
input vector, output weights remains same, Thus
they are placed together—since both the weights are

5.8 Solved Problems
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Update Fy activations again: biflnew) =adu; + (14 ad(d — 1)} b{old)
ue= v ~(0.6,08,0) =06x09x08
e+ el (1406 % 0.9(0.9 - 1)) X 6.0
w=7s+au=1{66,88,0) = 6.108
p =u+dy=(0.6,08,0)
2nd patiern:
x= —2 = (06,08,0) parim
e+ Y|
2] = (0’ 11 0)
7= oy = 06080 ’ \
é
= ——=(0,0,0
“= ¥ - %0

v=f() + &f(g) = (6.6,8.8,0)
Calculate the signals to Fp units:
¥ =L bjpi=(6x%0.6,6x0.8,6 x0)
= (3.6,4.8,0)

The winner unit index is f = 2, since the largest net
inpur is 4.8.

Check for reset:

w=s+au=(0,1,0)
p=u+dy=1(010)

w
= —— =(0.0,1.0,0.0
*= g )
p
=—f  =(0.0,1.0,0.0)
= TFip

v=flx)+ b6f{g:} = (0.0,1.0,0.0)

_ M 6.6,8.8,0 Update F} activations again:

v=1{8.8,6.6,0) same, both the parterns will be placed ar the same = e ol = ¢ 0F 11 ) =(0.6,0.8,0)

{ocation. v
Calculare signals to Fz units: = = (0.6.08 t=———=(0.0,1.0,00)
Case (ii): Taking p = 0.7, presenting (0.6, 0.8, () and pi=utdy=106080 e+ vl
%= bypi= (5,5,0) x (0.8,0.6,0) = (4,3,0) (0, 1,0). e I"+fﬁ = (06,08.0) w=s+an=(0,1,0)+ 10(0,1,0) = (0,11,0)
e+l +elpl T
The winner unit index is f = 1, since the largest nec ¢ = 10,6 = 10,6 =0.1,d=0.9,¢=0,p=0.7, I =15 ( ) =07 p=n+dy=(0,10)
. . = —e) =0.
in putis 4.0. 8 = 0.577, a = 0.6,4; = (6.0,6.0,6.0), ? L
Check for reser: 4= 1{0,0,0) 4= ﬁl)l “ _ (0.3, 0.31, 0) = (0.6,0.8,0) e+ |l
et lip + 7]
= ——— ={0,1,0)
Oy ‘85'6'6’0) = (08,060 P w=s+an = (66,88,0) T et e
e+ foll + 13
. 1w v=f0)+&f(g) =1(0,1,0}+(0,10,0)
pi = u+dy = (0.8,0.6,0) "~ (0'6;0'8’0'0) = - 060800 {0 i o)f q
1+ op; = ——- ={0,0,0) =Wih
5= :-F—H-'ﬂm =1(0.8,0.6,0) e+ vl v=f(x) + bf g) = (6.6,8.8,0)
w=s5+au={05038,0 ) ) . o Calenlating signals to F units, we get
Computing norm of 7, we get p=utdy=1(000) E’p'e:z‘zfuin ;f weights: Weights are updated for winning
o e Y (06.08,00) = % = by pi= (6.0,6.0,6.0(0.0,1.0,0.0)
I =1>(p-a 08060 ol - tlnew) =ad; + {1+ ad(d— D)sp{old) = (00,6.0,0.0)
P O, U0y fl
9= TS 041 = (0.8,0.6,0) =T ”=(o,0,0) =0.6%09 x 0840
P The winner unit index is / = 2, since the largest net
w= s+ au=(8.8,6.6,0} = flxi) + bf (4:) = (0.6,0.8,0) = 0.432

input is 6.0.




226

Unsupervised Leaming Networks

Chech for reset:

v (0,11,0)

= —= =0,1,0
et ol O+11 (©.1,0)

p=u+a'£]=(0,l,0)

_ utep _(OLO+010,1,0
P el +eell 0+ 1+401
0,1.4,0.0
= QOLLOD 601 0,00)
0+1.1
IM=1> (-9 =07
P
= —1(00,10,00
(AT Py
w5 +ax = (0.0,1.0,0.0) + 10 (0.0, 1.0,0.0)
=(0,11,0)
= —2 _ —(0,1,0)
e+ [lwl

E.Q Review Questions

v =f(x) + bf(q) =f{0, 1,00+ 10f{0, 1,0}
= (0,11, 0}

Updation of weights: Weights are updated for winning
unic /= 2.
ti(new) = ard; + {1+ ad{d — 1)}glold)
=06x09x1+0=054
bylnew) = wdu; + {14+ edld — 1)} bif(old)
=06x09x1
+ 1+ 0.6 x 0.9(0.9 — 1)} x 6 =6.216
Thus the two inputs may be clustered togecher only

when their weights become equal, this can be achieved
by proper selection of initial weighes.

1.

2
3.
4

Wh

LT - - B Y

11.

12.

13.

What is meant by unsupervised learning?

. Define exemplar vector or code book vecror.

List the fixed weight comperirive nets.

. Draw the architecture of Mexican hat and state

its activation funcrion.

. Whac is winner-takes-all or clustering principle

or competitive learning?

. Why inhibitory weights are used in Max ret?
. Whar are “topology preserving” maps?

. Define Euclidean distance.

. Briefly discuss about Hamming ner.

. How is comperition performed for clustering of

the vectors?

State the application of Kohonen self-organizing
maps.

With neat architecture, explain the training
algorithm of Kohonen self-organizing feature
maps.

Diiscuss the important features of Kahonen self-
organizing maps.

14. Write the principle involved in learning, vecror
quantization.

15. Whac is che purpose of LVQ ner?

16. How are the initial weights determined for LVQ
nec?

17. Wich architecture, describe how LYQ nets are
trained.

18. Lisc che variants of LVQ net.

19. Stace Kohonen’s learning rule and Grossberg
learning rule.

20. Discuss the applicarions of countespropagarion
neowork.

21. How many stages are needed for wraining a CPN
nerwork?

22. Mention the importance of in-star model and
out-star model.

23. Sketch the architecture of full Counter Propaga-
tion Nerwork.

24. How are CPN nets used for function approxi-
mation?

5.10 Evercise Problems
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25.

26.

27.

28.

29.
30.
3L

32

33.

34.
35.

36.

37.

Write the training algorithms and testing algo-
richms used in full counterpropagation necwork.

Compare full counterpropagation nerwork and
forward-only counterpropagation network. ;

Whar is the principle strength of competitive
learning?

State the merits and demerits of Kohonen self-
organizing feature maps.

What are called as similarity maps?

Define stability and plasticity.

Differentiate berween ART nerwarks and CPN
nerworks.

List the type of input patterns given to ART 1
and ART 2 neework.

Mention the three main components of an ART
nerwork.

Define botrom-up weightand top-down weight.

What is vigilance parameter and noise suppres-
sion parameter?

Hiustrate with neat figure, the two basic unirs of
an ART 1 nerwork.

Discuss the importance of supplemental units in
ART 1| nerwork.

l 5.10 Exercise Problems

38.
39.

40,
4L

42,
43.

45.

46.
47.

48.

49.
50.

Differentiate fast learning and stow learning.

List the advantages and disadvancages of ART
nerwork.

Whar are the applications of ART nerworks?
Sketch the archirecture of ART 1 nerwork and
discuss its training algorithm.

State the significance of ART 2 nerwork.

Why more complexity is involved in the Fy layer
of ART 2 network?

. How slow learning and fast learning is.achieved

in ART 2 network?

Whar is the activation function used in ART 2
networks?

Lisc the characteristics of ART nerwork.

Why reset mechanism is essential in ART net-
works?

With neat architecture, explain the training
algorithm used in ART nerwork.

State the assumptions made in ART 2 nerwork.

Mencion the limiration of ART | nerwork and
how is it overcome in ART 2 network.

I.

Construce 2 Max ner with four neurons and
inhibirory weights £ = 0.25 when given the
initial activations (input signals}. The inicial acti-
vations are 1(0) = 0.1, a2(0) = 0.3, w3(0) =
0.4, 4(0) = 0.7 .

. Construce a Kohonen self-organizing fearure

map to cluster four vecrors [0 0 1 1], [100
1,01 01], [1 11 1]. The maximum num-
ber of clusters to be formed is 2 and assume
learning rate as 0.5. Assume rahdom initial

weights.

. Given a Kohonen self-organizing map with

weights as shown in the following figure, use
square of euclidean distance to find the clus-
ter unit that is close to the input vecror (0.35,

0.05). Using learning rate of 0.25, find the new
weights.

4,

Figure 11 KSOFM net.

Repeat the preceding exercise problem for input
vector [0.4, 0.4] with @ = 0.15.
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5. Consider a Kohonen net with two cluster units

and five input unirs. The weights vectors for the
cluster units are

wy = (1.00.9070.30.2)
ws = (0.6 0.7 0.5 0.4 1.0)

Use the square of the Euclidean distance to find
the winning cluster unit for the inpur patern
x = (0.0 0.2 0.1 0.2 0.0) . Using a learning
rate of 0.2, find the new weights for the winning
unir.

. Construct an LVQ net to cluster five vectors
assigned 1o two classes. The following input
vectors represent two classes 1 and 2,

Vectors Class
(oon 1
(11om 2
0110 1
(1000) 2
(0011 1

Perform only one epoch of training,

. Consider an LYQ net with two inpurt units and
four target classes: £, 2, 3 and ¢4. There are 16
classification units, with weight vectors indicated
by the coordinates on the following chart, read
in row-column order.

x2

1.0

0.9 o €3 0 0
0.7 L T S~
0.5 6 3 o 0
0.3 0 & o €3
0.0

0.0 03 0.5 07 09 1.0 x

Using the square of the euclidean distance,
perform the following,

s Present an inpur vector of {0.33, 0.35) rep-
resenting class 3. Using a learning rate of

9.

10.

11.

12

o = 0.4, showwhich classification unit moves
where.

»

Present an input vecror of (0.6, 0.75) repre-
senting class 1. What happens to the nerwork
performance?

+ Present the vector (0.4, 0.55) representing
class 1. Note what happens.

. Implement a counterpropagation nerwork for

approximaring the functions:

+ Fley=1/x
v fl) =74

Consider the following full CPN net:

Figure 12 Full CPN Net.

Using the input pair x = (1,0,0,0),y = (0,1},
perform the first phase of training (one step
only). Find the activation of the cluster layer
units. Update the weights using a learning rate
of 0.25.

Repear Problem 9 using x = {0 1 1 1) and
¥ = (1,0) with a Jearning rate of 0.3.

Modify Problem 9 to implement forward-only
CPN.

Construct an ART 1 nerwork to cluster four
vectors (1, 0, 1, 13, (1, 1, 1, 0), (1, 0, 0, 0)
and (@, 1, 0, 1) in at most three clusters using

5.11 Projects
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13,

14,

very low vigilance paramerer. Assume necessary
parameres.

Consider an ART 1 neural net with four Fy

units and chree Fa units. After some training, .

the weights are as follows:

Bottom-up weights & Top-down weights #;

057 0 02 000 1
0 0 02 10g 1
0 037 02 1111
0 037 02

Determine the new weight matrices after the
vector (0, 0, 1, 1) is presented if

* the vigilance parameter is 0.4;
* the vigilance paramerer is 0.8.
Consider an ART I nerwork with eight inpur
(F;) units and two cluster (F) units. After

some training, the bottom-up weight (b7)
and top-down weights () are the following

L5.1 1 Projects

values:

Borom-up weights b  Top down weights #;
172 148
0 8

V2 18
0 us

/2 18
0 18

12 18
0 1/8]

—_ 0
——
—_ 0
—_—
—_ 0

——
-
—

— =

L

The pattern [1 1 1 0 0 1 1 1]is pre-
sented to the necwork. Compute the acrion of
the nerwork if

» the vigilance paramerer is 0.3;

* the vigilance parameter is 0.7.

15. Consider an ART 2 network with two input

units {# = 2). Show that using & = 0.7 will
force the input patterns (0.61, 0.59) and {0.59,
0.61) to different clusters, What role does vig-
ilance parameter play here? Determine the new
weights.

1.

Write a computer program ro implement Koho-
nen self-organizing map. Take suitable applica-
tion. Use 2 inpur units and 25 cluster unies and
a linear topolagy for the cluster units. Perform
20 epochs of training,

. Write a computer program ro implement the

LVQ ner absorbed in Problem 7. Train the net
with several sets of dara. Experiment with dif-
ferent learning races and different numbers of
classification units,

. Write a program for counterpropagation net-

work o approximace the function f{x}=1/x.

. Implement counterpropagation nerwork for per-

forming data compression, Take data sets like
heart disease data, cancer data and credit card
dara,

5. Write a program ro approximarte the function

fx} = 7ix using forward-only counterpropaga-
tion net.

6. Lerthe digits 0, 1, 2,...,7 be represented as

0: 00000001
1: 00000010
2: 00000100
3: 00001000
4: 00010000
5: 00100000
G: 01 000000
7:1 0000000
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Use forward-only and full counterpropagation
nets to map digits to their binary tepresentations

0: 000
1: 001
2: 01 0
3: 011
4. 100
5: 1 01
6: 110
7: 111

Assume the necessary parameters involved.

7.

10.

Whiter a computet program to implement full
counterpropagation network for approximaring
the funcrion f(x) = 3x + 2.

. Build a computer progratm © implement ART 1

neural ner.

. Write 2 computer program to implement the

ART 2 neural network, allowing for either fast
learning or slow leatning, based on the number
of epochs of training and the number of weight
update iterations performed on each learning

trial,

Write 2 compute program o implement ART 2
nerwork for Problem 15.

Special Networks

— Learning Objectives g

The other special nerworks apart from super-
vised learning, unsupervised learning and asso-
ciation nerworks.

The feature of cascade correlation nerwork
1o fluid its own architecture during training
progresses.

A simulated annealing necwork.

A cognitron and neacognitron nets with their

*» How Bolzmann machine can be used o solve basic features.

optimizarion problems. * Apart from these, cellular NN, logicon NN,
* An intraduction to Cauchy and Gaussian STCNN are also discussed.
machine. * List of neuropracessor chips that are currendly

= A probabilistic neural nerwork, L use.

IGJ Introduction

In this chapter, we will discuss some specialized networks in more detail. Among the nerworks to be discussed
are Bolmmann nerwork, cascade correlation net, probabilistic neural net, Cauchy and Gaussian ner, cognitron
and neocognitron nets, spatio-temporal network, optical neural net, simulated a2nnealing nerwork, cellular
neural net and logicon neural net. Besides, neuroprocessor chip has also been discussed for the benefit of the
reader. Boltzmann network is designed for optimization problems, such as traveling salesman problem. In this
network, fixed weights are used based on the constraints and quantiry to be oprimized. Probabilistic neural net
is designed using the probability theory 10 classify the input data {Bayesian method). Cascade correlation nex
is designed depending on the hierarchical arrangement of the hidden units. Cauchy and Gaussian net is the

variation of fixed weight optimization net. Cognitron and neocognitron ners were designed for recognition
of handwrirten digits.

I 6.2 Simulated Annealing Network

The concept of simulated annealing has it origin in the physical annealing process performed over merals
and other substances. In merallurgical annealing, a metal body is heated almest o its melting point and then
cooled back slowly to room temperature. This process eventually makes the meral’s global energy funciion
reach an absolute minimum value. If the meral’s temperature is reduced quickly, the energy of the merallic
lattice will be higher than this minimum value because of the existence of frozen lawice dislocations char
would otherwise disappear due to thermal agiration. Analogous to the physical annealing behavior, simulated
annealing can make a system change its state to a higher energy state having a chance o jump from ldcal
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minima to global minima. There exists 2 cooling procedure in the simulated annealing process such dhat the
system has a higher probability of changing to an increasing energy state in the beginning phase of convergence.
Then, 2s dme goes by, the system becomes stable and always moves in the direction of decreasing energy state
as in the case of normal minimization produce.

Wirh simulated annealing, a system changes its state from the original state SAM o 2 new state SAP¥
‘with a probabilicy P given by

1
P
1+ exp(—AEIT)

where AE = E9 — £™¥ (energy change = difference in new energy and old energy) and T is the non-
negative parameter (acts like temperature of a physical system). The probability P as a function of change
in energy (A E) obrained for different values of the temperarure T is shown in Figure 6-1. From Figure 6-1,
it can be noticed that the probability when A£ > 0 is always higher than the probability when A£ <0 for
any temperature.

An opimization problem seeks to find some configuration of parametersj{ ={X),...,X;)} that minimizes
some function f1 () called cost function. In an artificial neural network, configuration parameters are associated
with the set of weighrs and the cost function is associated with the error function.

The simulated annealing concepr is used in staristical mechanics and is called Metropolis algorichm. As
discussed earlier, this algorithm js based on a material chat anneals into a solid as remperature is slowly
decreased. To understand this, consider the slope of a hill having local valleys. A stone is moving down the
hill. Here, the local valleys are local minima, and the botrom of the hill is going to be the global o universal
minimum. It is possible that the stone may stop at a local minimum and never reaches the global minimum.
In neural nets, this would correspond 1o a set of weights that correspond to that of local minimum, but this
is not the desired solucion. Hence, to overcome chis kind of sicuation, simulared annealing perrurbs the stone
such that if it is trapped in a local minimum, it escapes from it and continues falling till ir reaches its global
minimum (optimal solution). At that point, further perrurbations cannot move the stone to a lower position.
Figure 6-2 shows the simulated annealing berween 2 stone and a hill.

1

AE Po
1+exp (~AET)

Figure 6-1 Probabilizy. “P" as a function of change in energy (A£) for different values of temperacure T,
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Stone

Sorolie 1 B, i

‘ Local
: minimun

Global minimun

P
—

Figure 6-2 Simulaced annealing—stone and hill.

The components required for annealing algorithm ate che following,

. A bﬂjlfjvﬂt’ﬂ? fOiTﬁ i & e P € solution of a roblem over w [l we 0
1 guririon. l h oss:bl P
S l n f b' m hIC search f ra bESr (Optlma.l}

I this is optimum seeady-state weight.)
2. The move ser: A set of allowable

: moves that per
configurarions,

mi -
1t us to escape from local minima and reach all possible

3. A cost function associated wich the error funcrion.
4. A cooling schedule: Starting

of the cost function
and rul
how much, and when anne:

d . .
g et 1 o and s to determine when it should be towered ang by

Sl[[lulated alllleahllg llCtWDlIG can be LISEd o [Ilakf_‘ a IlCtWOlk COIIVElgE Lo s glob&! miimum

: l 6.3 Boltzmann Machine

The early optimization rechni
When the simulated annealing process is a

5 On applig e e 1 iions . tine described bT this section has fixed weights
constraines of the problem and the quanc imizs o e 5 b PrSenc
i - . nrl . . - » [ €
simization o s ooen e ¢ g (CF)::y to be optimized. The discussion here is based on the facr of
The Bolrzmann machine consists of a se
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The maximum of the CF can be obrained by letting each unit actempr to change its state (alter berween “1”
and “0” or “0” and “1"). The change of state can be done either in paralle} or sequential manner. However,
in this case all the description is based on sequential manner. The consensus change when unit X; changes its
state is given by

ACF() = (1 — 2x) (w, +3 w‘-,-x,-)
i

where x; is the current state of unit X;, The variation in coefficient (1 — 2x;) is given by

+1, X iscurrently off
~1, X;iscurrently on

(1—1ri)={

If unic X; were to change its activations then the resulting change in the CF can be obtained from the
information thar is local to unit X;. Generally, X; does not change 1ts siare, but if the states are changed, then
this increases the consensus of the net. The probability of the nerwork that accepts a change in the state for
unit Xj is given by

1

AT = oA CROIT

where T {temperature) is the conwolling parameter and it will gradually decrease as the CF reaches the
maximum value. Low values of T are acceptable because they increase she ner consensus since the net accepts

a change in state. To help the net not to stick with the local maximum, probabilistic funcctons are used widely.

6.3.1 Architecture

The architecture of 2 Bolzmann machine is represented through a owo-dimensional acray of the units in
Figure 6-3. The units within each row and column are fully interconnected. The weights on the intercon-
nections are given by —p where (¢ > 0). Also, there exists a self-connection for each unit, with weight 5> 0.
Unit Xj; is the commeon unit on which our discussion is based. The weights present on the interconnections
are inhibitory.

I 6.3.2 Algorithm

6.3.2.1 Setting the Weights of the Network

The weights of a Bolizmann machine are fixed; hence chere is no specific training algorithm for updarion of
weighes. (For a Boltzmann machine with learning, there exists a craining procedure.) With the Bolczmann
machine weights remaining fixed, the net makes its rransition toward maximum of the CE.

As shown in Figure 6-3, each unit is connected to every other unit in the same row and same column by
the weights —p(p > 0). The weights indicate the penalties obtained due to the violation that occurs when
more than one unit is “on” in each row and column. There also exists a self-connection for each unir given by
weight & > 0. The self-connection is a bonus given to the unit to turn on if it can do so withour causing more
than one unic to be on in each row and column. The net function will be desired if p > &. IFunit Xj; is “off”
and no other unit in its row or column is “on” then changing the stans of X to on increases the consensus
of the net by amount 4. This is an acceprable change because this increases the consensus. As a resull, the net
accepts it instead of rejecting ir.

6.3 Boltzmann Machine
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Figure 6-3 Architecture of Bohzmann machine.
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6.3.22 Testing Algorithm
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Wi L)) = [—p if 1= Torj =/ (but not hoth)

& otherwise

The testing algorithm is as follows.

l Step 0: Initialize the weigh i i
hs representing the conse f initiali
Tand s B 1 g raints of the problem. Also initialize control pammereTl
Step 1: When stopping condition is false, perform Steps 2-8,
Step 2: Perform Steps 3-6 »? rimes. (This forms an epoch.)

Step 3: Integers /and J are chosen random values berween

I and 7. (Unit Uy ; is the cu tcri
i v rrel
Changc o 17 Nt vicrim o

Step 4: Calculate the change in consensus;

ACF=(=2X,) | ol L3+ 3 wlij: L)X,
i 1]
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Step 5: Calculate the probabilicy of acceprance of the change in stae:
AF(T} = U1 + exp[—(ACF/T)}

Step 6: Decide whether to accept the change or not. Let Rbea random number berween 0 and 1. I
R < AF, accepr the change:
Xy=1- X3 s (This changes the state Urs)
If R> AF, reject the change.

Step 7: Reduce the control paramerer T.
Tlnew) = 0.95 Told)

Step 8: Test for stopping condidion, which is: . -
P If the tenlzgcrature reaches a specified value or if there is no change of state for specified number

l of epochs then stop, else continue. _l

The initial temperature should be waken Jarge enough for accepting :hel change of stace quickly. A:lso
remember that the Boltzmann machine can be applied for various optimization problems such as traveling

salesman problem.

Ij.4 Gaussian Machine

Gaussian machine is one which includes Bolrzmann machine, Hopfield ner and other I?eura! nctworkf. The
Gaussian machine is based on the following three parameters: {2) a slope parameter of sigmoidal funcrion o,
{b) a time step As, {c} remperature T. _ .

The sceps involved in the operation of the Gaussian net are the following;

rStep 1: Compute the net input unit Xj:
N
ne; = Z w,}u)-+9,-+ [
=
where & is the threshold and € the random noise which depends on temperacure T

Step 2: Change the acriviry level of unit Xj:
Ax; Xi
— = —— +ney
Ag t
Step 3: Apply the activation funcrion:
vi = flx) =051+ tanh{x;}}

where the binary step funcrion corresponds to & = 00 (infinicy). J

“The Gaussian machine with 7= 0 corresponds the Hopficld net. The Bolezmann machine can be obeained
by setting At =T = ] to get

Ax; = —x; + neg;
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N
or xi{new) = ner; = Zzﬁglﬁ;+3,'+ €

1
. J

The approximate Boltzmann acceptance funcrion is obeained by integrating the Gaussian noise distribution

-
L - 1

Ve ARG T = ————————

‘D[Vlzrazew w7 SNARGT 1 + exp(—x{T)

wherte x; = A CF(?). The noise which is found to abey a logistic rather than a Gaussian distribution produces
a Gaussian machine that s identical to Bolezmann machine having Metropolis acceptance function, ke, the
output set to 1 with probability,
AF(, T) l
T s ————————
1+ expl—x/ T

This does not bother about the unir’s original state. When noise is added to the net input of a unit then using
probabilistic scate transition gives a method for extending the Gaussian machine into Cauchy machine.

I 6.5 Cauchy Machine

Cauchy machine can be called fast simulated annealing, and it is based on including more noise to the nec
input for increasing the likelihood of a unit escaping from a neighborhood of local minimum. Larger changes
in che system'’s configurarion can be obtained due to the unbounded variance of the Cauchy distribudon. Noise
involved in Cauchy distribution is called “colored noise” and the noise involved in the Gaussian distribution
is called “white noise.”

By serting Ar =1 = 1, the Cauchy machine can be extended invo the Gaussian machine, 1o obtain

Axj = ~x;+ ney;
N

or xi(new) = ney; = Z win+0; + €
=

The Cauchy acceprance function can be obrained by integrating the Cauchy noise distribution:

o0

1 Tdx 1 % )
j Y et (7)=As0n)
0

where x; =ACF{/). The cooling schedule and temperature have to be considered in both Cauchy and Gaussian
machines,

l 6.6 Probabilistic Neural Net

The probabilistic neural net is based on the idea of conventional probability theory, such as Bayesian
classification and other estimators for probability density fincrions, to construct a neural net for classifi-
cation, This net instantly approximates optimal boundaries between caregories. It assumes thar the training
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Figure §-4 Probabilistic neural nerwork.

dara are original representative samples. The probabilisric neural net consists of two hidden layers as shown in
Figure 6-4. The first hidden layer contains a dedicared node for each training pattern and the second hidden
layer contains a dedicared node For each class. The two hidden layers are conpected on a class-by-class basis,
that is, the several examples of che class in the first hidden layer are connected only ro a single martching unit
in the second hidden layer.

During teaining process, the probabilistic neural net uses the ¢raining patterns for estimating the class
probabiliry distributions; each new input is classified according to the weighted average of the craining sample
which is very closer. The probabilistic neutal net avoids the iterative process by simply storing the training
parterns. Owing to this, probabilistic neural net learns very fast, but large nerworks are needed for large

data sets.
The algorichm for the construetion of the net is as follows:

R[ep 0: For each training input pattern x{p},p = } 10 I perform Steps 1 and 2. I
Step 1: Create pactern unir z; (hidden-layer-1 unit). Weight vecror for unit 2 is given by
1y, = xp)

Unik 2 is either z-class-1 unic or z-class-2 unirt,
Step 2: Connect the hidden-layer-1 unit 1o the hidden-layer-2 unir.
IF x{p) belongs to class 1, then connecr the hidden layer unit z; to the hidden layer unic F1.
I Othenwise, connect pattern hidden layer unit 2 to the hidden layer unic Fa. _J

The net can be used for classification when an example of a pactern from each class has been presented
0 ic. The ne’s abiliry for generalization improves when it is rrained on more examples.

I 6.7 Cascade Correlation Network

Cascade eorrelarion isa networkwhich builds itsown acchitecture as the training progresses. This algorithm was
proposed by Fahlman and Lebiere in 1990. Figure 6-5 shows the cascade cotrelation architecture. The network
begins with some inputs and one or more outpuc nodes, but it has no hidden nodes. Each and every input
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Figure 6-5 Cascade architecrure after two hidden nodes have been added.

is connec_ted to every output node. There may be linear units or some nonlinear acsivation function such
bipolar sigmoidal activarion function in the cutpur nodes. During training process, new hidden nodes ;Z
addefl 1o the network one by one. For each new hidden node, the correlation magnitude berween the new
node’s outpur and the residual error signal is maximized. The connection is made wo each node from each
of the' nen'work's original inputs and also from every preexisting hidden node. During che time when che
node is !:oemg added to the nerwork, the inpur weights of the hidden nodes ate frozen, and only the ourput
connections are trained repeatedly. Each new node thus adds 2 new one-node layer 1o t,he nerwgrrk F
11:1. Flgure 6-5, Fhe vertical lines sum all incoming activarions. The rectangular boxed connections 'are frozen
and “O connections are trained continuously. In the beginning of the training, there are no hidden nodes
anfi the networlc is trained over the complere training ser. Since thete is no hidden node, a simple learnin rule‘
Wf':drow—HofF learning rule, is used for training. After a certain number of training cycl:-s when thereis Eo sl :
nlﬁcan_t error reduction and the final error obrained is unsacisfactory, we try to reduce the ;csidua.l errors Fur:hger
!J)’ adding a new hidden node. For performing this rask, we begin with a candidate node thar receives trainabl
input connections from the network’s external inpurs and from all pre-existing hidden nodes. The output ‘;
this candidare node is not yet connected to the active network. After this, we run several nur;1bers of e[;odc:s

for the traini 1 i 51 i [
deﬁn;[ ::.mlng set. We adjust the candidare nodes inpur weights after each epoch to maximize C which is

-3

where /1 i i ] ini
vaju: tELs ttll;le net_work output at which error is measured, j the training parrern, r the candidate node’s ourpue
s £, the residual outpur error at node o, ¥ the value of » averaged over all pareerns, E, the value of &,

Y (o~ NE;; — Eo)
i
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averaged over all pacterns. The value “C" measures the correlation berween the candidate node’s output value
and the calculated residual outpur error. For maximizing C, the gradient 8¢/1; is obrained as
%_ =2 0B~ E)ln

Jud
where o is the sign of the correlation berween the candidate’s value and output J; &, the derivative for pattern j
of the candidate node’s activation funcrion with respect to sum of its inputs; I,,; the input the candidate node
receives from node 7z for partern j. When gradient 8¢/6w; is calculated, perform gradient ascent to maximize
C. As we are training only a'single layer of weights, simple delra learning rule can be applied. When C stops
improving, again a new candidate can be brought in as a node in the active network and its input weights are
frozen. Once again all the outpur weights are trained by the delta learning rule as done previously, and che
whole cycle repeats irself unti] the error becomes acceptably small.

On the basis of this cascade correlation nerwork, Fahlman (1991) proposed another training method for
creating a recurrent nerwork called the recurrent cascade correlarion neework. Its strucrure is same as shown
in Figure 6-5, but each hidden node is a recurrent node, i.e., each hidden node has a connection o irself.

Cascade correlation nerwork is mainly suirable for dlassification problems. Even if modified, it can be used
for approximation of funcrions.

I 6.8 Cognitron Network

Cognitron nexwork was proposed by Fukushima in 1975. The learning hypothesis pur forth by him is given
in the following paragraphs.

The synaptic scrength from cell X o cell Y is reinforced if and only if the following wo conditions are
true;

1. Cell X - presynapric cell fires.
2. None of the postsynapric cells present near cell Y fire sironger than Y.

The model developed by Fukushima was called cognitron as a successor to the percepuron which can
perform cognizance of symbols from any alphabet after training. Figure 6-6 shows the connection berween
presynaptic cell and postsynaptic cell.

The cognitron necwork is a self-arganizing multilayer neural nerwork. lts nodes receive input from the
defined areas of the previous layer and also from units within its own area. The inpuc and outpur neural
elements can rake the form of positive analog values, which are praportional to the pulse density of firing
biological neurons. The cells in the cognitron model use a mechanism of shunting inhibition, i.e., a cell is
bound in terms of 2 maximum and minimum activities and is driven toward these extremities. The area from
which the cell receives inpur is called connectable area. The area formed by the inhibitoty cluster is called
the vicinity area. Figure 6-7 shows the model of a cognitron. Since the connecrable areas for cells in the same
viciniry are defined to overlap, but are not exactly the same, there will be a slight difference appearing berween
the cells which is reinforced so thar the gap becomes more apparent. Like chis, each cell is allowed to develop
its own characteristics.

Cognitron network can be used in neurophysiology and psychology. Since this network closely resembles
the natural characteristics of 2 biological neuron, this is best suited for various kinds of visual and audirery
information processing systemns. However, a'major drawback of cognitron ner is thac it eannor deal with the
problems of orientation or distortion. To overcome this drawback, an improved version called neocognitron
was developed.
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Figure 6-7 Model of a cognitron nerwork.

I 6.9 Neocognitron Network

Neoco_gr_urron isa multilayer feed-forward network model for visual pattern recognition. It is a hierarchical nec
comprising many layers and there is a localized patrern of connectivity berween the layers, It is an extension of

coguitran network. Neocognitron net can be used for recognizing hand-written characters. A neocognitron
model is shown in Figure 6-8.

Thealgorithm used in cognitron and neocognitron is same, except that neacognitron madel can recognize
patterns thac are posicion-shifted or shape-distorted. The cells used in neacognitron are of wo types:

1. S-cell: Cells thar are trained suitably © respond to only certain features in the previous layer.

O s, G 2 » G
Q_,UH_, -
O

Input Modute 1 Module 2
layer

Module n

Figure 6-8 Neocogniron models.
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Figure 6-9 Spreading effect in neocognitron.

2. Cecelt: A C-cell displaces the result of an §-cell in space, i.¢., sort of “spreads” the fearures recognized by
the S-cell.

Neocognitron net consists of many madules wich the layered atrangement of S-cells and C-cells. The S-cells
receive the input from the previous layer, while C-cells receive the inpus from the S-layer. During training,
only the inputs to the S-layer are modified. The S-layer helps in the derection of specific features and their
complexities, The feature recognized in the §; layer may be a horizoncal bar or a vertical bar bur the fearure in
the S,, layer may be more complex. Each unitin the C-layer corresponds to one relative posirion independent
feature. For the independent feature, C-node receives the inputs from a subser of S-layer nodes. For instance,
if one node in C-laver detects a vertical line and if four nodes in the preceding S-layer detect a vertical linc,
then these four nodes will give the inpur to the specific node in C-layer to spatially distribute the extracted
Features. Modules present near the input layer (lower in hierarchy) will be crained before the modules that are
higher in hierarchy, i.c., module 1 will be trained before module 2 and so ob.

The users have to fix the “receprive field” of each C-node before training starts because the inputs to C-
node cannot be modified. The lower level modules have smaller recepive fields while the higher level modules
indicate complex independent features present in the hidden layer. The spreading effect used in neocognitron
is shown in Figure 6-9.

The S-ayers are trined to respond 10 a pardicular partern ot group of patterns. The C-arrays then combine
the results from related S-arrays and correspondingly thin our the number of units in each array. Training
is found to progress layer by layer. The weights from the input units to the firse layer are first mrained and
then frozen. Then the next trainable weights ae adjusted and so on. When the net is designed, the weights
berween some layers are fixed as they are connecrion parterns.

lf.m Cellular Neura) Network

The cellular neural nerwork (CNN), introduced in 1988, is based on cellular automara, i.e., every cell in the
necwork is connected only to its neighbor cells. Figures 6-10{A) and (B) show 2 x 2 CNNand 3 x 3 CNN,
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Figure 6-10 (A) A2 x 2 CNN; (B) a3 x 3 CNN.

respeltl:sti.vely. The basic unit of 2 CNN is a cell. In Figures 6-10(A) and (B}, C(1, 1) and C(2, 1) are called
as cells.

Even .if the cells are not directly connected with each other, they affect each other indirectly due to
propagation elﬂ'ccrs_of the nerwork dynamics. The CNN can be implemented by means of a hardware
model. This is achlevexli by replacing each cell with lincar capacicors and resistors, linear and nonlinear
conerolled sources, and independent sources. An electronic circuit model can be constructed fora CNN. The

CNNs are used in a wide variery of applications including image processing, pattern recognition and array
compurets.

I 6.11 Logicon Projection Network Model

Logicon projection network model {LPNM) is a learning process developed by researchers at Logicon. This
modt?l co.mbines supervised and unsupervised training during the learning phases. When the unsupervised
!enrnmg is used, the nerwork learns quickly but nor accurately. On the other hand, with supervised learnin

it lear.ns slowly but che error is minimized. The learning phase uses a feed-forward nerwork wich a hiddegr;
layer in berween input and outpur layers. At the beginning of the learning phase, an unsupervised method
such as Kohonen or ART is used o quickly inirialize the weights of the network to some gross values, and
then 2 supervised method like BPN may be used to finerune weight values. As the supervised method ;rarts
From almost acceptable” solution, the network is claimed to converge quickly to a global minimum. Logicon
claims that LPNM method is best than other methods. This network does not have to be reinitialized if

more knowledge is to be added. Also, a nerwork with some knowledge can be added to another necwork with
different knowledge to obtain the sum of both,

l 6.12 Spatio-Temporal Connectionist Neural Network

_Spauo-tcmporal connectionist neural necwork (STCNN) characterizes connectionist approaches for learning
input—ourput relarionships in which the daca is distributed across space and time—spatio-temporal partens.
Al:l S"l'CNN is defined as a parallel distibuted information processing structure which is capable of dealing
with inpur dara presented across both time and space. In STCNN, input and output pawerns vary across time
as wel! as space. For analyzing the networks performance, it is useful to discretize the temporal dimension by
famplmg at regular intervals. The system considered here produces the response when the time proceeds by
intervals of Az Symbol “f” may be used 1o represent a particular point in rimé. Here Artan be considered
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as the unit measure for quantity ¢ or some small variations in £ In STCNN, even z continuous tine system
is converted into a set of Gest-order difference equations, making it to be in the form of discrete time
systems.

The time dimension in STCNN differs from the spatial dimensions in conventional connectionist net-
works. Components of an inpuc pattern distributed across space can be accessed at the same time. However,
only the current componencs of patterns distributed along the time are accessible at any given instant. The
input vector for an STCNN at instant ris denoted by input vector x{#). This vector is supplied to STCNN
at time ¢ by setting the activation values of the input units of the STCNN ro the components of the vector.
Hence, input vector can be considered a5 a stimulus.

The conventional 2nd spatio-temporal networks are equipped with memory in the form of connection
weights denoted by one or more marrices depending on the number of layers of connections present in
the network. These are updated after each training step and constitute 2 memory of all previous training.
Assuming this memory exvends back past the current input pattern, all the way o the first training step, we
refer to the weights as long-term memory. After a connectionise necwork has been successfully erained, this
long-term memory remains fixed during the operation of the nerwork.

Along with these weight marrices, soine nerworks also use other trainable parameters. These parameters
may represent either of the three mentioned below:

1. connectivity scheme of the necwork;
2. types of ransmission delays associated with connections;

3. initial activation values of the internal processing ¢lements.

These parameters also form a part of the long-term memory. We define “ 1" to denotean n-tuple representing
all the adaptable paramerers of the nerwark. This n-tuple includes one or more weight matrices, andalso may
contain connectivity scheme parametets, transmission delay parameters and initial activation values depending
on the type of the nerwork.

The STCNN also include a short-term memory. This memiory allows these networks to deal with inpur
and output pacterns that vary across time and thus defines them as STCNNG, Conventional connecrionist
nerworks compute the activation values of all the nodes at time ¢ based only on the input ac rime £ On the
ather hand, in STCNNG the acrivations of some nodes at time ¢ are computed on the basis af the activations
at ume (£ — 1) or earlier. These activations serve as shorr-term memory. The srate vector 5{t — 1) is used here
to represent the activacions at time (¢ — 1) of those nodes that are used to compure the acivations of other
nodes aca dime 1, i.e., state nodes. The long-term memory is stored in connection weighs (which are updared
only during training) while the short-term memory is represented by nade activarions (which are computed
with each time step cven after training).

STCNNs encode their outpur responses in the activations of a special set of units called output units.
The output of STCNN is represented by vector j(¢). Most connectionist nerworks learn by computing the
difference berween their response and desited {ideal) response and adjusting their long-rerm memory suitably.
The desired response is denoted by 74(¢}. The difference between the desired output vector and the actual
outpur vector is cthe error vecror £f) = 345 — 300, and the ronal network error, £, is defined as the one-half
of the square of the magnitude of this vecror, i.¢.,

-l

The rotal error, given by £, is the measure of overall performance. It is this quantity that is minimized via gradi-
ent descent during training. STCNNsare applicable to dynamical system identification and control, syntactic
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pattern recognition and grammarical induction. There are various taxonomies thar are being developed for
STCNNs.

le.13 Optical Neural Networks

Optical neural nerworks interconnect neurons with lighe beams. Owing o this intérconnection, no insulation
is required berween signal paths and the light rays can pass through each other without interacting. The path
of the signal travels in three dimensions. The transmission path density is fimited by the spacing of light
sources, the divergence effect and the spacing of detectors. As a result, all signal paths operare simultaneously,
and true dara race results are produced. In holograms with high density, the weighted strengghs are stored.

These stored weights can be modified during training for producing 2 fully adaprive sysrem. There are two
classes of this optical nevral nerwork. They are:

1. electro-oprical multipliers;

2. hologrmphic correlarors,

I 6.13.1 Electro-Optical Multipliers

Electro-optical multipliers, also called electro-oprical matrix multipliers, perform matrix multiplication in
parallel. The network speed is Jimited only by the available electro-optical components; here the computa-
tion time is porentially in the nanosecond range. A model of electro-optical matrix mulriplier is shown in
Figure 6-11.

Figure 6-11 shows a system which can multiply a nine-elemenr input vector by a 9 x 7 macrix, which
produces a seven-element NET vector. There exists 2 column of light sources that passes its rys through
a lens; each light Hluminates a single row of weight shield. The weight shield is a photographic film where
transmitcance of each square (as shown in Figure 6-11) is proportional to the weight. There is another

Lens

W, 7 ;
~ O VE:/ ~— Light for the
suspective
N P’ columns
N
[~
L
2 B
- N
) [
Light for the —» -
suspective -
rows -
rd Y
Py - 1 Wn\ .
~
__________________ N

Figure 6-11 Electro-optical mulriplier.
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lens thar focuses the light from each column of the shield ro a corresponding photoelector. The NET is
calculated as

NET, =) wai

where NET}, is the ner output of neuron & wj the weight from neuren # to neuron % x; the inpur vector
component £. The output of each photodetector represents the dot product between the inpur vector and a
column of the weight matrix. The output vector set is equal to the product of the input vector with weight
matrix. Hence, matrix multiplication is performed parallely. The speed is independent of the size of the array.
So, the nerwork is sealed up without increasing the time required for compuratien. Variable weights may be
designed for use in the adaprive system. A liquid crystal light valve instead of photographic film may be used
for weights. This makes the weights to ger adjusted electronically. This type of electro-optical mulriplier can
be used in Hopfield net and bidirectional associative memory.

I 6.13.2 Holographic Correlators

In holographic correlators, the reference images are stored in a thin hologram and are retrieved in a coherendly
illuminated feedback loop. The input signal, either noisy or incomplere, may be applied to the system and can
simultancously be correlated oprically with all che stored reference images, These correlations can be threshold
and are fed back to the input, where the strongest correlation reinforces the input image. The enhanced image
passes around the loop repeasedly, which approaches the stored image more closely on each pass, unril the
system gers stabilized on the desired image. The best performance of optical correlators is obtained when they
are used for image recognirion. A generalized oprical image recognition system with holograms is shown in
Figure 6-12.

The system input is an image from a laser beam. This passes through a beam splirrer, which sends ic to
the threshold device. The image is reflected, then gets reflected from the threshold device, passes back to the
beam splicter, then goes to lens 1, which makes it fall on the first hologram. There are several stored images

Mirror A
™ Pin hole array Mirror B
Y
‘ Lens 2 Lens 3

First hologram Second hologram

Inputs

Laser
beam

Mirror C

)

Beam splitter ~«—~

Threshold device

Figure 6-12 Oprical image recognition system.
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in first hologram. The image then gets cotrelaced with each stored image. This correlation produces light
parterns. The brightness of the parterns varies with the degree of correlation. The projected images from lens
2 and mirror A pass through pinhole array, where they are spatially separated. From chis array, light parterns
go to mirror B through lens 3 and then are applied to the second hologram. Lens 4 and mirror C then produce
superposition of the multiple correlated images onto the back side of the threshold device.

The front surface of the threshold device reflects most scrongly that parvern which is brightest on its rear
surface. Its rear surface has projected on it the set of four correlations of each of the four stored images with the
input image. The stored image that is similar to the input image possesses highest correlation. This reflected
image again passes through the beam splitter and re-enters the loop for further enhancement. The system gers
converged on the stored patterns most like the input pattern. -

Here we have discussed the basic operarioh of the holographic optical image recognition system. Employing
hologram correlator, we can design Hopfield nerwork. Optical neural nerworks are more advantageous in terms
of speed and interconnect density. They can virtually construct any nerwork archirecrure.

I 6.14 Neuroprocessor Chips

Neural networks implemented in hardware can take advantage of their inherent parallelism and run orders of
magnitude faster than software simulations. There exists a wide variery of commercial neural network chips
and neurocompucers.

The probabilistic RAM, pRAM-256 Very Large Scale Integrated (VLSI) neural nerwork processor, was
develaped by the Elecerical Engineering Department of King's College, London. pRAM has 256 reconfigurable
neurons, each with six inputs. Its on-chip Jearning unir utilizes reinforced learning where learning can be global,
local or competitive. The excernal staric RAM of pRAM stores the synaptic weights. The p-RAM possesses
both stochastic and nonlinear aspects of biological neurons in a typical manner, which allows exploiration of
hardware,

The Neuro Accelerator Chip (NAC) was developed in 1992 by the Information Defence Division, Aus-
tralian Defence Science and Technology Organization. It is made up of an array of 16-component 10-bit
integer processing elewnents that can be cascaded in two dimensions with necessary concrol signals. Each
processing element multiplies its input by one of 16 weights preloaded in dual port registers and accumulates
the results ro 23-bit precision at a rare of 500 million operations per second. The NAC can be hard wired ro
implement various neural nerworks,

Neural Nerwork Processor (NNP), developed by Accurate Automarion Corporation, uses a multiple
instruction muldiple data architecture capable of running multiple chips in parallel without performance
degradarion. Each chip houses high-speed 16-bit processor with on-chip storage for synaptic weights. Only
nine assembly language instrucdions are executed by the processor. Communication among multiple NINPs
is performed by incerprocessor. NNP can be programmed 1o implemene any particular neural nerwork train-
ing algocithms, Its performance is 140 MCPS for a single chip and up o 1.4 GCPS for a 10-processor
system.

The CNAPS system, developed by Adaprive Solutions, is mainly based on CNAPS-1064 digiral paral-
lel processot chip thar has 64 sub-processors operating in SIMD mode. Each sub-processor can emulate
one or mare neurons, and multiple chips can be ganged together. The CNAPS/PC 1SA card uses I, 2
or 4 of new CNADS-1016 parallel processor chips or wo of the 1064 chips to obwin 16, 32, 64 er
128 CNAPS processors. Learning algorithms can be programmed. It can be noted that back propagation
and several other algorithms come in the Build Net package. Here, back propagation feed-forward per-
forms 1.16 billion multiply/accumulates/second and 293 million weight updates/second with 1 chip and
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5.80 1.16 billion multiply/accumulates/second /1.95 million weight updates/second, respectively, with four
chips.

E)l'he: IBM ZISC 036 is a digital chip wicth 64-component 8-bit inpucs and 36 radial basis function neu-
tons. Multiple chips can be easily cascaded to create nerworks of arbitrary size. Here input vector V'is
compared to store prototype vector ¢ for each neuron. It rakes 3.5 s ro load 64 clements and another
0.5 s for the classification signal to appear. Learning processing of a vector takes about another 2 us beyond
4 s for loading and evaluation. Its performance at 16 MHz, 4 ps classification of a 64-component 8-bir
VECTOL.

The INTEL 80170NX Electrically Trainable Analog Neural Network (ETANN} is one wich 64 inputs
{0-3v), 16 internal biases, and 64 neurons with sigmoidal transfer functions. Two-layer feed-forward networks
can be implemented with G4 inputs, 64 hidden neurons, and 64 output neurons using the wo 80 x 64
weight matrices, Hidden layer outpurs are clocked back through second weight matrix w perform ourpur
layer processing, Instead of this, a single 64-layer nerwork with 128 inputs can be implemented using both
matrices and clocking in two sets of 64 inpurs. Weights possess 6-bit precision and are stored in nonvolarile
floating gace synapses. There is no on-chip learning. Emulation is performed in software and the weights are
downloaded two the chip. In this case, about 8 ps propagation time is taken for a rwo-layer nerwork. This is
equivalent to roughly 2 billion multiply/accumulates per second.

MCE MT 19003 Neural Instruction Sec Processor is a digital processot chip using signed 12-bit internal
neuron values, with 16-bit multiplier and 35-bit accumulator. Network input values, bias values, synapse
and neuron values are held in off-chip memory. The nerwork processing is also guided by a given program
in off-chip memory using seven-element instruction set. Neuron values can be sealed by a transfer function
using four available tables. This processor also has no on-chip leaming. Its performance is 1 synapse per clock
cycle.

RC Module Neuro Processor NMG6403 isa high-performance microprocessor with super scalar archirecture.
The archirecrure includes control unit, address caleulation and scalar processing units, node to support
vector operations with elements of variable bit length. There is no on-chip learning in this processor. Its
performance is

1. Scalar gperarions: 50 MIPS, 50 MIPS for 32 bit dara.

2. Vecror operarions: 1.2 billion multiplications and additions/second,

Nestor N11000 is a nerwork wich Radial Basis funcrion neurons. During its learning, prototype vectors
are stored under the assumprion that they are picked randomly from original parent distributions. Here up 10
1024 prototypes can be stored. Each prototype is then assigned 1o a given middle layer neuron. This middle
Jayer neuron is assigned o an ourpur neuron thar represenes the particular class for that vecror. All middle
layer neurons thar correspond to che same class are designed ro same ouspur neuron. In recall stage, an inpur
vector is compared to each prototype parallely, and if the distance berween them is above a given threshold,
it fires, leading 1o firing of the corresponding outpu, or class, neuron. Here two on-chip learning algorithms
are available:

1. Probabilistic neural nec (PNN);
2. Restricted Coulomb energy (RCE).

Also, microcoding can be modified for user-defined algorichms. Ies performance is 40K, 256 element
patterns per second. There is National Semiconductors NeuFuz/COPS Microcontroller processor, which
uses 2 combination of neural network and fuzzy logic software to generate code for National's COPS
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microcontrollers. Neural network can be used co learn the fuzzy based rules and membership functions,
There exist several packages of it. Some are listed below:

1. NewFuz Learning Kit (NE2 ~ C8A4 — Kit): A neural network PCIAT software (2 inpus, 1 output) and
fuzzy rule and membership function generator {max 3 membership functions), COPS code generator and
COP8 assembler/linker. o

2. NeuFuz 4 (NF2 - C84): Neural network PC/AT sofoware {4 inputs, 1 ourput} and fuzzy rule and
membership function generator (max 3 member functions), COP8 code generator and COP8 assm/linket.

3. NeuPuz 4 Development System (NF2 — C84): Neural nerwork PC/AT sofrware (4 inputs, 1 output} and
furzy rule membership function generarors (max 3 member functions), COP8 code generator, COPS
assembler/linker and COP8 in-circuit emufaror with PROM programming,

Learning performed here is only software learning. Apart from the above lisced chips, there are several

other neuroprocessor chips. Besides, 2 wide variety of research is going on for further development of neural
necwork hardware,

I 6.15 Summary

In chis chapter, we have discussed certain specific nerworks based on their special characreristics and per-
formance. The nerworks are designed for optimization problems and classifications. Certain nets discussed
use Bayesian decision making method and hierarchical arrangement of units. The variations of Boltzmann
machine, which include Gaussian and Cauchy nets were also discussed. Besides, our discussion focused
on the cognitron and neocognitron networks, which are used for recognicion of hand wrimen characters.
Other networks discussed include spatio-temporal neural network, annealing neework, optical neural nets,

cellular neural nets, and Logicon neural ners. To give the reader an idea of neural nerwork hardware, a few
neuroprocessor chips have also been listed.

I 6.16 Review Questions

1. List. a few s_peciaJ neural networks designed for 8. Discuss the algorithm used in probabilistic
typicat applications. neural network,

2. What is the principle behind simulated anneal- 9. How does cascade correlation nerwork build its
ing necwork?

nerwork as the training progress?

3. How is Bolzmann machine used in constrained  10. Justify thar cascade correlation nerwork is a
optimization problems? hierarchical necwork,

4. With 2 near architectural diagram explain 11, Compare and conerast presynaptic and postsy-

the application procedure used in Bolrzmann naptic cells in cognitron model,
hine. ; . .
ma-c tne 12. Explain the working principle of cognitron
5. Write short note on Gaussian and Cauchy necworl.

machu-'ncs. . 13. What is the drawback of cognirron ner?
6. What is the importance of probabilistic neural 14

. Write short nore on neocognit i
nerwork? cognitron model, staring

- how does it overcome the drawback of cognitron
7. With an architecrural diagram, explain the prob- model.

abilisric neural network.
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15. Describe the working methodology in cellular
neural network. ]

16. In whac way are the supervised and unsuper-
vised learning methods combined to obtin high
performance in Logicon projection nerwork?

17. Discuss in detail che spario-remporal connec-
tiorist neural nerwork. ‘

18. Srate the principle of optical neural nerworks.

19, Briefly explain the concept involved i-n
electro-multiplier nerworks and holographic
correlatots.

20. Mention a few latest neuroprocessor chips.

Introduction to Fuzzy Logic,
Glassical Sets and Fuzzy Sets

— Learning Objectives <

* Definition of classical sets and fuzzy sers, + Solved problems performing the operations
* The various operations and properties of and properties of fuzzy sets.
classical and fuzzy sets.

* How funcrional mapping of crisp set can be
carried out.

I 7.1 Introduction to Fuzzy Logic

In general, the entire real world is complex, and rthe complexity arises from uncercainty in the form of
anlb‘iggi_q. One should closely look into the real-world complex problems to find 2n accurate solution, amidst
thE existing uncerraincies, using cereain methodologies. Henceforth, the growth of fuzzy logic approach, to
handle ambiguity and uncercainty existing in the complex problems. In general, fuzzy logic is a form of
multWamcr than precise. This is in contradiction
with “crisp logic” that deals with precise values. Also;BiTary sets have binary or Boolean logic (either 0 or 1),
which mfRn to a particular set of problems. Fuzzy logic variables may have a truch value that ranges

berween 0 and 1 and is not constrained o the two truth values of classic proposicional logic. Also, as linguistic
vartables are used in fuzzy logic, these degrees have to be managed by specific functions:

As the complexity of a system increases, it becomes more difficult and eventually impossible to make a precise
statemnent about its behavior, eventually ayzining at a poins of complexity where the fuzzy logic method born in
h@;ﬁm&m
niginally identified and set fofth by Lotfi A. Zadeh, Ph.D., University of California, Berkeley)
Fuzzy logic, introduced in theyear 1965 by Lotfi A. Zadeh, isa mathematical tool for dealing with uncereainty.
Dr. Zadeh states that rh(@mﬁmm“The closer one looks
at a real world problem, the fuzzier becomes 1t solution.” Fuzzy fogic offers soft computing paradigm
the impormant concepe of compu;i_ng__v@_w\ords. It provides a technique 1o deal with imprecision and
information granularity. The fuzzy theory provides a mechanism for representing linguistic constructs such as
“high,” “low,” “medium,” “tall,” “many.” In general, fuzzy logic provides an inference structure thar enables

appropriate human reasoning capabilities. On the contrary, the traditional binary set theory describes crisp
events, that is, events that either do or do not occur. It uses probability theory to explain if an event will

occur, measuring the chance with which a given eve eqid 10 OCCUr. L he ogic 15 based
i} —— R T gt .. e
upon the Tibtion off relafive graded membership ynd so 2re the functions of cognirive processes. The utility
v
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Degisions
Fuzzy Logic System |——————>

Imprecise and vague data

Figure 7-1 A fuzzy logic system accepting imprecise data and providing a decision.

[
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of fuzzy sers Yies in their ability to model uncercain or ambiguous data and ro provide syizable decisions as i,
Figure 7-1. -
Though fuzzy logic has been applied to many fields, from theory to ineelligence, it still
remains controversial among most statisticians, who prefer Bayesian logic, and some control engineers, who
prefer traditional two-valued logic. In fuzzy systems, values ase indicared by a number (called a cruch value)
ranging from 0 to 1, where 0.0 represents absolute falsencss and 1.0 represents absolure truch, While this
range evokes the idea of probability, fuzzy logic an sets operate quite differently from probaﬁfﬁ
Fuzzy sets thar represent fuzzy logic provide means ro(odel the unce associated with vagizgness,
imprecision and lack of inf ion reparding a problem or a plant or a system, etc. Consider the meaning
of a “short person”. For an individual X, a short person may be one whose heighe is below 4'25". For other
individual ¥, 2 shorc person may be one whose height is below or equal 10 3'90". The word “short” is called a

(ﬁﬂ‘;gj‘—':;ﬁst’ﬂ__ﬁgscrmﬁrhe term “short” provides the same meaning to individuals Xand ¥, buc it can be seen
at they both do nor provide a unique definition. The term "shoM??:F’LMEMWH

a c%@%gﬁmm the pre-assigned value of "shorc”. Thimw
cailed as Jinguirsmic viriable which represents the imprecision existing in the system.
’ﬂm making the membership funcrion lie over a range of real numbers from 0.0

to 1.0. The fuzzy set is characterized by (0.0,0,1.0). Real world is vague and assigning;mliﬁguiﬂ'

Lo\ W

variables means thar some of the meaning and semantic value is invariably lost. The uncertaingy is found ©
arise from ignorance, from chance and randomness, due to lack of knowled i

" the fuzziness existing in our parural language. Dr. Zadeh proposed theffer mmEmEzE};\ea 10 make suitable

decisions when uncertainty occurs. Consider the “short” example discussed previously. 1f we take “short” as
" a heighe equal to or less than 4 feet, then 390" would easily become the member of the sec “short” and 425"
will not be a member of the set “shore.” The membership value is “17 if it belongs to the set and “0” if ic
is not 2 member of che sec. Thus membership in a set is found to be binary, that is, eicher the element is 2
- member of a ser or not. It can be indicated as
<.

Xﬂ(x)=[0.

where x4 () is the membership of element x in the se the entire set on the universe.

[ficis said thac the heighe is 56" {or [68 cm), one might think a bir before deciding whether o consider
1t as short or not short (i.¢., call). Moreover, one might reckon ir as short for a man buc call for a woman. Let's
make the statement “John is shore”, and give it a cruth value of 0.70. If 0.70 represented a probability value, it
would be read as “There is a 70% chance that John is short,” meaning that it is still believed thar John is either

xg A w"‘\}

N7
short or not short, and there exists 70%ghance of knowinig which group he belongs to. Bur fuzzy cerminology -
acrually translates & John's degree of membership I the et of sHort p 270, \by which it is meant

that if all the {fuzzy sct of) short people are considered and lined up, John is posicioned 70% of the way w0 the .
shorcest. In conversarion, it is generally said that John is “kind of short and recognize that there s Todefinite
demarcation between short and tall. This could be stated mathematically as pSHORT(Russell) = 0.70,
where g is the membership function.

o
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Membership
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150 180 210

. Haight {cm)
Figure 7-2  Graph showing membership functions for fuzzy set “all.”

Fuzzy logic operates on the concept of membership. For example, the statement “Elizabeth is old” can
be translated as Elizabeth is a member of the set of old people and can be wiitten symbolically as 2 (QLL),
where 4 is the membership function thar can rerurn a value berween 0.0 and 0.1 depending on the degree of
membership. In Figure 7-2, the objective term “call” has been assigned fuzzy values. At 150 cm and below, a
person does not belong to the fuzzy class while for abave 180, the person cerrainly belongs to category “eall.”
However, between 150 and 180 cm, the degree of membership for the class “rall” can be assigned from the

curve farying lincarly between 0 arid 17 The fuzzy concept “wallness” can be extended into “short,” “medium”
and "¢ . l""a?'Eﬁﬁvn in Figure 7-3. This is different fro ili lves the f
probabﬁyﬁmmmmhnwﬂﬁ%@@ld;mmmﬂ

The membership was extended to possess various “degrees of membership” on che real continuous incerval
[0,1]. Zadeh formed fiizzy sess as the sets on the universe X which can accommadare “degrees of membership.”
The concept of a fuzzy ser{EoATTastspwith the classical concept of 2 bivalent set (crisp sec) whose boundary is
reqmrcd to be precise, thar is, a crisp set is a collection of things for which it is known irrespective of whether
any given thing is inside it or not. Zadeh generalized the idea of 2 crisp set by extending a valuation set {1,0}
(definitely in/definitely out) to the interval of real values (degrees of membership) berween 1 and 0, denot’ed
as [0, }]. We can say that the degree of membership of any parcicular element of a fuzzy ser expresses the degree
of compatibility of the element with a concept represented by fuzzy ser. It y set A contains
an object x to degree a(x), that is, a(x) = Degree(x € A), and the maplfr X — [Membership egread) is called
aset ﬁmm’qi or %rfeinéfnb¢ function. The fuzzy set A can be exprﬂsem;m €Xiic imposes an
elastic coristrain[pf the possible values of elements x € X, called the possibility distribution. Fuzzy sets rend to
e —

i
¢

o

] Short Medium Tall

Membership

0.57

Height {crm)
Figure 7-3

Graph showing membership funcrions for fuzzy sets “short,” “medium” and “rall.”
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X — univarse of discourse

Fuzzy Rule Base

Fuzzy sels in X '—* Fuzzy Inference Engine %—l Fuzzy ssisin Y
S
\‘T .

Figure 7-5 Configuration of a pure fuzzy system.

P

Figure 7-4 Boundaty region of a fuzzy ser.

caprure vagueness exclusively via membership functions that are mappings from a given universe of discourse
X to a unit interval containing membership values. It is important to note that membership can take values

berween 0 and 1. .
Fuzziness describes the@mbiguity of an even andfrandomness describes the uncertainty in thebecurrence of

oy
§ S5
q ¢ AR T

Wlﬁsid sets that there s no uncertainty, hence they have crisp boundaries,
“buc in the case of a fuzzy ser, since uncercainty occurs, the boundaries may be ambiguously specified.

From Figure 7-4 it can be noted that “a” is clearly a member of fuzzy sec P, “c” is clearly not a member
of fuzzy set P and the membership of “4" is found to be vague. Hence “#” can take membership value 1, “¢”
can take membership value 0 and “4” can rake membership value between 0 and 1 [0 to 1}, say 0.4, 0.7, erc.
This is said to be a pardal membership of fuzzy set 2.

_The membership function for a ser maps each elemenr of the set to 2 membership value berween 0
and Tand uniquely describes thar set. The values and T déscribe “not belonging to” and “belonging to”a
convehtional ser, respectively; valuesin between represent “fuzziness.” Determining the membership function

is subjecrive to varying degrees depending on the situation. It depends on an individual’s perception of the

dara in question and does not depend on randemness. THisconcept is impartant and distinguishes fuzzy se1—

theory from probability theory. "‘Kﬂ“‘ m _______

“Fuzzy logic als5 ComemEs of fuzzy infererice engine or @E)’r’r#@o perform approximate reasoning
soraewhar similar o (but muclll more rimitivc-dm)n) that of the fuman brain, Compuring with words seems
10 be a slightly futuristic phrase today since only certain aspects of natural language can be represented by
the calculus of fuzzy sets; still fuzzy logic remains one of the most pracrical ways to mimic huifian expertise
in 3 TeAlG TRANTEE The fuzzy approach uses a premise that humans don’t represent classes of objects
(e.g. “class of bald men” or the "class of numbers which are much greater than 50”) as fully disjoint sets bus
rather as seis in which there may be grades of membership inrermediate berween full membetship and non-
membership. Thus, a fuzzy set works as a concepr that makes it possible to traer fuzziness in a quantitative
ntanner.

Fuzzy s ildi EN rules which have the general form “IF X is A
THEN Y is B,” where A and B are fuzzy seis. The term “fuzzy systems” refers mostly o systems thar are
governed by fuzzy IE:LHEN rules, The IF part of an implication is called the antecedent whereas the THEN
part is called a consequent. A fuzzy system is a set of fuzzy rules that converts iGpuTs to ourpucs. The basic
configuration of a pure fuzzy syMﬁgmmmembinﬂ

fuzzy JF-THEN rules into 2 mapping from fuzzy sets in che input space X to fuzzy sets in the outpur space

. number.of elements in universe U is called (cardinal number denote

<

¥ based on fuzzy logic P;inciph:s. From a knowledge representation viewpoint, a furzy /R-THEN rule is a
scheme for capturing knowledge that invalves imprecision. The main fearure of reasoning using these rules is
its partial matching capability which enables an inference to be made from a fuzzy rule even when the rule’s
condition is only partially satisfied. '

Furzy systems, on one hand, are rule-based systems that are constructed from a collection of linguistic
’E,!E on the other hand, fuzzy systems are Ronlinear mappings of inputs {stimuli) ro oy, Kesponses); that
is_ certain types of fuzzy systems can be wiliTEf"E2¥Mpact nonlinear ormulas. The inputs and outpurs can
be numbers or vecrors of numbers. These rule-based systerns can in theory model any syscem with arbitrary
accuracy, that is, they work a5 universal approximators. . —

Tmmm—u_ﬁwmmm rules give smart systems and other rules give less
smart or even dumb systems. Khe number of rules increases exponentially with the dimension of the input
space (number of system variables)} This rule explosion is called the curse of dimensionalizy and 15 a general
probler-formatherremicat models. For the last § years several approacmmposition. (cluster)
merging and fusing have been proposed to overcome this problem.

Hence, fuzzy models are not replacements for probability models. The fuzzy models are sometimes found
to work better and sometimes they do aot. But mostly fuzzy logic has evidently proved chac ic provides better
solutions for complex problems. : -'?"T" . el

P . ~

. L Of ¢
I 7.2 Classical Sets (Crisp Sets) v w

Basically, a ser is defined as 2 collecrion of objects, which share certain characteristics. A classical set is a
collection of distingg objects. For example, the user may define 2 classical set of negative integers, a set of
persons with height less than 6 feet, and a set of students with passing grades. Each individual entiry in a ser
is called a member or an elemenc of the ser. The classical ser is defined in such a way that the universe of
discourse is splitiedt i ~members and nonmembers. Consider an object x in a crisp set A. This
object x is either a member or a nonmember of the given set 4. In case of crisp sets, no partial membership
exists, A crisp sec is defined by its characeristic function.

Let universe of discourse be U. The collecrion of elements in the universe is calied whole set. The toral
777 Collections of elements within
a universe are called sets, and collections of elements within a set are called subsess.

We know that for a crisp set A in universe U: —~

1. An object x is a member of given ser A (x € A}, ie., x belongs ro 4,

2. An object x is not a member of given sec 4 (x ¢ A), i.e., x does not belong to A.
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There are several ways for defining a ser. A set may be defined using one of the following:

1. Thelistof all the members of a sec ma)'r be given. Example \,J
A=1{2,4,6,8,10) v
>
2. The properties of the set elements may be specified. Example y
v -
A = {x|x is prime number< 20} (-;.\\ W-\_-,
- o
3. The formula for the definition of a set may be mentioned. Example r:g' £
e Y
. 2 1.:?' " l‘f
A=[x,-=i—1,i=1t010, whcrex;:llw Nvd Q ((7
YN
4. The set may be defined on the basis of the results of a logical operation. Example ,.%L'

A = {x|x s an element belonging to P AND ()} QJ'C
I e

5. There exists a membership funcrion, which may also be used to define a set. The membership is denoted
by the letter 4 and the membership function for a sec A is given by {for all values of »)

» |1 ifxed
HAE =0 ifxg A

The ser with no elemencs is defined as an empry set or null sec. Tt is denoted by symbol ¢. The occurrence
of an impossible event is denoted by a null set, and the occurrence of a certain event indicares a whole sec.

The set which-consists af all possible subsets of a given set A is called a power set and is denoted as

ik - Bt bttt
PA) = {xix € 4}
For crisp sets A and B containing some elements in universe X, the norations used are given below:

x € A= xbelongs w0 A
x ¢ A = xdoes not belong vo 4
x € X = x belongs to universe X

For classical sets A and B on X, we also have soine notarions:
A B=> Ais completely contained in B (i.e., if x € A, then x € B)

A € B= Ais contained in or is equivalent ro 8
A=B=ACBand BC A

I 7.2.1 QOperations on Classical Sets

Classical sets can be manipulaced through numerous operarions such as unien, intersection, complemnent and
difference. All these operations are defined and explained in the following sections.
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Figure 7-6 Union of wo sets.

7.2.1.1 Union

The union berween two sets gives all cthose elements in the universe that belong to cither set 4 or set B or
both sets 4 and 8. The union operation can be termed as a logical OR operation. The union of two sets 4

and B'is given as
AUB=[x|xe€ Aorx € B}
The union of sets 4 and B is illustrated by the Venn diagram shown in Figure 7-6.

72.1.2 Intersection
The intersection hetween two sets represents all those elements in the universe chat simultaneously belong to
both the sets. The intersection operation can be termed as a logical AND operation. The intersection of sets
Aand Bis given by

ANB={xx€ Aand x € B}

The intersection of sets A and B is represented by the Venn diagram shown in Figure 7-7.

72.1.3 Complement

The complement of set 4 is defined as the coliection of all elements in_nnjverse
i.e., the entities that do not belong 10 A. It is denoted by 4 and is defined as

A={dx¢ AxeX) \F‘g&

where X is the universal set and A4 is a given set formed from uni‘irse X. The complement operation of set A

is shown in Figure 7-8.
‘/

Figure 7-7 Intersection of two sets.

7

Figure 7-8 Complement of set A.

at do not reside in set A,

.\\\\]
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Figure 7-9 (A) Difference A|B or (4 ~ BY: (B) difference B|A or (B — A).

7.2.1.4 Difference (Subtraction)

The difference of ser A with respect to ser B is the collection of all clements in the universe chat belong to 4
bur do not belong o B, i.e., the difference set consists of all elements that belong to 4 bur do not belong to
B, It is denoted by A|Bor A — B and is given by r

/4
A[Bor(A—B):{xlxeAandxeB}@ \R\r\l’)

The vice versa of it also can be performed
BlAor (B—4) #VZE,—(BDA)—{xle Bandx¢ A}
' o A
The above operations are shown in Figures 7-9(A) and (B). l{\\
l7.2.2 Properties of Classical Sets

The important properties that define classical sets and show their similarity to fuzzy sets are as follows:

1. Commutacivity
AUB=BUA, ANB=BNA
2. Associarivity
AUBUC) =(AUBUC ANBNCO) =UANBNC
3. Distributivity

AUBNCY=(AUBN{ALC)
ANBUC = ANBU{ANC)

4. Idemporency
AUA=4, ANA=A4
5. Transirivity

o e e

SHACBC GthenAC

6. Idenuty //—‘
fAug=U, Ang=¢
5\AUX=;X, ANnX=X

b

7.2 Classical Sets (Crisp Sata) 259

7. lnvolution {double negarion)

j:A

. . ‘X\%\ . ._h
Auvd=X e rMﬁiz‘J
AR
And=¢ - )>ﬂ
3 0 )
n U

8, Law of excluded middle
e

9. Law of contradiction

10. DeMorgar’s law
[ANB|=AUB, [AUB =ANE

From the properties mentioned above, we can observe the dualicy existing by replacing@with
. 0, U, tespectively. It is important 1o know the law of excluded middle and the law of contradi(cgon.
- %

) 723 Function Mapping of Giassical Sets s

@pping is a rule of correspondence between ser-theoretic forms and funcrion theoreric formﬂ‘cl’assial’sc;td

is represented by its characteristic function y(x), where x is the elemént in the universe.
Now consider Xand ¥ as cwo different universes of discourse. If an element x contained in X corresponds

to an element y contained in Y, it is called mapping from Xto ¥, i.e5 F: X — . On the basis of this mapping,
the Characteristic function (s defimed as - DI

e —n

) = 1, xed
Xav = 0, xg A

where ¥4 is the membership in ser A for element x in che universe. The membership concept represents
mapping from an element x in universe X to one of the rwo elements in universcm: 0
or ). Themmm for any set A defined on universe X, based on
the mapping of characteristic function. The whole sex is assigned a membership value 1, and the null ser is
assigned a membedship value 0.

———/—‘ . - - .
Let A and B be two sets on universe X The function-theoretic forms of eperations performed berween
these two sets are given as follows: T T :
-

-

e

1. Unien (AUB)

Xaup) =XA)V xpl0) = maxl () X3}
Here v is the maximum operator.
2. Intersection (AN B} _
Xan) =xal€)A xal¥) = min{xa(), xa6)
Here A is the minimum operator.

3. Complement A

X700 = 1—x40d)
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4. Connainment -

A C B, then x4() =< x5(x)

e

l 7.3 Fuzzy Sets

Fuzzy sets may be viewed as an extension and generalization of the basic concepts of crisp sets. An imporant
propery of fuzzy sec is thar it allows partial membership. A fuzzy set is a set having degrees of membership
berween 1 and 0. The membership in a fuzzy set need not be complete, i.¢., member of one fuzzy set can also
be member of other fuzzy sets in the samne aniverse. Fuzzy sets can be analogous to the thinEl_ng_oFﬁélligent
people. If a person has to be classihed as fiiend or enemy, intelligent people will not resort to absolute
classification as friend or enemy. Rather, they will classify the person somewhere becween two exuremes of
Friendship and enmiry. Similarly, vagueness is introduced in fuzzy set by eliminating the sharp boundaries
that divide members from nonmembers in the group. Théte is a gradual ransition between fil Tembership
and nonmembership, not abrupe transition.
A fuzzy set 4 in the universe of discourse {/ can be defined as a set ofordq:_red—pa".ilrs and icis given by

YNt
A= {GuNlxe U} - } [ j
s T
where p,(«)-isth e of membership of x in 4 and it indicates the degrée thar x belongs 10 4. The degree

- of mé}nbership it4(x} assumes valles in the range from0ta 1, i.e., the membership is set to unit interval [0, 1]
£ ) orugd e, 11 —
S

£ ., There are other ways of representation of fuzzy sets; all representations allow partial membership two be
= Y expressed. When the universe of discourse{ U/ is discreté W fuzzy set 4 is given as follows:

b\’\ hS .

Pl "ol L
§ 55 A= [#4(11) N () N ey +] = E 407} -y !
5 W x3 B = .

o - NS - - . .
where “n” is a finite value. When the uéwerse_ of discourse J is continuous and in

o ‘ [

(n the above two representations of fuzzy sets for discrete and continuous universe, the horizonral bar is
not a quotient but a delimiter. The numerator in each representation is the membership value in ser 4 chat
is associated with the elementof the universe present in the denominaror. For discrete and finite universe of
discourse U, the summation symbol in the representation-of fuzzy ser 4 does nat denote algebraic summation
bt mticares the collection of each em;‘: summation sign {“+") MWT
BT TaEher it 15 3 diserer

figite) fuzzy set 4 is given by
Lo € k
L’f)‘,l N

aBencrion-theorenic union. Also, for continuous and infinite vniverse of discourse

U, the integral sign in the representation of fuzzy ser 4 is not an alpebraic integral bur is a_continuons

funcigon-theoretic union for continuous variables.
A fuzzy serd set if and only if the value of the membership function is 1 for all the membess

under consideration. Any fuzzy ser 4 defined on a universe U is 2 subset of That universe. Two Fuzzy sets 4
and B are said to be equal fuzzy sexs if{js,(x} =pplx) ?ﬁr alkx € U A fuzzy ser 4 is said to be empty fuzzy sec

if and only if the value of the membelstrip firetion is 0 for al-péssible members considéred. THe uutyemal A

fuzzy ser can also be dl@l’j - .
e . L

N

N

) .
I
=

S

l

73 Fuzzy Sets

The collection of all fuzzy sets and fuzzy subsets on universe {is calle
fuzzy-sets can overlap, the Gardinality of the fuzzy pawer set, npyyy is infinite, .

On the basis of the above discussion we have ;

Also, foralix e U Sr
=

—__P,r.:;(x) =0 ppld=1

I 7.3.1 Fuzzy Set Operations

The generalization of operations on classical sets to operations on fuzzy sets is not unique. The fuzzy ser
operations being discussed in this section are termed standard fuzzy set operations. These are the operations
widely used in engineering applications. Let A and B be fuzzy sets in the universe of discourse U/, For a given
clement x on the universe, the following function theoretic operations of union, intersection and complement
are defined for fuzzy sets 4 and B on UL

73.1.1 Union

The union of fuzzy sets 4 and B, denoted by 4 U B, is defined as

Hauglx) = maxfa,(x), Uglx)] =pyle) v ppls) forall x e U

where v indicates max operation. The Venn diagram for union operation of fuzzy sets 4 and 8 is shown in
Figure 7-10. N ”

7.3.1.2 Intersection
The intersection of fuzzy sets 4 and B, denored by 4N B, is defined by

Langl®) = min[,(x}, ppla)] =pyle) A prgls) forall xe U

where A indicates min operator. The Venn diagram for intersection operation of fuzzy sets 4 and 8 is shown
in Figure 7-11,

K
1f.
7
e
0 — X

Figure 7-10 Union of fuzzy sets 4 and B.
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L ,

Figure 7-11 TIntemsection of fuzzy sets 4 and 8.

7.3.1.3 Complement -
When 1,(x) ELQJ 11, the complement of 4, denoted as A is defined by

ug(¥) = 1—pyle) forallxe U

The Venn diagram for complement operation of fuzzy sex 4 is shown in Figure 7-12.

7.8.1.4 More Operations on Fuzzy Sets
1. Algebraic sum: The algebraic sum (4 + B) of fuzzy sets, fuzzy sers 4 and Bis defined as

e e e e ——

) o tgo) e )

2. Algebraic produet:  The algebraic product (4 - B) of oo fuzzy sets 4 and B is defined as

| 1geple) =g 115 .

— X

Figure 7-12 Complement of fuzzy set 4.
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3. Bounded sum: The bounded sum (4 @ B) of twa fuzzy sets A and B is defined as

tamplx) = min{l, wy(x)+pgl<)}

s —————

4. Bounded difference: The bounded difference (4 © B) of two fuzzy sets 4 and Bis defined as

Hg00) = maxlO, '#4(x)—LIE€:ﬁ)l

T

‘ 1
I 7.3.2 Properties of Fuzzy Sets

Fuzzy sets follow the same properties as crisp sers except for the law of excluded middle and law of contradicrion.

That is, for fuzzy ser 4
(’Q;,d JQ LRI
o

{«ﬂ-"’) 'Jrﬁg — _
rhud © s AUAFE énd;e‘p.e_:grka

Frequently used properties of fuzzy sets are given as follows:

1. Commutacivity

2. Associativity
AJBUO =AUBUCL
ANBNCY=UNnBNC
3. Distributivicy
AV@BNCI=duBn4ul)
ANGBUO) =NBUUNT)

4. ldempotency

5. Identiry

AU¢=4 and AU U= Uuniversal ser)
ANg=¢ and ANU=4

6. Involurtion {double negacion)

7. Transitivicy

8. De Morgan’s law
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L7.4 Summary

In this chapter, we have discussed the basic definitions, properties and operations on classical sets and fuzzy
sets. Fuazy sets are the rools thar convert the concept of fuzzy logic into algorithms. Since fuzzy sets allow
partial membership, they provide computer with such algorithms thar extend binary logic and enable it 1o
take human-like decisions. In other words, fuzzy sets can be thought of s 2 media chrough which the human
thinking is transferred to 2 computer. One difference between fuzzy sets and classical sets is thar the former
do nor follow the law of excluded middle and law of contradiction. Hence, if we want to chaose fuzzy
incersection and union operations which satisfy these laws, then the operations will nor saisfy distriburiviry
and idempotency. Excepr the difference of set membership being an infinite valued quantity instead of a
binary valued quanrity, fuzzy sets are rreated in the same mathematical form as classical sets.

I 75 Solved Problems

1. Find the power set and cardinality of the givenset  {b) Intersection
= (2,4, 6}. Also find cardinality of power ser. )
Solution: Since set X contains three elements, so its AN B = mintuy(), ugl))
cardinal number is . _ |95, 03 01 02
= + +
2 4 6 8
ax =13

The power set of Xis given by (c) Complemenc

PX) ={g. {2} (4} [6h {2, 4}
{4,6},12, 6}, (2,4, 6}}

0 07 05 08
A=l-pld ==+ L4242
4= 1-p,2 [2+4+6+8
0. 0.6 .
The cardinality of power set P(X), denoted by npgyy, 9 29,0 ]

is found as

==t —

B=1-
MW=yttt

RpX) =® =23=3 (d) Difference

2. Consider two given fuzzy sets JTT= {05 03 05 0
AB=ANB= -+ —+—+
p { L 03 05 0.2] otz 46 8
L=\ T 7 " T = [0 04 0.1 . ;
2 4 6 B BA=BnA: _+_+_+% Vy
B Tl27 4 "6 "8
B 0.5 + 0.4 + 0.1 4 1 . v
=T 2 4 6 8 3. Given the two fuzzy seis b
Perform union, intersecrion, difference and com- :
! e 1 075 03 015 0 v
, B={—4+ —-"4 = 4 " 4 —
plement over fuzrzy sets 4 and 3 B=175 + T + —|— 55 + 3.0}
Solution: For the given fuzzy sets we have the 1 06 02 0.1 0
. By={— 4= ; 4=
following B + 5 + 20 + 75 + 3.0}
(a) Union
find the following:
AU B = max{pe (), upla))
1, 04, 05 @&HUSE: b} BNE; (@B
2 4 6k @WE @& O&UE

. 75 Solved Problems

@B NB: MBNB: ()BUE,
() B:NB; (W BUE

Solution: For the given fuzzy sets, we have :hle
following:
0.75 .3 015 0 l

1
BUh = —+ —4+ =
(8 BiUB, {]'0+15+2 +25

1 06 02 01 <0
) BiNBr={— 4 — =+
) B0k [1.o+1.5+z.o+2.5 3.0]

0 025 07 085 1
Bi=48— 4 — 4 Ty
© & {10"’ 5 T35t s 30]
— [0 04 08 09 1
D Br= ]t e b b
@ & [10+15+z.0+25+30]

_l 04 .03 015 0
1071 0 25 30
0 025 07 08 1

BUR = — 4 = 2
O HUE [1.0+15+2. +2.5+3.o]
0 04 08 09 1

O BE={ et 22, L
B ANE= |15+ HETRETREEY:

{)BnB__{ — - —
poatia TRET 5730

— 1 06 08 09 1
(k) QzUQz-{ Tty +2.5+§.T)]
4. Ivis necessary ro compare two sensars based upon
their detection levels and gain sectings. The table
of gain serrings and sensor dececrion levels with
a standard item being monirored providing typi-
cal membership values to represent the derection
levels for each sensor is given in Table 1.

265
Table 1
Gain  Detection level Detection level
setting  of sensor 1 of sensor 2
0 0 0
10 0.2 0.35
20 0.35 0.25
30 0.65 0.8
40 0.85 0.95
50 1 1

Now given the universe of discourse X = [0, 10,
20,30,40,50} and the membership funcrions
for the two sensors in discrete form as

{ 0 02 035 065 085 1
Di={-+ 4oy 20y
0 10 20 30 40 50

0 035 025 08 095 1
={-4 — _— —_— — ——
£ [0 020 "3t a0t 50]

find the following membcrshipr funcrions:

@ rpup i B) mpinp e (o) up ()
W pgtd @ wp gt € pp g
®upup: Hpnpa ek (@ w1 g, )
0 upai oy )

Solution: For the given fuzzy sets we have

(a} HDup, (x)

= max {p, (), up, (4)
_ 9 035 035 0.8 095 I
_[0+10+20+30 40 +5—0]

(B mpnp, )

= min {H'Q] (=), ﬂ-&(x)}
_ { 0 + 02 025 065 085 1 ]

+_ —_— —_— —_—
¢ 10 20 30+40 +50

(c) up)
=l-up,(x
_ 1,08 065 035 015 0
_[0+10+Y+—36— +50]




266

Intreduction to Fuzzy Logic, Classical Sets and Fuzzy Sets

) pg
= 1—pp,{x) ,
1 065 075 02 0 05
= [a LTI Y T 50

(¢} kp Ut

= max(p, (x), ()}
_ [l 08 065 065 085

T T T T T
6] ‘U'anm(x)

= minfup, (9, w5 )
_[0 02 035 035 015 0

0 10 20 ' 30 ' 40 ' 50

(@ spuptd
= max{pp, (), w; ()}
{108, 07 08, 0% ]
“lo 10 20 " 30 4 50
(h) #anﬁ(x)

= min{ppy () i)
_[0 035 025 02 005 0]

ot Tt Tt
W) ppp &
—;cD,ngéc) = minlsp, () 5
_‘ﬂ" 0.2 035+02 005 0
0" 10" 20 ' 30 50

() ppsip &)
) =Hpn 9 o) = mm[#@;(x) 'H'Dl(x)}
{ 0.35 n %E 0. 55 0.15 + _0“
TR 40 750

5. Design a compurter sofeware to perform image
processing to locate objects within a scene. The
two fuzzy sews representing a plane and a train
image are:

02 0. 0.3 0.8 0.1
Plane = [—-—- + 2 ]
train

m-‘_'l;(;-l—plane

L. 1 0.2 0.4 0.5 0.2
"[rg‘_m ={— +—+~—+
tra

house

bike ~ boat  plane + house

Find the following:

(a) Plane U Train; (b) Plane N Train;
(d) Train;

() Plane U Train;
(g) Plgne N Trgin; (h) Plane U Planc;
(i) Plane N Dlgne;
(k) Teain U Trajn

(c) Plane;
(¢) Plane|Train;

(5} Train U Train;

Solution: For the given fuzzy sets we have the
following;

(a) Plane U Train

= max{ {Lplgne{xh W Train (<))
_ 1.0 0.5 0.4 0.8 0.2 ]
" |uain  bike = boat

plane  house
{b) Planen Train

= min{,u.p]m,(x), P-Tr!in(x)}

_ [ 02 0.2 0.3 0.5 + 0.1 ]

train | bike | boat plane  house
{c) Plane= 1—pippynel)
_[ 0.3 0.5 0.7 02 n 0.9 ]

train © hike | boac plane

house

(d) Train = 1 —pgin ()
_[ 0 08 06 05 0.8 }

train ~ bike = boar = plane = house

(e) Plane|Train
= Plane N Trajin

= min{ HDhune (=), .Uq-ﬁ(x)]
L, 0 0

tain | bike | boar plane ~ house

(f} Plane U Train

= 1 — max{Plunc (%), [ Trin (5}

[ o ,05, 06 02 08
tram+Fk_ boat T Ie house

75 Solved Problems
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{(g) Plane N Train
=1- min{ﬂl”]!ne(x): .U'Train(x)]
_} 08 n 0.8 " 07 05 0.9
~ | wrain " bike © Boat * plane * Fouse
{(h) PlaneU Plane

= max{f4ptane (%), ()}
_[98 05 07 08 0.9}

_+_
train ~ bike boat  plane  house

{1} Plane N Plane

= Min{gplane (<), ppm ()}
Joz 05, 03 02 O-II

wain ' bike | boat plane * house
{j) Train U Train

= m:u([#Trgin(x)r lu'Tr_em(x)]
_[ 10 08 06 05 08 ]

cain | bike | boat plane  house
{k} Train N Train

= miﬂ[,U-Tr:in (x) ,u.m(x)]

=[o 02 . 04 05 0.2 ]

* ke T boar T plane * house

6. For aircraft simulator dara the determination of
certain changes in its operating conditions is made
on the basis of hard break points in the mach
region. We define two fuzzy sets 4 and B rep-
resenting the condition of “near” a mach number
of 0.65 and “in the region” of a mach number of
0.65, respectively, as follows

A = near mach 0.65

[0 075 1 05 0
—lmﬁms*r@*@ _l
= in the region of mach .65

Jo 035 075 105
—[m+ms+r@ EEE+EGE}

For these two sets find the following:
N
M ANE (4
() B; (Y4uB Brdns

@ 4UB

Solution: For the two given fuzzy sets we have the
following:

(3) 4U B

= max{pL,(x), 12p())
0 0.75 1 1 03

064 V056 T oss Tosss T 06
b ANB

= min{u,(x), pg(x)}
_L+°-25 0.75 o.5+o]
T 064 0645 065 0.655  0.66

(© 4=1-pyx

L e o 05 L
T losd T 0.645 ' 0.65  0.655  0.66

(d) B=1-pplx)

Latn o o)
0.64 0.645 065 0.655  0.66

1 — max{ (), pptad)
[ ] 0.25 0 0 0.5]

061 0645 T 065 T 0.655 T 066

=1- min{ud(x),uﬂ(x)]
L + 0.75 + % 0.5
0.64 0645 0.65 0655

L L
0.66

{0.1 02 04 06 1]

7. For the two given fuzzy sets

A= +—=+—+

TrT T2 TG
[1 05 0.7 0.3_9}

R
oFT T
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' Solution: We have 9. Consider two fuzzy sets
find the following: ) ANE = min{p,(x), #3500}
& _ g g (@ AU B = max({p,(x), pg=)} A= E+E 0—"2-1—%]
@AVE BANE O _[0,02,03 06 1 03 04 08 07 11 . STl 23 4
- - - ) 01 2 3 4 =l; =ttty 01 02, 02 1
{d) B, (Y AU ) AN4; & al0 852 130 2 9 B= T+—2— + T+Z]
5 B @4ng o b O 4UE= maxugla i) '
(g EU_"S' h) gn_g, (l)f‘m% b ol 05 04 07 1 (b) AN B = min[p,(x), Ua(x)} Find the algebraic sum, algebraic product,
(4UB  WBN4 M BUdy = [—-6- + T + —2- + ? + Z] 01 02 02 01 0 bounded sum and bounded difference of the given
@308 WAnE Mefb o _ ~ a0 " 852 355+f_2+f79] Fuzzy ses.
) ) & 3 nd= mm[uﬂ(x), ,uz(x)} _ Solution: We have
Solution: For che given sets we have: _ 09 s 05 . 9_6. 03 . 0 l @ 4= 1—24(x) (a) Algebraic sum
@ AU B = maxiuylx, ug() 0o 12 3 4

07 06 08 09 0
= l— 3 ] ta+p(¥) = [pa(e)+pg()] — D1a()-12p0)]

GMTmtae e

0 1 2 3 4

_ [1 0.5 . 0.7 N 06 1} O BUA = max{pg(s), uz(x)} _ _fo3 N 05 06 N 0.5
o1 2 3 4 _[1,08 07 04 0 @ B=1-p@ ST T2 T T
(b) AN B = min{py(x), p()} 012 3 4 _jo9 08 02 03 1 I 0.02 006 0.08 0.5]
_jor, 02 04 03 0 } (m) ZTB= 1 — maxliey(eh gl a0 852 o130 f2 ' f9 ; 2 3 ' 4
o1z 3 _f0,05 03 04 0 @ AIB =A4NE = minluy(s), gt} _ [0 044 052 g}
© A= i—pylo 01 2 3 4 : 03 04 02 01 1 : 2 3
” - - =2 e L .
_[09,08 06 04, o} () 4NE = minfizld, uz() [zle B2 30 f2 f9] (b) Algebraic produce
=y ——F — 4+ — F = : _ alx) = ()
o128 A _[0,05 03 04 o0 e 6 Bl4 = BN A = minfupla), w00) adle) St i
@ Fm lep) etttz t3 g oL 0 08407 . o.oz+o.06+o.os+o.5]
= l—ugl =§— _— _— —_
= = =y S L | 2 3 4
0 05 03 07 i 8. Let U be the universe of military aircraft of lalO + 552 * 130 + 12 +f9] .
1o + T t 3 ] incerest’ as defined below; . (¢} Bounded sum ’ \ e
B AUB =1 — max{s,(x}, up(=)] oot
(&) 4UZ = max(pys), uz00) U=1a10, 452, 130, f2, f9} Pl brodd — (T
C o Lec 4 be che fu fb . |07, 06,02 03,0 = minll, (> &
_ o N 08 : 0.6 06 ll et A be the fuzzy sec of bomber class aircraft: a0 B52 130 f2 0 9 —63 05 06 05
"o 1 7 3 4 :minllﬁ+;+;+;”
- 4:{0_'3_+_0_'4_+0;2+E+_'_} () ANB =1 — min{iy(2), 11503} 12 3 4
6 ANZ = minfjy o), () al0 852 130 f2 0 f9 . 09 08 08 09 1 03 05 06 0.5]
: S Bt Rt T NN Y Botis Tl R Wi Ui
_ ot + 02 + 04 N 04 N 9] Ler B be the fuzzy sex of fighter class aircraft: ; ' 210 + 552 + 130 + 2 +f9 1 2 3 4
0 ] 2 3 4 01 02 08 07 0 : o (d}) Bounded difference
B p={ 22 98 07 0 @ AU B = max{ug(d, up(x)
(8 BUB = max{ugle), 1500} ald  $52 (130 f2 0 f9 i 09 08 08 09 1 Maogl)
3 : _|o. . . . _t _
_ (l N 0.5 . 07 + 0.7 N 1} Find the following; : T 52 + 130 + 2 +f—9 + =m0 s uﬂj(x)

- — - 61 01 02 05
(a} AU B; (b){!ﬂél (e 4 (d) B. ) () EUA:max{uE(x),#ﬂ_(x)} = max{0, T+T+?+T
th} BN B = min{upl), sl . . T0 5B C
BN &= wintigl), kg) @418 ©B4: @IUE 09,08 02 03 1 NS 0.5]
4%*?*%*?%] ®WANE BAUB () Bud 20" 652" a3 f2 f9 STt
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10. The discretized membership functions for a
transistor and a resistor are given below:

o 02 07 08 09 |1
(342245 |

=t T T Tt

R e i
Find the following: (a) Algebraic sum; (b) alge-
braic product; () bounded sum; (d) bounded
difference.

[0 01 03 02 04 0.5]
Hg=

Solution: We have

(2) Algebraic sum

feg+plx)

= [+ 1eg(x)] — (p7(2)-pug()]
{0,083 10 10 13 LS
—h+T I I
0 002 021 016 036
_lﬁ T T2y Ty Ty
0.5
5

_‘0 028 079 084 094

ottty

o
5

I 7.6 Review Questions

(b) Algebraic product

gl
=pr(x)-pple)
_{9 002 021 016 036 0.5]

Tttt S

{c) Bounded sum

iym pla)
= minf1, .ur(x)+u3(x)}

[ [ + +10 1.0
= min — + — 4 —
3

+1.3 + 1.5
4 5

_(0,03 10 10 L0 10
oty T2 73 47 s
(d) Bounded difference

Lo ply)
= max({0, pr{x)—p g(x}}

0 [0, 01, 04 06
ax (0,4 + — —
" o 1 3

F)

0.5 05
25
0 01 04 06 05 05
h*T*?*?*T*?]

il

}. Define ciassical sets and fuzzy sets.

2. State the importance of fuzzy sers.

[S¥]

. What are the methods of representation of a
classical ser?

. Discuss the operations of crisp sets.
. Lise the praperties of classical sets.

. Whar is meant by characteristic funcrion?

bt B - ANV

. Write the function theoretic form representation
of crisp set opecations.

8. Justify the following statemene: “Partial mem-
bership is allowed in fuzzy sets.”

9. Discuss in detail the operations and properties
of fuzzy sers.

10. Represent the fuzzy sets operations using Venn
diagram.

11. Whar is the cardinality of a fuzzy ser? Whether a
power set can be formed-for a fuzzy ser?

12. Apart from basic operadons, state few other
operations invelved in furzy sets.

7.7 Exercise Problems

2n

13. Compare and contrast classical logic and furzy
logic.

14. Why the excluded middle law does not get
satisfied in fuzzy logic?

I 7.7 Exercise Problems

15. Describe the imporrance of fuzzy sets and its
application in engineering secror.

1. Find the cardinality of the given set:
A={1,35%79) P

2. Consider set X = (2,4,6,8,10]. Find its
power set, cardinality and cardinality of power
seL.

3. Show the following fuzzy secs satisfy DeMorgan's

law:

(@) waly) =

& wo=(cs) O

4. Consider two fuzzy sets

4:

60 80 ' 100
B_{o 035 05 0.5 1]

[Lyoe, 0,0, 0

z0 T80 T 100

Find the following:
@AUB B4NE W4 WDE
@ANB (AUE (AU

Ng WAVd G)4ng:
(9 BUR (HBNE

5. We want to compare rwo liquid leve! controllers
for their control levels and flow speed. The fol-
lowing values of flow speed and liquid contrel
levels were recorded with a standard liquid flow
monitor:

Flow speed Control level 1 Control level 2

0 0 0
20 0.5 0.45
40 0:35 0.55
60 0.75 0.65
80 0.95 0.9
100 1 1

Given the universe of discourse s X =

{0, 20, 40, 60, 80, 100) and the membership

functions
0 05 035 075 095 1
9=[6+56+4o o Ta0 T
045+055 0.65 09+ 1
b= 0 ' 60 100

find the following memberships using standard
SET operarions:

(@) ppog (i () ipng @ (@ gt

@ g0 (@ upoptd () ppAps

(g) #[:THE; (h) #LIUE(A‘): 0 ‘U'LIUE(X);
(]) 'U'L:UE(x)

6. Consider rwo membership functions as follows:
.

(60 — )|
8
|(40 —x){ 1

8

Forfuzzysetd: p,() = + 1 ’

Forfuzzyset B: pgly) =
Find the folfowing:

@AUB MANB ©4F4 DB

) AUE (FY4ANE
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7. Let X be the universe of satellites of interest, as

defined below:
= {212, x15, 616, f4, £900, v1l1}
Let A be the fuzzy ser of INSAT-V satellite:

402,03 1 01 05
T a2 oxl5 b6 F4 T LN
Ler B be the fuzzy ser of INSAT-B satellite:
(o, 08,00 07, 03, 02
~“\a2 " s T 56" F4 7 fooo *am
Find the following sets of combinations for these
WO sets:

@AUB B4NE ©4 DB
@4UE OZNE @AUB
WANE DAB: (B
®404 (m)BUE () BNE

. The discretized membership functions (in
-nordimensional units) for a UJT (uni-juncrion
transiscor} and BJ T (bipolar junction transistor)
are given below:

_Jo, 62 03 06 09 1
“I’_[0+l 2+3+4+§]
_Jo, 01 02 03 04 07
&-h+T+7+?+?+?]

For the two fuzzy sews, perform the following
calculations:

@Dunvun;, Gunasup: ©on:
{d) ap3: (e)#pf\up=ﬁvﬂ—p

K AUZ:

9.

10.

Consider a local area nerwork {(LAN) of inter-
connected workstations that communicate using
Ethernet protocols at 2 maximum rate of 12
Mbit/s. The owo fuzzy sets given below represent
the loading of the LAN:

_JLo 10 08 02 01
M= \Tr Tt T
0.0 00

%)

00 00 00 05 07
ﬂC()=[—0—+T+—2- i
0.8 1.0

LTI

where § representssilent and ( tepresents conges-
tion. Perform algebraic sum, algebraic product,
bounded sum and bounded difference over the
two fuzzy sers.
Consider the following two fuzzy sets:

X= 9_1 + E + 9._3.' + 9_4 + E
~ 0 1 2 3 4
_ [o.s 04 03 02 01 ]

o T 2t tY

Perform the following operations over che given
fuzzy sets;

@XUYE XN 0% @
©XU% OXOF @XVX
WXNE HFUE LUk

(k) algebraic sum; (1) algebraic producy;

(m) bounded sum; (n) bounded difference

Classical Relations and
Fuzzy Relations

Rt

— Learning Objectives

* Definition of classical relations and furzzy
relations.

*+ Composition of relations — max-min and
max-product composition.

* Formulation of Cartesian product of a
relation.

*+ Description on classical and fizzy equiva-
lence and tolerance relations.

* Operations and properties of classical ela-
tions and fuzzy relations.

* A short note on noninteractive Aizzy sets.

L S

l8.1 Introduction

Relationships berween abjects are the basic concepts iayolved in decisig/making and other dynaﬁ{cjsystcm
applicacions. The relations are also assaciated with graplt'theory, wiich ias a preat impact on designs and data

manipulations. Relarions represent mappings I:E\'\rf_ey;mmd connectives in logic. A classical binty relation
represents the presence or absence of a connection or interaction orﬁﬁ?ﬁﬁaﬁgbctwmo
sets, Fuzzy binary relations are a generalization of crisp binary relations, and they allow various degrees of
relationship {association) berween elements. In other words, fuzzy relations impart degrees of siiéngth to such
connections and assoCRToNETiE fuzzy binary relarion, the degree of association is represented by mcmbeerh
grades in the same way as the degree of ser membership is represénted in a fuzzy ser. This chapter discusses ™
thebasic concepts and operations on Ruzzy relations, and the composition between relations is studied via
the max-min and max-product compositions. The properties and the cardinalicy of fuzzy relarions are also
discussed. Orher topics discussed include the twolerance and equivalence relations on both crisp and fuzzy
relations.

I 8.2 Cartesian Product of Relation

Anordered r-tuple is an ordered sequence of r-elements expressed in che form (a1, @2, 43, . . . , ;). An unordered
r-mple is a collection of r-elements without any restrictions in order. For r = 2, che r-tuple is called an ordered
paic. Forerisp sets Ay, A3, ..., An thesetof all tuples (a1, #2. 43, ..., 4,), wherea; € A;,ag €As, ..., a4 €
Ay, is called the Cartesian product of A1, Az, ..., 4 and is denoted by-A; x Az % - -+ % Ay. The Cartesian
product of tWO O More §¢ the samy \ﬁz:_p@ﬁ of two or more sets. If all the 2,5 are

"""" - x A, is denorted as A",
-

e ——————————————EENNEN
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l 8.3 Classical Relation

An rary relation gver A1, 4, ..., A; is a subset of the Cartesian product 4] X A2 X -+ X A4,. Whenr=2,
the relarion is a subsec of the Cartesian product A; X A;. This is called a binary relation from A; 10 A2. When
three, four or five sets are involved in the subset of full Cartesian product then the relations are called ternary,
quaternary and quinary, respectively. Generally, the discussions are centered on binary relations.

Constder two universes X and ¥ their Cartesian product X x ¥'is given by

Xx¥Y={{xjlxreXyeY]

Here the Cartesian product formf every x € X with evety y € V. Every element in X is
completely related to every element in ¥. The characteristic function, denoted bz X Eivcs the strengtlor ie
relationship between ordered pair of elements in each universe. If it takes unity as 1ts value, then complete

ationship, Le.,

1, mp)eXxV¥

Xoewr (x,y)=|0’ (6,)) & X x YJ

When the upiverses or sets ate finire, then the relation is reprcsentcd by a matrix called relation marrix.

An r-dimensional relation matrix represents an r-ary relation. ; ations are represented by

nwo-dimensional martrices.
Consider the elements defined in the universes X and Y as follows:

={246 Y={p4ai

The Cartesian product of these two sets leads 1o

Xx Y= {{p2), (04 (p.0). (4. 2): (4.9, (4, 6), (. 2), (n 4. (. 6O))

Fromy this set one may select a subser such thar

= [(.P! 2)1 (q’4}, (r, 4)v (r: 6)]

Subser R can be represented using a coordinatg.sjagram as shown in Fi re 8-1.

The relation could equivalently be represented using a matrix as follows: ,

The relation berween sews X and Y may also be expressed by mapping representations as shown in
Figure 8-2.

A binary relation in which each elemenr from first set X is nor mapped 10 more than one element in second
set Yis called a function and is expressed as

S _/
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P i \Z
Figure 8-1 Coordinace diagram of a relariof.

Figure 8-2 Mapping representation of a relation.

Figures 8-3 (A) and (B) show the illustration of B : X — ¥. Figure 8-3 shows mapping of an unconstrained
relatton. A more general crisp relation, R, exists when marches berween elements in two universes are con-
strained. The characteristic function is used to assign values of relarionship in the mapping of the Cartesian
space X x Yo the binary values (0, 1) and is given by

I, ()R

xrley) = 0, () ¢ R

The constrained Cartesian product for setswhen r = 2 {ie., AxA = A% is called idendicy relauon, and the
nconstrained|Cartesian product for sets when r = 2 Is called

=
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Civil Lathe

Mechanical Wire

Transistor

Electronics Soil

Automobile

(A) {B)
Flgure 8-3 IHustrationsof R: X = V. (‘U> 4
-
LA
Then universal relation (L) and identity relation {4} are given 2s follows: { L
k W
Ua=1(2,2),(2,4),(2,6),(4,2), (4, 4), 4, 6), (2, 6), (4,6}, (6,6)} \ ! -
= {22, & e By
—_— P 3 G'-
l 8.3.1 Cardinality of Classical Relation v 00

Consider » elemcaws of universe X being related o m clements of universe Y. When the cardinality of
X = ny and the cardinality of ¥ = ny, then the cardinality of relation R berween the two universes is

— LI

\ RxxY = nx X Y
k“—-_

The cardinality of the power set P(X x ¥} d&scm}—ih;t‘h_e relation is given by

( B

I 8.3.2 Operations on Classical Relations

Let Rand § be wwo separate relacions on the Cartesian universe X x ¥, The null relation and the complete

relation are defined by che relation matrices ¢ and Eg. An example of a 3 x 3 form of the ¢z and EFx matrices
is given befow:

1
000 114 N
%ooomdﬁk\;ll] A

N .
000 111 p \ .

= ¢

Function-theoretic operations for the two crisp relarions (R, $) are defined as follows: cC

1. Union f‘\,
R - 41
U S - xrus(® ) : xrus(x,y) = max [x(x, ), xs(x )] N

2. lntersection -

RN S = xznslx ) * xpnstn ) = min [xz0e ) xsix )]
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3. Complement

_ ‘ ooe U
R _*XE (xn}') : Xﬁ (I;J’) = 1_x§ (x-]) N "'.‘\"' . "c\‘-;"
) K ,P\(‘ )
4, Conminment ] N
ey A
|RCT = Xelo): xklo) < xss) ML N
5. Identicy - ' w T
ST A it Y

:-_ ¢ —+dn/ and ?(

- Fp
e

9_;\’)«‘\)',\0 ‘? AT
I 8.3.3 Properties of Crisp Relations

The properties of classical ser operations such as commutativity, associativity, disteiburivicy, involution and

idempotency also hold good Tor classical relations. Similarly De Morgan's law and excluded middle Taws hold
d ——— b (T

good Yorcrisp-rebaeions as they do for crisp sets. The null relation ¢z is analogous o null set ¢ and complere

relation Eg is analogous to whole set X
e

IB.3.4 Composition of Classical Relations

The operacion executed on two compatible binary relations to ger a single binary relanor} is called composition,
Let R be a relation thatinaps elements from universe X to universe ¥ 2nd 5 be a relation that maps clements

from universe ¥ to universe Z. The two binary relations R and Sare o@_p_a,gi,hlc if

@ andi‘:@

In other words, the second ser in R 1muse be the same as the first set in'S. On the basis of this explanation, a
relation T can be formed that relacef the samie clements of universe X contained in R with the same glements @
of universe Z contained in?his typeof reliriorrean be obtained by performing the composition operation

"gver the two given relationy The composition berween the rwo relations is denoted by Ro S. Consider the

universal sets given by
X=lana, ;) Y={b, b1, b3}, Z={a.00.03)
Lex the reladons Rand § be formed as

E=XxY¥Y= {(dl.bl)x(ﬂlabl)» (ala bl): (43» bS)]
S=Y¥Yx Z={{b,a)lb,a) b0

Relations R and § are illustrated in Figure 8-4. From Figure 84, it can be inferred thar

T=RoS= {(dllc'l)l (‘z2v CS)D (43, Q)l (ﬂlscﬂ)]

The representation of relations R and § in matrix form is given as

b by b n oo
ol 10 H11 00
R=a |0 1 0|; S=6]0 ¢ 1
00 01 1010

)
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A g

Figure 8-4 Illuscration of relations R and S,

Composition T= Ro §is represented in matrix form as

& €1 3

ap )l 01
T=m|0 01
a0 10

This macrix also leads o

T=Ro §={{a1, &), lag, 3), s, 2), ey, ea)}
as expected. The compaosition operarions are of two types:

1. Max-min compoasition

2. Max-product composition.
The max-min composition is defined by the function theoretic expression as
T=RoS§
X7l 2 =_I‘\§’[XR ) A xs(2)

The max-product composicion is defined by the funcrion cheoretic expression as

T: R o] S
xrfxz = J\E‘/}![XR =P xsal

The max-product composition is somerimes also referred to as max-dot composition.
Some properties of the compasition operation are described in Table 8-1.
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Table 8-1 Few properties of composition operation

Associative (RoS)oM=Ro(SoM)
Commutative RoS#SoR R
Inverse (RoSYy l=§logl /

p.4 Fuzzy Relations

Fuzzy relations relate elements of one universe (say X) to those of another universe (say ¥) through the
Cartesian producr of the two universes. These can also be referred to as fuzzy sets defined on universal sers,
which are Cartesian products. A fuzzy relation is based on the concept that everything is related to some extent
or unrelated. 3 T T —

\Eﬁ“ﬂy relation is a fuzzy set defined on the Cartesian produce of classical sets {X), X3, .. ., X,] where tuples
(%1, %2, .. .,x,) may have varying degrees of membership f1z (x1,%,...,x,) within the relation. Thar is,

.

R(XI)XL-- oK) = .U-R(xlnxl;- . :xn)‘(x!:-“?.»-- X % E€X

XyxXax - n X, ]
e [
A fuzzy relacioft between two sews X anid Y iscalled binary fuzzy relation and is denoted by REX, 1). A binary

relation R(X, ) is referred to as bipartite graph when X # Y. The binary relation on a single sec X is called
directed graph or digraph. This relation occurs when X' = ¥and is denoted as R(X, X) or R(X?). ‘
Les A

4,.{= {xlle:----xn} and x= [J’l:ylr---s)’ml (k e R"
Fuzzy relation (X, }) can be expressed by an # X marrix as follows: B 1 :
prlap} wrlayn) - . 1R, pm) =
mrle,n) prla.yn) o . pely.)
XD =
1% (-‘fm)’]) LR (-’fn,yz) .- HR (xulym)

The matrix representing a fuzzy relation is called fuzzy macrix. A fuzzy relation R is a mapping from
Cartesian space X % ¥ to the interval [0, 1] where the "rﬁéﬁ;il_'tgsuengrh is expressed by the membership
funcrion o the-relation fof ordered pairs from che rwo uilPEESE (g (x, )1

A &ZBWWUMM. Each element in Xand ¥ corresponds
t0 2 node in the fuzzy graph. The connectiop links are established between the nodes by the elements of Xx ¥
with E‘W‘*@&Hm may also be present in the form of arcs, These links
are labemth" € membership values as g (%, 7). When X 5 ¥, the link connecting the two nodes is an
undirected binary graph called bipartite graph. Here, each of the sers X and ¥ can be represented by a set of
nodes such thar the nodes corresponding to one set are clearly differentiated from the nodes representing the
other set. When X = ¥, a node is connected to itself and direcred links are used; in such a case, the fuzzy
graMcddin:ct_'__M. Here, only one set of nodes corresponding to ser Xis used.

The domain of a binary fuzzy relation R(X, ¥} is the fuzzy set, dom R(X, ¥), having the membership

funcrion as

: man R D =S ME R (%)) VX EXD
L Panan R ) =T UG}V €X)

L ‘\-\Tmm-* (\ /\é y
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The range of a binary Fuz.zy relation R(X Y) is che fuzzy set, ran R(X, Y}, having the membership function as

L | R ERETY | )

Consider a universe X = {x1,x2, x3, x4} and the binary fuzzy relation on X as P é)‘y

X xm a3 x4 oA Kol
x[02 0 05 0 pe
x|l 0 03 0.7 08
BXX=_lo1 o 04 o

#|0 06 0 1
The bipartite graph and simple fuzzy graph of (X, X) is shown in Figures 8-5(A) and (B), respectively.
Let

K =1lxn 22,03, %) and ¥'= [y, 233 4}

Let £ be a relation from X 1o ¥ given by

0.2 + 0.4 + 0.1 . 0.6 n 1.0 + 0.5
(x1,92)  fry2)  (eaye)  (eys)  (esp3)  Ge,p)

The corresponding fuzzy matrix for reladon & is

R=

e

non »m
[0 04 02 .
R=x| 0 01 06
(05 0 10

The graph of the above relation R = X x ¥ is shown in Figure 8-6.

(A (B

Figure 8-5 Graphical representation of fuzzy relations: (A) Bipartie graph; (B} simple fuzzy graph.
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Figure 8-6 Graph of fuzzy relation. -

I 8.4.1 Cardinality of Fuzzy Relations

The cardinality of fuzzy sets on any universe is infinity; hence the cardinality of 2 fuzzy relation berween two
or more universes is also infinity. This is mainly a result of :he occurrence of@ ses

and fuzzy relations.
—

I 8.4.2 Operations on Fuzzy Relations m‘f“:\' * QJ:\-‘;(‘

The basic operations on fuzzy sets also apply on fuzzy relacions. Let £ and § be fuzzy relations on the
Cartesian space X'x Y. The operations that can be performed on these fuzzy relations are described below:

1. Union
tegug () = max [ (%), g (o 9] o

2. lntersection ) /“\;
tpng (2. 3) = min [pp (n 3}, wg (3] 7 ,\‘ ‘\ ¢

3. Complement .‘ T

pgley) = 1—pg ()

4. Conrainment . ‘3\ \&

. \ 1!

RCTSUglap <pslay ; i\L E\

5.&@]&&1:1&: fa fuzzy relation R on X x Yis denored by & T Trisa relation on ¥ x X defined by
| R (13) = Rlx,y) for all pairs (3, ) € VX5 -

6.” or a fuzzy relation R(X, ¥}, let [R | Y] denote the projection of Ronto ¥. Then [R ) Visa
gl

ation in ¥ whose membership function is defined by

DRy (6 = maxpg ey o o (.
The projection concept can be extended to an n-ary relation Rz, xy, . . ., x5). S




{
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l 8.4.3 Properties of Fuzzy Relations

Like classical relations, the properties ofcommumtivitf, associativity, distribucivity, idempotency and identity
also hold good for fuzzy relations. DeMorgan's Taws hold good for fuzzy relations as they do for classical
relations. The nu'l relation ¢ and complete relation Er are analogous to the null set ¢ and the whole

Before understanding the fiuzzy composition techniques, let us learn about the fuzzy Cartesian product. Let

A be a fuzzy ser on universe X and B be a firzzy set on universe ¥, The Cartesian product over 4 and B results

in fuzzy relation B and is conrained within the enrire {complete) Cartesian space, i.e., ~
AxB=R

where

RCXxVY

The membership funceion of fuzzy relation is given by

) =tgxp (%) = min [Jm
g &

The Cartestan produet is not an operation similar to arithmetic product. Cartesian product 8 = 4 x 8
is obrained in the same way as the cross-product of cwo vectors. For example, for a fuzzy ser 4 thar has three
efements (hence column vector of size 3 x 1) and a fuzzy set B thac has four elemenes (hence row vecror of
size 1 x 4), the resulting fuzzy relarion R will be represented by a matrix of size 3 x 4, L.e., B will have three
rows and four columns.

Now lec’s discuss the composition of fuzzy relacions. There are two types of fuzzy composition techniques:
1. Fuzzy max-min composition

2. Fuzzy max-product composition

There also exists fizzy min-max composition method, but the most commonly used technique is fuzzy
max-min composition. Let & be Ruzzy relarion on Cartesian space X x Y, and § be fuzzy relation on Cartesian
space ¥'x Z.

The max-min compesition of (X, Y) and 5(Y, Z), denoted by R(X, Y) o 8(Y, Z} is defined by TUX, Z) as

U7 (6 2) =pigog (5. 2) f g {onin 1ag (s 0 )
}\é;yﬁ!g(x,yjhui(y,z)] VYeelX, 22
N

ser £, respectively, in set theoretic form, The excluded middle laws are no satisfied in fuzzy relations as for )
fuzgy sers. This is because a fuzzy relation R is also a Fuzzy set, and there exists an overlap berween a relation 7.
and its complement. Hence B h (\‘\’f.\

L N . . * y »
: ._}f."SD Q;‘ 3 " lE“'fJL ~nC RURAE (wholeser) , . RN > N
W S "F@‘ o B )E RNE #¢ (oull se) Vet
RN N S ¢
(s @ : { IR €25 & p 1_)*1—-"5*; S B g P ;o T ! / -

I 8.4.4 Fuzzy Composition POy - - . Y

2
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The min-max composition of R(X, ¥) and 5(, Z), denoted as R(X, Y) o §(¥, Z), is defined by T{X, Z) as

1T (6, 2) =pipgog [, 2) = ",2? {max(pep (. y), g G 21} = ,Qy[“"? eAveshe)) VxeX zeZ

From the above definitions it can be noted th

RX Vo S(%.2 = RE N o SV.2)
The max-min composition is Mo WIEl e e problems discussed in this chapter are limited to

max-min composition. The max-product composition of R(X, ¥) and S(¥; Z), denoted as R(X, ¥} - §(¥; Z),
is defined by TTX, Z) as ‘

prlnz =pug g(x2) = max {ug (53115 (s 2]

= J\E/y[#,g (%) 25 (3 2)]
The properties of fuzzy composition can be given as follows: "
al
RoS#$oR ae

RoS) ' =50 g!
(Rof)oM = Ro(SoM)

I 8.5 Tolerance and Equivalence Relations

Relarions possess various useful praperties. Some of them are discussed in this section. Relations play a major
sole in graph theory. The three characteristic properties of relations discussed are: reflexiviry, symmerry and

transitivity, Theantonyms of these properties are: irreflexiviry, asymmetry and nontransitiviry.
1. A relarion is said to be reflexive if every verrex (node) in the graph originates a single loop as shown in
Figure 8-7.

. Arelation is said co be symmetric if for every edge pointing from vertex ¢ 1o vertex j, there is an edge pointing
in the opposite direcrion, i.e., from vertex j w vertex { where f,f = 1,2,3,.... Figure 8-8 represents a
symmetric refation.

3. A relation is said to be transttive if for every pair of edges in the graph - one pointing from vertex / to
vertex  and che other pointing from vertex j to vertex 4, 2de pointing from vertex i to vertex £.

3 8

Figure 8-7 Three-vertex node — reflexive propery.
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Figure 8-8 Three-vertex node — symmerry propervy.

)

O O

Figure 8-9 Threc-vertex graph — transicive properry.

Figure 8-9 represents a transitive relation. Here an arrow points from node 1 to node 2 and another arrow
extends from node 2 to node 3. There is also an arrow from node 1 to node 3.

l8.5.1 Classical Equivalence Relation

Let relation R on universe X be a reladien from X to X. Relation R is an equivalence relation if the following
thece properties are satisfied:

1. Reflexivicy
2. Symmetry

3. Transiciviry

The function theoreric forms of representation of these properties are as follows:

1. Reflexiviry )
\‘_‘5
xR0 x}=|lor (xpx) € R
]
2. Symmetry

xr (%, x,f=xg(§, x) 7
ie, (k%) € R= (imle R

A
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3. Transitvity
X&{xi, %) and xg (g, xp) = 1, s0 xR (e xp} =1
Le., (xpx)€ R(:fjl-, x) €R so(xixg) € R

The best example of an equivalence relation is the relation of similacity among triangles.

l 8.5.2 Classical Tolerance Relation

A tolerance relation Ry on univetse X is one where the only the properies of reflexivity and symmetty are
sarisfied. The rolerance relation can also beuﬂe‘(pm An equiva]‘e—ﬂce relation can be formed

from tolerance refation X by {w — 1) compositions within itself, where # is the cardinality of the ser that
defines Ry, here it 15 X i.e.

RI™' =RioRio--oR= _R
L L
Telerance Eq“i_ﬁk"“
relagon rclation

I 8.5.3 Fuzzy Equivalence Relation : (5 4
Let £ be a fuzzy refation on universe X, which maps clements from X to X. Relation & will be a fuzzy
equivalence relation if all the three properties — reflexive, symmetry and transitivity — are sarisfied. The
membership function theoretic forms for these properties are represented as follows:

1. Reflexivity
pglxnx) =1 ‘
If chis is not the case for few x € X, then R(X, X) is said to be irreflexive. & A
2, -Symmeury

gl x) =gl forall ;€ X A :

If this is not sadsfied for few x,% € X, then R{X, X) is called asymmetric.
3. Transicvicy

pp i x) =k
= g xixg) =

(hm min 221
ie, gl x)> max minfgtg (x; x7), iLg () Ylxg) € X
. }

and pg (:5,-, xp) =Az

where

This can also be called max-min transirive. [f this is not satisfied for some members of X, then R(X, X) is

nontransiive. If the given teansiivity inequaliry is not sarisfied for all the members (x;, x¢ ) € X2, then the
relation is called as antitransitive.

The max-produce transitive can also be defined. It is given by

[ el > max- [ug (xi ) * g (o)l Vi) € X2

The equivalence relation discussed can also be called similarity relation.
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I 8.5.4 Fuzzy Tolerance Relation

Classical Relations and Fuzzy Relations

A binary fuzzy relation thac possesses the properties of reflexivity and symmetry is called fuzzy tolerance
relation or resemblance relation. The equivalence relations are a special case of the tolerance relation, The

fuzzy tolerance relation can be reformed into firzy equivalence relation in the same way as a crisp rolerance
telation is reformed into crisp equivalence relation, ie.,

-1
B =RiocRoof=
R Riek & £
Furzy Funy.
wlerance equivalenss
relation relation

Rwhergf 7" is the cardinality of the set thar defines RQ

I 8.6 Noninteractive Fuzzy Sets

The independent events in prebability theory are analogous_to_noninteractive fuzzy sets in fuzzy theory. A
noninteractive fuzzy set is defined as follows. We are deﬁningm&xim space X = Xy x Xp.
Ser 4 is separable info rwa noninteragtive fuzzy'gets called qrthogonal projections, if and only if

l4=or@ < oma )

—_———

whcrc
— s ¥
,u.op,xlw (xl) = l;nalel/},(xj x:) % €X)

-;—-—‘———

= V.
HOPry, g b42) x‘;‘?ﬁﬂd(xhﬁ) x € X2

—

The equations represent membership functions for the orthographic projections of 4 on universes X} and
Xa, respectively.

IB.T Summary

This chapter discussed the properties and operations of crisp and fuzzy relations. The relation coneepr is most
powerful, and is used for nonlinear simulation, classification and control. The description on compasition of
reladons gives a view of extending fuzziness into functions. Tolerance and equivalence relations are helpful for
solving similar classification problems. The noninteractivity berween fuzzy sets is analogous to the assumprion
of independence in probabilicy madeling.

h.a Solved Problems

1. The elements in two sets A and B are given as Solution: The various Carresian products of these two
given sets are

A X B = {(21 a): (21 b)i (2: C): (4! a): (41 b)l (41 C)]
Find the various Carresian products of these o B x A = [(a,2), (a, 4), (b, 2), (b, 4), (¢, 2). (c, 4)}
seos. Ax A=A ={(2,2,02.4. 42,44

A=1{2,4) and B={a,b,¢]
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Bx B=F = {(3,), (3, b), (), (b,a), (b, b), (b, S}, n 2
(C, a)s (C, b}: (ci C)} . _ b4l 1 05 0.3
: ad $=7, [0.8 04 0.7]

2. Consider the following twa fuzzy sets:
: Obtain fuzzy relation J'as a composition between

A= {0.3 + 0.7 1,‘ . the fuzzy relations.
10 Solution: The composition between two given fuzzy
and B= 04 + 0.9 . relations is performed in two ways as
g n-onl

\a) Max-min composition

Perform the Carresian product over these given {b) Max-product composition
fuzzy sets. ) .
{a) Max-min composition
Solutien: The fuzzy Cartesian product performed

over furzy sets 4 and B results in fuzzy refacion § 2 o= B
given by £ = 4 x B. Hence L _ _x[0.6 05 03
W LR T I‘goé‘._n 0.8 04 07
03 03] . x
R= g 0.7 ' The calculations for obraining 7 are as follows:
04 097,

(e, 1) = max{min(gg (e, ) g (1,200,
minfug (1, yak g (2, 211}
= max[min(0.6, 1}, min(0.3, 0.8}]
max(0.6,0.3) = 0.6
max{min{0.6, 0.5), min(0.3, 0.4)]
max(0.5,0.3) = 0.5
max[min{0.6, 0.3), min(0.3, 0.7)}
max(0.3,0.3) = 0.3
7 (62, 2) = max[min(0.2, 13, min(0.9,0.8)}
max{0.2,0.8) = 0.8
max[min(0.2,0.5), min(0.9, 0.4}]
max{0.2, 0.4) = 0.4
urie,m) = max[min(0.2,0.3), min{0.9,0.7)]
= max(0.2,0.7) = 0.7

The calculation for £ is as follows: I/:,{
deg (x1, 31} = min[jeq (a), 125 (p)]
= min(0.3,0.4) = 0.3
tig (x1.y2) = min[pLg (x1), 1g ()]
= min(0.3,0.9) = 0.3
g e, 1) = minlg Cea), g (y2)l
= min{0.7,0.4) = 0.4
tig (2, 32) = minfp g (x2), g (23]
= min{0.7,0.9) = 0.7
tig (x3,31) = minfeg (xs), 2p ()]
= min(l,0.4) = 0.4
g (3, y2) = minfgey (e3), g (2)]
= min(},0.9) = 0.9

urx, =)

1l

oy (xy,23)

N

I

oy (xz,22)

(b) Max-product composition
Thus, the Cartesian product berween fuzzy secs 4 and o
B are obtained. T=Re§

3. Two fuzzy relations are given by Calculations for T are as follows:

n n pr Gy s 2z} = maxflieg (e ) o g (1, 211
R ™ [0.6 0.3] [ieg (erayn) @ g (20 201
T x02 09 = max(0.6, 0.24) = 0.6
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wr (%1, z2) = max[{0.6 x 0.5}, (0.3 = 0.4)]

= max(0.3,0.12) = 0.3

= maxi(0.6 x 0.3), (0.3 x 0.7)]

= max(0.18,0.21) = 0.21

ur (e, z1) = max[(0.2 % 1),(0.9 x 0.8)]
= max{0.2,0.72) = 0.72

gt (x2, 22) = max{{0.2 x 0.5}, (0.9 x 0.4)]
= max(0.1,0.36) = 0.36 -

prix2, z3) = max[(0.2 x 0.3),{0.9 x 0.7)]
= max(0.06, 0.63) = 0.63

prx,2)

The fuzzy relation 7by max-product composition is
given as

2 z Z3

ro 06 03 021
~ " ml072 0.36 063

4. Foraspeed control of DC motor, the membership
functions of series resistance, armature current and
speed are given as follows:

Re={o+25+ 700 T 120

04 06 1.0 01
30 60 100

A

02 03 06 08 10 02

L={Sd =t — ot — b

oo e Te o i
035 067 097 025

Felo b —— o

~ 7 1’500 " 1000 " 1500 " 1800

Compute relation 7 [or relaring series resistance

to motor speed, Le., R,c o N Perform max-min
composition only.

Solution: For relating series resistance to motot-
speed, i.e., R, 10 ¥, we have to perform the following
operations — two fuzzy cross-produces and one fuzzy
composition (max-min):

l"ﬂ “n

‘II ||

z::;,e-—-,g;
a'-a

?

Relation £ is obtained as the Cartesian product of R,,

and],.le,

E=R,:x’1\,'u]\\_ypq1, dr -)SL

20 40 60 80 100 120,
~y 30102 03 04 04 04 0.2
60]02 03 0.6 0.6 0.6 02
10002 03 0.6 0.8 1.0 0.2
7™ 120101 0.1 0.1 0.1 0.1 0.1

Wy =

Relation § is obtained as the Cartesian praduct of I
and IV, i.e., A bropy R

500 1000 1500 1800
M20702 02 02 02
2, 40003 03 03 025
Y 60(035 0.6 06 0.25
A* 80|0.35 067 0.8 025
- 100[0.35 0.67 0.97 0.25
Tl20002 02 02 02

Relation T is obrained as the composition between
relations £ and §, L.c.,

586 1000 1500 1800
30[0.35 04 04 025
60035 06 06 0.25
100 | 0.35 0.67 097 0.25
‘12001 01 01 0.

T=Ro§=

5. Consider two furzy sets given by

A= 1 L 0.2 0 5
“7llow ' medium hlgh

—_—_

B___[ 0.9 04 0.9 }

posir_'we zero  megative

{a) Find the fuzzy relation for the Caresian product
of Aand Bie, R=4 x B.

{b) Introduce a fuzzy set C given by

0.1 N 0.2 0.7
low = medium = high
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Find the rcldon berween C and B using (d) 0.1 0.1 0.1
! Caresian product, Te., find § = € x 8. Cog=[01 02 07],,,]0.2 02 02
{c} Find Co R using max-min composition. 0.7 04 07], ,
(d) Find £ o §using max-min composition, =[07 04 07)

Solution:

{2} The Cartesian producr between 4 and B is
obtained as

5 - d » .B. = mil‘l[.u-d_(x)- H’E (y)]

positive zero negarive

low 0.9 04 09
= medium 0.2 02 0.2
high 05 04 05

{b) The new fuzzy sex is

0.1 " 0.2 " 0.7
fow | medium high

The Cartesian product berween € and B is
obtained as

3= Cx B=minlug(x), £z ()]
positive zero negarive
low 01 01 01
= medium 02 02 02
high 0.7 04 07

(e}

- i1 1??

A 4t Y. k"!, a"‘ 0.9 04 09

CoR=[01 02 07]1 302 02 02
1)5_{.‘ 0.5 0.4 05, .

=[05 04 05]
For instance,

Reep {x1,71} = max{min(0.1, 0.9), min(0.2, 0.2),
min{0.7,0.5)]
=max(0.1,0.2,0.5) =

Hence max-min composition was used to find the
relations.

6. Considera universe of aircraft speed near the speed
of sound as X = {0.72,0.725,0.75, 0.775, 0.78}
and a fuzzy set on this universe for the speed “near
mach 0.75" =M where

B { 0 08 1 08 0

072 0725 075 0775  078]
{21,22,

Define a universe of altitudes as ¥ =
23,24, 25, 26,27) in k-feer and a fuzzy set on this
universe for the altitude fuzzy set “approximately
24,000 feet” = ¥ where

N={l+£+£+L+£
~ 21k 22k 23k 4k 254
0.2 0
6k+27k}

{a) Constructa relation R=Mx ¥
(b) For another aircraft speed, say M), in the
region of mach 0.75 where
V] 0.8 1 0.6

1= {—t—+ —=+ —

072 0725 075 0775
L0
0.78
find relacon § = My o £ using ma.x-mm

composition.
Solution: The two given fuzzy sets are

0 08 1 08 0
M=l— et b — e+ —
072 ' 0725 075 0775 078 }

02 07+L+2._7_
b= 21k 22& 23k 24k 25k
0.2 )

tok T T
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() Relation £ = M x A is obtained by using

Cartesian product

R = min[py (%), 2y ()]

21k 22k 23k 244 25k 26k 27k

If £ is a relationship between frequency and
temperature and § represents a relation between
temperature and reliability index of a circuir,
obrain the relation berween frequency and reli-
ability index using (a) max-min composition and
{b) max-product composition.

R,

072 roo 9 0 0 0 0
0725({ 0 02 07 08 0.7 02 0 Solution: i
=g;§5 g ﬁi g; (1).8 2; gi g (a) Max-min composition is performed as follows.
078 LO O 0 0 0 0 0 T=Ro§= maxlminlyg (v, g g (x ).
{b) Relation § = M) e R is found by using max-min 2 4 8 16 20
composition 9109 06 0.7 1 09
,E:max{min[#@(x).ﬂ@(x,y)]} =18 08 06 07 1 09
27106 06 08 09 09
=[0 08 1 06 o], 36109 1 08 08 08
00 0 0 0 0 O
0 02 07 08 07 02 0 (b) Max-product composition is performed as
002071 07020 follows.
0 02 0.7 0.8 07 02 0
00 0 0 0 o o T'=Ro§ = max{minliug (5,145 (5, ]

g=[0 02 07 1 07 02 0],

7. Consider owo relations

—100 =50

9{ 02

181 4.
g=o| %2
271 04

36| 09

and

—1001 1
—5010.7
= 005
50103
100} 0.9

0.5

0.5

0.6
1

0.8

0.6
04
0.3

07
0.7
08
0.8

0.6
0.7

0.6
0.5

50

0.9
0.6

0.3
0.5
038

0.7

100
0.9

0.4
0.4

20
0.1
0.4
0.8
0.9

2 4 8 16 20

97081 05 0.7 1.0 0.9

18 072 05 07 1.0 0.9
27104 06 08 09 0.8
36109 1.0 0.8 064 064

Thus the relation berween frequency and reliabil-
ity index has been found using composition tech-
nigues.

8. Three fuzzy sets are given as follows:

po O N o.3+o.7 04 0.2

~7 PR LT

0= 0.1 . 03 03 N 0.4 N 0.5 0.2

<7 0e1 02703 04 05 06
01 07 03

IT=y—+—+—

=555

8.8 Solved Problems
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The following operations are performed over the

fuzzy sets:

@ g=px Q = min{up (g, g ()]

0.t
2(0.1
4101
601
8106.1
10] 0.1

0.2
0.1
0.3
03
0.3
0.2

0.3 04 0.5 06
0.1 0.1 01 0.1
0.3 03 03 0.2
03 04 05 02
03 04 04 02
0202 02 02

() §=Qx 7= minlug (s, ur (]

0
010,
0.2} 0.1
0.3]0.1
=040
0.5 0.1
0.6 0.1

(& M=fko 3 = max{minlpg {x, ), 15 (= P

0

2100

4 (0.1
=6 0.1
8101
101 0.1

05
0.1
0.3
0.3
0.4
0.5
0.2

0.5
0.1
0.3
0.5
0.4
0.2

1
0.17
0.3
0.3
0.3
03
02]

1
0.1
0.3
0.3
0.3
0.2

) M= Rog=madugrpxmuglxy)]

0
2 [0.01
41003
= 6 10.05
8 10.04

Thus the operations were performed over the given

fuzzy sets.

0.5
0.05
0.05
0.25
0.20
1010.02 0.0

1
0.03
0.09
0.15
0.12
0.06

9. Which of the following are equivalence reladons?

No. Set

(i) People
(i) People
(iii) Points on a map
(iv) Lines in plane
geomerry
(v} Positive integers  for some integer &, equals
10¢ times

Relation on the set

is the brother of

has the same parents as
is connected by a road w0
is perpendicular o

Draw graphs of the equivalence relations.

Solution:

(a) The set is people. The relation of the set “is the
brother of.” The relation (figure below) is not
equivalence relation because people considered
cannot be brothers 1o themselves, So, reflex-
ive property is not satisfied. But sy\wnetry and
transitive properties are satisfied.

1A

The figure illustrares thar the relation is not an
equivalence relation.

{b) The ser is people. The relation is “has the
same parents as.” In chis case (figure below}, all
the three properties are satisfied, hence it is an
equivalence relation.

™

ONNO (2)

| /N

Thus the relation is 2n equivalence relation.

(¢

R

The setis “points on a map.” The relation is “is
connected by a road to.” This relation (figure on
next page) is not an equivalence relation because
the transitive property is not satisfied. The road
may connect 1st point and 2nd point; 2nd poine



292 Classical Relations and Fuzzy Relations

and 3rd point; but it may not connect 1st and 3rd @ (a) (a)
poincs. Thus, transitive property is not satisfied.
‘ +
G0 oS L

I The figure illustraces thac the.relation is not an

o : equivalence relartion.

The figure illustrares char the relation is not an
equivalence relation.

10. The following figure shows three relarions on
the universe X =f{a, b, c}. Are these relations

{d) The ser is “lines in plane geometry.” The rela-
tion “is perpendicular ro.” The relarion (figure
below) defined hereis not an equivalence relation
because both reflexive and transitive properties
are not satisfied. A line cannot be perpendicu-
lar to itself, hence reflexiviry is not satisfied. Also
transitivity property is not sarisfied because lst
line and 2nd line may be perpendicular o each
other, 2nd line and 3rd line may also be perpen-

equivalence relations?

;i ’
o ORES

dicular to each other, but 1st line and 3rd line ) ()

will not be perpendicular to each other. However,

symmetry property is savsfied.

(o) © 0-

. . (i)

The figure illustrates thar the relation is not an .

equivalence relation. Solution:

(a) The relation in (i) is not equivalence relation

(¢} The secis “positive integers ™. The relation is “for . . .
because transitive properry is not satisfied.

some ineeger K, equals 10% times.” In this case
(figure below), reflexiviry is not satisfied because
a posirive integer, for somne integer k, equals 10¢
times is not possible. Symmetry and transitivity
properties are satisfied. Thus, the reladon is not
an ¢quivalence relation.

ls.s Review Questions

(b) The relacion in (i) is not equivalence relation
because transitive property is not sarisfied.

(c) The relacion in (i} is equivalence relacion
because reflexive, symmerry and transitive prop-
erties are sacisfied.

L. Define classical relations and fuzzy rela-

3. How are the relations represented in various
tions.

forms?

2. State the Cartesian product of  relation. 4, Whar is one-ore mapping of a relation?

B.10 Exercise Problems
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S, Compare constrained relation and non- 13- Explain the operations and properties over a
constrained relation. fuzzy relation.
6. Give the cardinality of classical relacion. . 14. Discuss fuzzy composition techniques.
7. Mention the operations performed on classical . 15. Wha are tolerance and equivalence relations?
relations. 16. Describeé in derail classical equivalence relation,
8. List the various properties of crisp relations. 17. Write short note on fuzzy equivalence relation.
9. What is the necessity of composition of a 18, How are a crisp tolerance relation and a fuzzy
relation? . tolerance relation converted to crisp equiva-
10. Whar are the various types of composition lence relation and fuzzy equivalence relation
techniques? respectively?
11. Define fuzzy matrix and fuzzy graph. 19. Explain with suitable diagrams and examples
12. Give the cardinaliry of fuzzy relation. fuzzy equivalence relation.
20. Whar is meant by non-interactive fuzzy sets?
I 8.10 Exercise Problems
1. The elements in two sets X and ¥ are given as Find the following:
X = {1,2,3).Y = {p,q,r}. Find the various
Cartesian products of these two sets. (@) R=Ax B
2. For the fuzzy serts given (b)' §=8x¢
¢) T= Ro$using max-min composition
0.5 02 09 Q) T=Rousing pasttion
A={—+—-—*+ (dy T= Ro §using max-product composition
3! x2 X3
5. For two fuzzy seis

ll 0.5 1]
B={—+—=+—
n o x»n »n

find relacion B by performing Cartesian product
over the given fuzzy sets,

. The fuzzy relations are given as

zy 27

Nz B y [08 0.1
P [0.1 0.2 0.3]; S=1m|06 09
*=x |04 05 06 wlod 10

Perform composition over the wo given fuzzy
relations and obrain a fuzzy relation T.

4, Three fuzzy sers are defined as follows:

L for 02 g+%l
A=130"% "% "0

1 02 05 07 03 0
={ - o -— — _— 4 -
2 |1 2ttt Tt 6]
_|033 065 092 0_2_1]
71100 ' 200 300 ' 400

s tus T ES
01 055 0385
~=[ﬁfﬁ+ﬁ]

{0.2 0.5 0.7]
4= +

(a) Find R=A4 % B
(b) Introducing a furzy set C given by

oo (025, 05 075 I
~~11s " MS HS

Find =B x C.
(&) Find ¢ o § using max-min composition.
{d) Find ¢ o R using max-min composition,

(e) Find C o R using max-product composition.
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6. Three elements for a _medicinal research are
defined as

po]03,07 1
0 1 2
075 0.6
=5+ S )
07 0.8 05
V={—+—+-=
‘ l HED }
Based on these membershlp functions, find the
following:
() R=Dx [

{b) Max-min composition of Vo &.
{c) Max-product composition of Yo R

7. An athledic race was conducred. Thc‘follow-

ing membership funcrions are defined based che
speed of athleres:

0 0l 03
Low = —
=10 Tt 300}
Medium = {0—5 w + 0—6
= 100 " 200 T 300
_ 08 09 1.0
High = | — 4 ~=2 4
€ { 100 200 © 300]

Find the following:

{a) = Low x Medium

(b) § = Medium x High

{c) I'=Ro Susing max-min composition.

(d) T=Ro S using max-producr compasition.

8. o relations are defined as

By By By B

A1 02030
A 102 04 05 04
A3103 04 06 09
Agf0 02 99 1

)j:

Find refation, I'= g7 o £ using

(@) Max-min composition

(b) Max-product cotmposition
9. Two relations are given as
[08 1 05 0.1
0.1 0.2 03 0.2

0.1 06 02 07
0.1 04 05 08

(>

i
—_——

L= e e )

o
o

0.1 02 05 0.9
01 02 05 09
0.1 02 0.5 0.9
03 04 07 06
03 04 07 06
|03 04 07 01

—_ O OO

Find the relation 4 ¢ 3, using

{a) Max-min compesition
(b} Max-product composition

10. Which of the following are equivalence relations?

No. Set Relation on the set

(i} People is the sister of
(ii) People has the same grandparents as
(i) Lines in plane  is parallel ro
geometry
(iv) Positive integer For some inreger &, equals
¢* times
(v} Pointsonamap Is connected by a rail to

Draw graphs of the equivalence relations with
appropriate labels on the vertices,

gorte

Membership Functions - ~

— Learning Objectives

* Scope of membership functions. * Different types of fuzzification processcs.

* Determination of fuzzy membership func-
tions using neural nerworks and generic

algorithms.

* Abour fuzzification process.

¢+ How membership functions are used two
define the fuzziness existing in the fuzzy
set. * Classificarions of fuzzy sers.

l9.1 introduction

Membeeship function defines the fuzziness in a fuzzy set irrespective of the elements in the ser, which are
discrete or continuous. The membership functions are generally represented in graphical form. There exist
certain limitations for the shapes used to represent graphical form of membership funcrion. The rules that
describe fuzziness graphically are also Rizzy, But standard shapes of the membership functions are maintained
over the years. Fuzzy membership funcrions are determined in practical problem by the opinion of experts.
Membership function can be thought of as a technique to solve empirical problems on the basis of experience
rather than knowledge. Available histograms and other probability information can alse help in construcing
the membership function. There are several ways to characterize fuzziness; in a similar way, there arc several
ways tmstruct a membership function that describes fuzziness. In this chapter few possibilitics
of describing membership functions are dealt with. Also few methodologies have been discussed to build these
membership functions.

l:.z Features of the Membership Functions L"\/)

{The membership Rinciion detines all the information contained in a fuzzy ser; Hence it is important to discuss
the various feacures of the membership functions. A fuzzy set 4 in the universe of discourse X can be defined
as a set of ordered pairs:

A= e gl e € X)

where '“'.d( -} is called membership function of 4. The membership function j44(-) maps X1o the membership
space M, ie., piy * X — M. The membesship value ranges in the interval [0, 1], i.e.. the range of the
membershtW?ﬁﬁﬁbsetWeﬂ] numbers whose supremumng

ot ( \»“*

A i
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#{x) r
Core
1
0 : y >
j«— | Support e x
i«-Boundary-»_ i< Boundary»:

Flgure 9-1 Fearures of membership funcrions.

Figure 9-1 shows the basic fearures of the membership functions. The three main basic fearures involved
in characterizing membership function are the following.

L. Core: The core of a membership funcrion for some fuzzy ser 4 is defined as thar region of universe that
is characterized by complete membership in the set 4. The core has elements x of the universe such char
,u,d(x) =1
The core of a fuzzy ser may be an empty set.

2. Suppore: The support of a membership function fora fuzzy ser A is defined as thac region of universe that

is characterized by a nonzero membership in the set 4. The support comprises elements x of the universe
nopzero membership in the ser 4
such thac

,‘“‘ 3 .LLd(J.’)DO

gL T '
A fuzzy ser whose support is a single elemenc iSX’ﬁ'h alx) = m referred 1o as a fuzzy singferon.
3. Boundary: The support of a membership ﬁncﬁﬁf‘ﬂ?ﬁﬂf{fﬁgﬁﬁﬁﬁmﬁ universe

containing elements that have a nongero bue not complete membership. The boundary comprises chose
elements of x of the universe such thac

0« gyl <1
The boundary elements are those which possess partial membership in the fuzzy see 4.

The core, support and boundary are the three main fearures of 2 fuzzy ser membership function. There
are various other types of fuzay sets, of which a few are discussed below.

A fuzzy set whose membership funcrion has at least oge element xin the universe whose membership value
is unity is called sormal fiagzy ses. The element for which the membership is equal to 1 is called prororypical
element. A fizzy sec wherein no membership function has its value equal to 1 is called subnormyl fuzzy ser.
The normal and subnormal fuzzy sets are shown in Figures 9-2{A) and (B}, TeSpecrively. T

A convex fuzzy seshas a membership function whose membership valuesarestrictly monotonically increasing
or strictly monotonically decreasing or strictly monotonically increasing than serictly monoronically decreasing
with inmhe universe. A fuzay ser possessing characteristics opposite to that
of convex fuzzy sec is called rioriconex fiazy werte., the membership values of the membership function

———
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ux)
11 1}
A
Lol :
0 x
X
(A} : (B)
Figure 9-2 (A) Normal fuzzy set and (B) subnormal fuzzy set.
(x) x4
1 ...........
- e [ 0 T TUNMpApy
S 0 RN
0 Xy X, Xy X X, Xy X X
(A} B

Figure 9-3 ({A) Convex normal fuzzy ser and (B) nonconvex normal fuzzy sex.

are not strictly monotonically increasing or decreasing or strictly monotonically incrensing_ than decreasing.
The convex -.1‘nd NONCOnvEX ﬁormal fuzzy sets are shown in Figures 3-3(A) and (?3). respectively.

From Figure 9-3(A), the convex normal fuzzy set can be defined in the FoI!_owmg way. Fnr elements X1 %2
and x3 in a fuzzy set 4. if the following relation berween x), x2 and xy holds. ie.. . ¢ DRI

o e ’A_':l \Jp_ =4

—— o m—— ﬁr . r
\_ﬁ;(:rzminlm(-\‘n.ﬂd(n)] Y AL
i A S s

) Y

:;\‘ kY

i ip of : n or equal to””
then 4 is said to be a convex fuzzy set. The membership of the element xa ShOl_l]d .be greater than or eq s
the membership of elements x; and x3. For a nonconvex fuzzy set. the constraint is not satisfied. 7~ ;

S Ko

,«;j\THE‘TEEersecrion of two convex fuzzy sets is also a convex fuzzy seﬂ The element in the l.miversc. for
“which a particular fuzzy sct 4 has its value equal to 0.5 is called crossover point of 2 1‘|'lcmbf::rshl.p f'uncuo.n.
The membership value of a crossover POt of a fuzzy set is equal 10 0.5, e, ptalx) = 0.5 ltis shown in
Figure 9-4. There can be more than one cmscm:__rp_o_ig;in_a_ﬁ:%r.. .
The maximum valug of the membership function in a fuzzy set A is called as the height of the fuzzy set.
ight i i tion
For a ndrmal fuzzy ser, the height is equal to 1, because the maximum valie E embership
allowed is 1. Thus, if the height of a ﬁz?y—set-—i—s-l_css than 1, then the fuzzy set is ml!ed subnormlal fuzzy ser.
When the fuzzy ser 4 is a convex single-point normal fuzzy ser defined on tl?c real “mc'j'iﬂl AJ&reml'Eias
a fuzzy number, - T s Y o - -
Em——

rtg(ez} = min [l ) prgloas)]
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9.4 Methods of Membership Valus Assignments . 299
#ear 6. genetic algorithm;
1 7. inductive reasoning.

These methods are discussed in detail in the following subsections. Apart from these methods, there are other

methods such as soft partitioning, mera rules and fuzzy satistics, to name a few.
0.5

9.4.1 Intuition

; : : {ntuition method is based upon the common intelligence of human. It s the capacity of the human to develop
LS > membership functions on the basis of their g#n intelligence and understanding capabilit, There s‘hould be
: SR an in-depth knowledge of the application to which ip value assignment has to be made. Figure 9-5
Figure 9-4 Crossover poinr of a fuzzy set. N

k‘r
<r

N shows various shapes of weights of people measured in kilogram in the universe. Eaclh curve is 2 membership

~ ‘7/; € funcrion corresponding to various fuzzy {linguistic) variables, such as vety lig-hr, light, normal, hu\rx and

I 9:3 Fuzzification Al very heavy. The curves are based on context functions and the human devclo_pmg them. For example, if the

: ‘ -‘ weights are referred to range of thin persons we get one set of curves, and if they are referred to range of

Fuasificatlon s the process M tensorming 2 cq’g\sﬁ set 10 a fuzzy st or a fuszy ser 10 a fusier ser, ic. : normal weighing persons we ger another set and so on. The main characreristics of these curves for their usage
crisp quantities are converted to fuzzy quanticies. This operation translates accurate erisp inpur.vjalu sinfo .

in operations are based on their overlapping capaciry.

N linguistic va;‘i_lakles. In real-life world, the quanrities that we consider may be though of as crisp, aceurds i
~ and determinsstic, but actually they are not so. They possess uncertainty within themselves. The uncerraincy i I_9-4-2 Inference
* ~ may arisc du to vagueness, imprecision or uncercainty; in this case the variable is probably fuzzy and can be ik
~¢ represented by a fimbership AIRCEOT, For example, when one is told that the temperature is 9 °C, the person
© translates the crisp input value into linguistic variable such as cold or warm according to onds kngwledge and

The inference method uses knowledge to perform deductive reasoning, Deduction achieves conclusion by

: ¥ means Ofgniaid‘ilﬁ_:i_egg;)'rhere are various methods for performing deductive reasoning. Here: the knclnwl-
5 then makes a decision abgut themreed o wear jacker or not. If one fails to fuzzify then it is not possible ro : edge of geomerrical shapes and geometry is used for defining membership values. The membership ifuncuon.s
<~ continug she decisiop.prncess or <rv6f decision may be reached. ™~ i may be defined by various shapes: triangular, trapezoidal, bellshapéd, Gaussian and so on. The inference

For a fuzzy set 4 = {j4/xi|x; € X}, 2 common fuzzification algorithm is performed by keeping(y; const/a\nt =~ ‘ method here is discussed via Uiangula; shape. ; —_ .
and[)l@gg_tmn wa ﬁlEYserQ(:E,-l\_‘depicring the expression abour x;. The fuzzy set Q(x;) 15 Teferred /\\ Consider a triangle, where X, ¥and Z are thefangles, uchthat X2 Y2 Z > 0 and lec U be the universe
to as the kernel of fuzzification. The Fuzzified ser 4 can be expressed as rNC ‘ of triangles, i.e — —

! e T e iangles, i.c.,
4 | RYre. ' Lo ; Z=180) ‘
6 s Kt ?.‘?t--‘a ‘-»'Fm?'*-ﬂ‘v id = QAn) + 1 QUs3) +- o+ i QA% e ‘ Y U= {XY2IX2 Y2 Z>0X+Y+Z=
r - : , L ‘__\' 4:,..\ . -
where the symbol ~ means fuzzified. This process of fuzzification is called support fuzzification oA ‘}_(!-( : .U1 R
(s-fuzzification). There is another method of fuzzification called grade fuzzification (g-fuzzificarion) where o h N }. o vt ot
x; is kepr constant and 4 is expressed asa fuzzy set. Thus, using these methods, fuzzificacion is carried out. g _r.{"“ ¢ -y Yo N
e AN Verylight  Light ~Normal  Heawy Very heavy :
: - L‘S‘IL Aty 1
ls.4 Methods of Miembership Value Assignments i RN b‘s
There are several ways to assign membership values to fuzzy variables in comparison with the probabilicy : . Coee
density funcrions to random variables. The process of membership valuc assignment may be bym N AQ"FRC
logim]_r;smn‘g',‘ﬁrﬁﬁeﬂmethod or algorithmic approach. The me rassigning membership value & o~
are as follows: ‘ - ¢ & (\‘\)3
1. Intujrion; | .«C\;\-( Q_(( o
2. inference; i [g; N , ! . T T T
3. rank ordering; | 0 20 40 60 £0 100 120
4. angular fuzzy sers; Weight in (kg)
5. neural nerworks; !

Figure 9-5 Membership functions for the fuzzy variable “weight.”



300

Membership Functions

There ace various types of triangles available. Hete a few are considered to explain inference methodology:

{ = isosceles triangle (approximate)
£ = equilateral rriangle (approximare)
£ = righr-angle triangle (approximare)
{R = isosceles and right-angle triangle (approximare)
T =other triéngles

By the method of inference, we can obrain the membership values for all the above-mentioned triangles, since

we possess knowledge abour geometry thac helps usm
The membership values of approxi Tsusceles triangle is obrained using the following definirion, where
X>2Y>Z>0and X+ ¥+ Z =180

S

1
1 |
'p,AX,Y;Z):!*gJ;min(X—- Yv-ay J

~=wuill
=Yor ¥ =7 the me ip value of a ximate isosceles triangle @ On the other
hand, if X = 120°, ¥ = 60° and Z = 0°, we get
1
wXrz2i=1- 7 min(120° - 60°, 60° — 0°)
1
=]- 7 min{60°, 60°)
=1- 60°
60° "
=l-1=0

The membership value of approximare right-angle triangle is given by

v

XVZ)=1— —|x— 907
jRERa=0 g
IFX = 90°, the membership value of 2 right-angle triangle is 1, and if X = 180, the membership value e,
becomes 0:

X=90°= jp=1
X= ‘800=>[tk-:0

The membership value of approximare isosceles right-angle triangle is obrained by ttking the logical
incersection of the approximate isosceles and approsimare righe-angle triangle membership functions, i.e.,

e T
R=[NR )

{
(X, ¥.Z) = minfyuX, V. Z), uglX, ¥..2)]

and it is given by

! 1
=1~ —_ i _ L _ ©
™ [600 min{X — ¥ ¥ = 2), o 1X - 90 1]

Li
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The membership function for a fumy equilateral wiangle is given by

: - .
Y, Z) =1 - —|X— .
wglk ¥,2) =1 = =X~ 2]

The membership function of other tl’iangles, denoted by 7; is the complement of the logical union of §, R
and £, i.c.. ‘

By using De Morgan's law, we gec

RN A
The membership value can be obrained using the equation
urlX, ¥, 2) -Lmin{l ~ X V20,1 - X ¥V 20 1 — pplX, Y,ZQ

- 1_310‘ min{3(X — ¥),3(¥ = Z), 21X — 90°|, X — 2}

A\

The inference method as discussed for uiangular shape can be extended for trapezoidal shape and so on,
on the basis of knowledge of geometry.

R
l 9.4.3 Rank Ordering .

The formation of government is based on the polling concepe; to identify a best student, ran_king may_be
performed; ro buy a car, one can ask for several opinions and so on. All the above mentioned acrivities are carried
out on the basis of the preferences made by an individual, 2 committee, 2 poll and other (E_Ei,rli_?l'l'fihﬂ;
This methodology can be adapred to assign membexship values to s fuFzy variable. Fairwise comparisons
enz&km‘\o@iine preferencesfand this results in determining_:heﬁﬁ r of the mcmbemhmﬁcgt\h.

- - H

de
details of rank ordering are included in Chapter 14. ]

. NPT
e \

l 9.4.4 Angular Fuzzy Sets

—_— . i A
{ Coordinate d;csc—ri/pfiojis the major difference berween the angular fuzzy sets and scanm:u'f sers. Angu-

lar huzzy sets are defined on thus repeating the shapes every 2 _cycles. The truth

values of the linguistic variable are represented by angular fizzy sers. The logical prepositions are equ.a‘ted
to the membership value “cruth,” as chey are associated with the degree of truth. The certain preposition
with membership value “1" is said to be true and that the preposition with membership value “0" is said
to be faise. The intermediate values berween 0 and 1 correspond to a preposition being partifllly true or
partially false. T _
The angular fuzzy sets are explained as follows: Consider the pH value of wastewater from a dyeing
industry. These pH readings are assigned linguiscic labels, such as high base, medium acid, etc., to unders:a.nd
the quality of the polluted water. The pH value should be raken care of because cthe waste from the dyeing
industry should not be hazardous o the environment. As is known, the neutral solution has a pH value of 7.
The linguistic variables are build in such a way that a “neutral (N)” solution corresponds to 8 = 0 rad, and
“exact base (EBY” and “exact acid (EA)” corresponds to 8 =/2 rad and f = ~/2 md, respectively. The
levels of pH berween 7 and 14 can be termed as “very base” (VB), “medium base” (MB) and so on a.nr.l. are
represented between 0 1o /2. Levels of pH between 0 and 7 can be termed as “very acid (VA)" "mcdlul;}(;

o

e & . 8"
l.r . frl. [ "~ . /7 At
e L S

2

AT N

/"' .

. B [N -~
Al
I - }v Y
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EB1" ' g=3n/8

g=mi8
MB

g=mi2

8=—n/8
MA

A
8=—nl4

VA
- 8=-3nig
. N
g=—ml2.

Figure -6 Model 6f angular fuzzy ser.

acid (MA}" and so on and are represented berween 0 rad and —/2 rad. The model of the angular fuzzy sec
using these linguistic labels for pH is shown in Figure 9-6.
‘Thc values of the linguistic variables vary with ?jand their membership values are on the (48) axis. The
‘——_’_‘—“_ N -
membership value cotresponding to the Hingaistic trm can be obrained from the equarion
() = £ anid)

- A
here £ i horrzofital projection of radial veerdn Angular fuzzy sers are best in cases with polar coordinares or

in cases where the value of the variable is cyclic.

——

I 9.4.5 Neural Networks

The basic conceprs of neural nevworks and various types of neural nerworks were discussed in detail in
Chaprers 2-6. The neural nerwork can be used to obrain fuzzy membership values. Consider a case where
fuzzy membership functions are 1o be creared &@. The input dara setis collected
and divided into training data set and testing data set. The training data set trains the neural nerwork. Consider
an input training mhown in FIgnre9-7TA). The dara set is found to contain several data points. The
data points are first divided inco differenc classes by conventional clustering techniques, In Figure 9-7(A),
it can be noticed that the data poines are divided into three classes, R4, Rg and Re. Consider data point
1 having input coordinate values ¥ = 0.6 and x; = 0.8. This data point lies in the region Rg; hence we

assign complere membership of 1 & class i 6F 0+to classes Ry and Re. In a similar manner, the other
daa points are given membership values of T Fat the classes they initially belong. A neural neework is created

) i 303
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X,

PEE] XXX1

r// FrR
' ////////////

X
x‘
(C)
ITTTTTTTT i
- : —R
) X, vt Dala points
|2 Data points 14 - ! 1 2 o2l pont 14
- - |
: ! Rfojo
A
X '6\5’8 : Nelural_"__R
1 ne )
R
:|ogfor ! | s 110
1
X1
) - : Re| 0} 1
| 1 —HR;
N (P
(E)

Figure -7 Fuzzy membership funcrion evaluared from neural nerworks.

{Figures 9-7(B), (E), (H)) which uses the data point marked | and the cprresponding mcmbcrsht;:m va.iue:
in different classes for waining irself for simulating the relationship berweert _J_r}g_r%g_%ugga e e
“m‘emEersth values, The output of neural necwork is shown in Figure 9- 7(C), which ¢ asgl t:l.sl va]f

into one of the three regions. The neural net then uses the next set of da%
ﬁxrth%’quw&m&pmcm is continued undil he neu neswor
simulates the éntire st of input—ourput values, The nerwork performaflce is tested using the testing

o - T :\t .
] :i, - ) \‘ ol
i \ Tt \ hY

———
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When the neural necwork is ready in its final version, it can be used to determine the ip values
of any input data [Figure 9-7(G)] in the different regions (classes) [Figure 9-7(1)]. A complete mapping of
the mEmBETship of various data points in various fuzzy classes can be derived to determine the overlap of the
different classes. The overlap of the three fuzzy classes is shown in ion of Figure 9-7(C). In this
manner, neural nerwork is used toMm?ﬂﬁﬁﬁ?'

l9.4.6 Genetic Algorithms

Genetic algorithm is based on the Darwin's theory of evolution; the basic rule is “survival of the frtest.” The
genetic algorithm is used here to mﬁm_yETcmbcrship funcrions. This can be done using the(\f'b
A

. . e Y il
following steps f\&k ‘A,»\,\U"\‘ (Jl-j."ll .

1. For a panticular functional mapping system, the same membership functions an

shapes are assumed for, ¢
various fuzzy variables ro be defined.

d}\i,r))\' J

2. These chosen membership functions are then coded into bit strings.
3. Then these bit strings are concatenated together. |

4. The fitness function to be used here is noted. In genetic algorithm,
similar to thar played by activation function in neural necwork.

5. The fimess funcrion is used to evaluare the fitness of kach set of membershi

fitness funcrion plays a major role

6. These membership functions define'thé functional mapping of the system.
A el

The process of generating and evaluating strings is carried our_unijl we get a convergence to the solurion
within a generation, i.e., we obtain the membership functions with best fitness valie. T hus, oz bership
functions can be obrained from generic algorithm, S~

I 9.4.7 Induction Reasoning

Induction is used o deduce causes by means of backward inference.The characteristics of inductive feasoning
can be used to generate membership funcions. Tnductio oys entropy minimizacion principle, which
clusters the parameters carresponding to the ourput chaes. To perform Tnductive reasoning method, 2 well- .

defined darabase for the input—output relationship should exist, The inductive reasoning can be applied for
compléx systems where the data are abundant and static. For dynamic dara sets, this. method is not best

suited, because che membership funcrions conrinually changes with rime.

(Christeuseu; 19805~

L. Given a ser ofjreeducible outcomes of an experiment, the induced
1L’infmm(jc])n that maximize the entropy of the se.

consistent wich ali availal

2. The induced probability of a ser of independent observations is proportional to the probability density of
the induced probability of a single observacion.

3. The induced rule is that rule consistent
entropy. ~ T

ere exist three laws of inducrion

robabilities are those probabilities

with all available_; ation of that minimizes rhe

The third faw scated above is wi ! ment of membership functions. The membership - WA
functions using inductive reasoning are generated as follows: : - T

AR

L
1. A fuzzy threshold is to be established becween classes of dara, 3
T e N

i

b
3

S , 305

L \a

. Using entropy minimization screening method, first determine the d’{m-,h[;{?”‘\lnkfﬁ ' b‘; ,9'1(
T . A1
. Then start the segmeéntation process. - . s
(a}_ [Zak! oty
L A
S -

5.6 Solved Problems

. The segmentartion process results into two ¢lasses.

. Again partitioning the fitst owo classes one mgre time, we obtain three different classes.

Gy W s W b

. The partitioning is repeated with threshold value calculations, which lead ds w partition the daca set into
a number of classes or fuzzy sets.

. s .
: R S\ s T W{ I
7. Then'on the basis df'the _shap&@embershlp Aedor i determinedy
— — . . .
Thus the membership Tunction is gentrated on the basis of the partitioning or analog screening concept.

This draws a threshold line berween two classes of sample data. The id b ﬂdrawing the threshold line
is to classify the samples whemminimizing the g the eifropy for oprimum partitionin

l 9.5 Summary

Membership functions and their features are discussed in this chaprer. AJso: the diﬁ:erer.u: methods of obtaimrlg
the membership funcrions are dealt with. The formation of the membership funcrion is the core for _the entire
fuzzy system operation. The capability of human reasoning is very important for membership Func_uons. The
inference method is based on the geometrical shapes and geometry, whereas the angl-llar fuzzy set is bgsed on
the angular features. Using neural networks and rezsorting methods the memberships are tu_ned ina cyc':hc
fashion and are based on rule structure. The improvements are carried out to achieve an optimum solution
using genetic algorithms. Thus, the memhership funcrion can be formed uimg any one of the methods
discussed.

I 9.6 Solved Problems

1. Using your own intuition and definitions of the
universe of discourse, plot fuzzy membership
funcrions for “weight of people.”

Solution: The universe of discourse is weight of peo-
ple. Lec the weights be in kg, i.e., kilogram. Let the
linguistic variables be the following;

Yery thin (VT): W <25

Thin (T): 25 < W< 45
Average (AV): 45 < W< 60

" 50 7% 100 125
Stour (5): 60 < W= 75 Figure 1 Membership function for weighe
Very stour (VS): W75 of people. :

Now plotring the defined linguistic variables Solution: The universe of disc.:ourse is age O_F peo'plf:.
using triangular membership funictions, we obrain Ler “A” denote age of people in years. The linguistic
Figure 1 variables are defined as follows:

Very young (VY}: A4 < 12

2. Using your ewn inwition, plot the fuzzy mem- Young (¥): 10 < 4 < 22

bership function for the age of people.
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Middle age (M) :20 < A4 < 42
Old(0):40 <A< 72
Very old (VO): 70 < A4

These variables are represented using triangular mem-
bership function in Figure 2.

010 20 30 40 S0 60 70 B0

Figure 2 Membership function for age of people.

3. Compare “medinm wave (MW)" and “short
wave {SW)” receivers according to their frequency
range. Plot the membership functions using intu-
ition. The linguistic variables are defined based on

the following;

Medium wave receivers: frequency lesser than
= 10° Hz
Short wave receivers: frequency preater than

2 105 Hz

Solution: Let the Frequency range of receivers be
. universe of discourse. The linguistic variables are the

0 ——
following:

Medium wave receivers (MW): frequency lesser
than = 10° Hz
Short wave receivers (SW): frequency greater than

~ 106 He

This is represented using Gaussian membership func-
tion in Figure 3.

4, Using the inference approach, find the member-
ship values for the triangular shapes [ R, £, IR,
and T for a rriangle with angles 45°, 55° and 80°.

{ix)

0.5

x
0 108 10° 100

Figure 3 Membership function for frequency
range of receivers.

Solution: Let the universe of discourse be

U={(X.Y,2): X=80° > ¥=55° > Z=45°
and X+ ¥+ Z=80° 4 55° + 45° = 180°}

* Membership value of isosceles triangle, £

—_—

iw=1-
i‘uL

— min(i:k}—’, Y-2Zz)
60c
—i- % min(80° — 55°,55° — 45°)
1
=1~ > min{25°, 16°)
1
=]-—x10°
60°

=1—0.1667 = 0.833

* Membership value of right-angle riangle, &

A S 1
=1——|X-90°]=1— —|80° — 90°
g ; 90°| ] 90,,| |

1 - o
x 10% = 0.889
20°

=1 -

* Membership value of equitateral triangle, £

1 1
—(X-Z)=1-
180° o 180°

x 35° = 0.8056

j'LE =-] - (BOD - 450)

=1-

180°

* Membership value of isosceles and right-angle
triangle, [R:

{ sy = minlpag, figTy= min[0.833, 0.889)
=038

9.6 Solved Problemg
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* Membership value of other triangles, Tt -~ ‘\J o (g):-.:fz

K7 = min[] — pp 1 =~ g 1~ ip)
= min[0.167,0.1944,0.111] = 0.111

Thus the membership function is calculated for the
triangular shapes,

5. Using the inference approach, obtain Ehf mem-
bershlpl‘ vabues for the triangular shapes (£ £ 1)
for a triangle wigh angles 40°, 60° and 80°.

Solution: Let the universe of discourse be
U= {(XY-Z) X =80° >¥= 50° 22:40“ and
X+ Y+ 27 =g0° 4 60° + 40° = 180°)

* Membership value of isosceles triangle,

1
w=1- o min(X— ¥, ¥—2)
1 o
=1- o min(80° — 60°, 60° — 40°)

=1- - nin@0°, 20°) -
60° min )

1
=1 —. x20° = 0.667
60°

* Membership valye of right-angle triangte, &

1 1
,[i:]-——_ —_— ° = ——80“-900
£ 5gs X 90°1 =1 gool I

_ 1
—1“%;x10°=0.889

. Members}lip value of other trianges, Ve
i=min[l—pp, 1~ pgh
= min[1-0.667, 1 —0.889]
=min{0.333,0.111]=0.111

Th“? the membership values for isosceles, right-
angle wiangle and other triangles are calculated.

6. The ¢nergy E of a particle spinning in 2 magnetic
field B is given by the equation ’

E = uBsind

where i Magnetic moment of spinning particle
and & is camplement angle of magnetic moment

Q=ni3
(sH)

(5L}
=—7i3

L
Q=—u/2

Figure 4 Angular fuzzy sec.

with respect to the direction of the magnetic
field.

Assume the magnetic field B and magneric
moment 4 to be constant, and che linguistic terms
for the complement angle of magnetic moment be
given as

High moment (H): 8 =#/2
Slightly high moment (SH): 0 =nr/3
No moment (Z):6=10
Slightly low moment (SL): 6 = ~= /3
Low momenc (L}:8 = —n/2
Find the membership values using the angular

fuzzy ser approach for these linguistic labels and
plot these values versus &.

Solution: The angular fuzzy set is shown in Figure 4.
Now calculate the angular fuzzy membership values
as shown in the rable below.

[ tanf z==cosf p=|(z)and)
wi2 o0} 0 1

i3 1.732 0.5 0.866

0 0 1 0
~nf3 —1.732 0.5 —0.866
~rf2 o 0 1

The plot for the membership ﬂk@on shown in this
cable is gi re 5.
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Table 1
Number who preferred
Maruti 800  Scorpic Matiz  Santre  Octavia Total Percentage Rank order
Ma.rullzi 800 —_ 192 246 592 621 1651 16.5 5
Scor.plo 403 —_ 621 540 391 1955 19.6 2
Mariz 235 336 — 797 492 1860 18.6 4
Sancro 523 364 417 - 608 1912 19.1 3
Ocravia 616 534 746 726 — 2622 26.2 1
Total 10000
#(3 Octavia). Define a fuzzy set 4 on the universe of
1 cars “best car.”
Solution: Table 1 shows the rank ordering for per-
0.5 formance of cars is 2 summary of the opinion
Sllwey.
@ In Table 1, for example, out of 1000 people,
T ] AR 192 preferred Maruci 800 to che Scorpio, etc. The
2 3 ’

Figure 5 Plor of membership funcrion.

7. Suppose 1000 people respond to a questdon-
naire abour cheir pairwise preferences among five
cars, X = {Maruad 800, Scorpio, Matiz, Santro,

14

A ST AN

A

]

toral number of responses is 10,000 (10 compar-
isons}. On the basis of the preferences, the percentage
is calculated. The ordering is then performed. It
is found that Ocravia is selected as the best car

Figure 6 shows the membership funcrion for this
example.

B0

Mareti  Matiz Saniro S

corpie Oclavia

Figure 6 Membership funcrion for best car.
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9.7 Review Questions

~ N W e

. Define membership function and state its impor-
t

zance in fuzzy logic.

. Explain the features of membership functions.
. Differentiate the following: ‘

» Convex and nonconvex fuzzy set.
» Normal and subnormal fuzzy ser.

£
. What is meant by crossover point in a fuzzy ser?
. Define height of a fuzzy set. '
. Write short note on fuzzificacion.

. List the various mechods employed for the mem-

bership value assignment.

. With suitable examples, explain how member-

ship assignment is performed using intition.

I 8.8 Exercise Problems

. Define fuzzy number.
. Explain in detail the inference method adopted

for assigning membership values.

. How is rank ordeting used to define membership

functions based on polling concept?

. Discuss in detail the membership value assign-

ments using angular fuzzy sers,

. Describe how neural network is used to obein

fuzzy membership functions.

. With suitable example, explain the method by

which membership value assignments are per-
formed using genetic algorithm.

. Give details on membership value assignments

using inductive reasoning,

1

Using intition, assign the membership func-
tions For (a) population of cars and (b) library
usage.

. Using your own incuition, develop fuzzy mem-

bership Funcrions on the real line for the fuzzy
numbes 5, using the following shapes:

(a) Quadrilateral

(b) Trapezoid

(¢) Gaussian function

{d) Isosceles triangle

{e) Symmerric triangle

. Using inwition and your own definition of the

universe of disconrse, plot fuzzy membership
funetions to the following variables:

(i) Liquid level in the tank
(a) Very small
(b) Small
{c) Empry
(d) Full
() Very full

{ii} Race of people

{a) White
(b) Moderate
{c} Black

{iii) Height of people
{a) Very wll
(b) Tall
{c) Normai

(d) Shorc
() Very short

4, Using inference approach outlined in  this

chaprer, find the membership values for each of
the criangular shapes ([, & £, IR, T} for each of

the following {all in degrees):

(a) 20°,40°,120°
(b) 90°,45° 45°
{c) 35°,75°%70°
(d)y 10°,60°, 110°
{e) 50°,75°,55°
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5, Using inference method, find the membership
values of the wriangular shapes for each of the
following rriangles:

@ 30 60°, 90°
(®) 45°, 65°, 70°
(c) 85°, 55°, 40°

. The following dara was determined by the pair-
wise comparison of work preferences of 100
people: When ic was compared with software
(8}, 72 persons polled preferred hardware (H),
65 of them preferred teaching (T), 55 of chem
preferred business (B) and 25 preferred texile
{TX). On comparisen with hardware (H), the
preferences were 60 for S,42for T, 66 for B
and 35 for TX. When compared with teaching,
the preferences were 62 for S, 48 for Y, 38 for
B and 25 for TX. On comparjson with busi-
ness, the preferences were 52 for S, 47 for H,
35 for T, 20 for TX. When compared with tex-
tile, the preferences were 70 for S, 65 for H,
44 for T and 40 for B. Using rank ordering plot

the membership function for the “mast preferred
"
work.

- The following raw daca derermines a pair-wise
comparison of a new scooter in a poll of 100
people. On comparison with Vicrer (V), 79 pre-
ferred Splender (), 59 preferred Honda Activa
(HA}, 85 preferred Bajaj (B) and 62 preferred
Infinity (T). When S was compared, the prefer-
ences were 21 for V, 22 for HA, 37 for B and
45 for L When HA was compared, the pref-
erences were 20 for V, 77 for S, 35 for B and
48 for I. Finally when infinity was compared,
the preferences were 32 for V, 54 for S, 52 for
HA and 50 for B. Using rank ordering, obtain

the membership function of “most preferred
bike." '

- Develop membership funcrion for trapezoid
similar to algorichm developed for triangle and
the function should have two independent vari-
ables so that it can be passed. For the rable sh own,
show the first iteration to compite the member-
ship values for input variables X, X and X3 in
the output regions R4 and Ry,

bt

I0.

X X2 X3 R4 R
1.5 0.5 2.5 1.0 0.0

(2) Use3d x 3 % I neural necwork
{b) Use3 x 3 x 2 neural necwork.
Fer data shown in the following table (Table A),
show the first two iterations using a genetic algo-
tithm to find the optimum membership func-

tion (right triangular funcrion S for the input
variable X'and output variable Yin the rule rable,

Table A: Data

X 0 0.2 0.7 1.0
Y 1 0.64 0.55 0.35

Table B: Rules
X L S
Y Z S

Note: L— large; § — small; 7 — zero.

The energy E of a particular spinning in a
magnetic field B is given by the equarion

E = uBsin#

where 4 is magnetic moment of spinning particle
and @ complement angle of magnetic moment
with respect (o the direction of the magnetic
field,

Assuming the magneric field and magnetic
moment to be constant, we propose linguis-
tic terms for the complement angle of magnetic
moment as follows:

High momenct (H):0 = /2
Slightly high moment (SH): 8 == /8
No moment (N):6 = 0
Slightly low moment (SLy:0=—n /8
Low moment (L):0 = —7 /2
Find the membership values using the angu-
lar fuzzy set approach for these linguistic labels

for the complement angles and plot these value
versus “4."

&
£
‘? i
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Defuzzification

— Learning Objectives

Need for defuzzification process. crisp tolerance and crisp equivalence relation

respectively.

* How lambda-cuts for fuzzy ses and fuzzy

relations can be carried out. * An example provided ro depict how the

various defuzzification methods are used o

* Various types of defuzzification methods. obrain crisp outputs,

» To know how A-cur relation of a fuzzy roler-
ance and fuzzy equivalence relation results in

l 10.1 Introduction

In fumificarion process, we have made the conversion from ltfrisp ql.?ar:,utl[‘es ;;) fuzzy qr:r:;:::;s:vgo‘:szz,t ;:l
several applications and engineering area, it is necessary 1o “defuzzify the fuzzy resu ]t[ Dcﬁ_,uifg‘lca[ion <
through the fuzzy set analysis, L.e, It is necessary to convert fuzzy results into crisp 1:&51:5 es.oF aaifcation i
a mapping process from a space of fuzzy conerol actions defined over an ou@%ﬁmtmi
space of crisp (nonfuzzy) control ncmeecause in ;Zt;); CP:_:?:ME:ZY ions erisp L)
actions are needed to[actuate the cong efurzification process ‘ nerol

best represents the possibility Tsributionlof m_,hmferlred fuzzy co action. Theadcerft:uiiia:;ozoizf;ifsi
has"the capability to reduce a fuzzy set into a crisp smgle—valued‘ quantity or mrob h;athc,m e
fuzzy marrix into a crisp matrix; or to converr a fuz_zy n.umbe‘zlr into a crisp l:lum ;:[r. o b
defuzzification process may also be termed as “rounding it off. FLIIIZ)’ set with a coflecric o emperehip
values or a vector of values on the unit inrerval may be reduced o a_s:ngle slcalar quanurg usi nhg o
process. Enormous defuzzification methods have been suggested in _the literature; a[-llr doug bno:z: hod hes
proved to be always more Jadvantageous t};)an dl:he, other;. T];hel selt;cc;lc;nc::;t:; Eiztn ; c;; ptlre;liry ;nvslvcd,
on the experience of the designer. It may be done on the basis of ¢ ; ity ;
appTlrc—aEil?ty to the situations considered and pl?usibiliry of_ the outputs Ebt;med ﬁﬁiic?zrezf:zzzzé %f:;l;
of view. In this chapter we will discuss the vatious defizzification methods employ

varidbles into crisp variables.

I 10.2 Lambda-Cuts for Fuzzy Sets (Alpha-Cuts)

Consider a huzzy set 4. The set d),(0< A < 1), called the lambda (A)-cut {or alpha []-cut} sex, is a crisp set
of the fuzzy sec and is defined as follows:

A ={xlugzal rel01]
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The setA), is called a weak lambda-cut set if it consists of all the elements of a fuzzy set whose membership
functions have vﬂ%tad%nmo%u/dﬂgdﬁcd value. On the'other hand, the set 4y, is called a strong
lambda-cur set if it consisteo efments of a fuzzy set whose membership functions have values strictly

preater than a specified value. A strong A-cut set is given by
— e —————

A= {ugle =1L re[o,1]

All the A-cuc sets form E‘ family of cris-E. ser.s.lIt is important to note the A-cut ser Ay, (or Ay, if a-cut set)
does not have a tilde score, becat€e it is a crisp set derived from parent fuzzy set 4. Any particular fuzzy set 4
can be transformed into an iwt& because there are infinite number of values A can
take in the inlzcnralrl()E 1!.
~The properties oF X-cut sets are as follows:
L UBy=4UB
2. AN =ANE

3. (An # () excepewheh A= 0.5
4. Forany L <8, where 0 <F< 1, it is true m@ where Ay = X,
The fourth property is essentially used in g:Lp fcs”

igure 10-1 shows a2 continuous-vatued fuzzy set
with two A-cut values. In Figure 10-1, notice thai o7 A = 0.2 and B=054p2 ﬁiﬁgm
Aps. e Tor A<B (0.2 < 0.5),4p5 C Aga. Figure 10-2 shows the features of the membership functions.

The core of 4 is the A = I-cuc set 4. The support of 4 is the A-cut set Ap+, where A= 0*, and it can be
defined as

Agr = (x| (1) > 0)
The inrenrn’ [Ao+,A1] fprms the boundaries of the fuzzy set 4, i.e., the regions wich the membership vatues

berween 0 and-Ljef6r A= 010 1.

"
Yoooo oo
05{~-------
1
1
I
]
- R A -
1 l ! b
1 ! ! I
1 1
AT
I |
| 1 X
T T
0 e
—— Ay ———

Figure 10-1 Two different A-cux sers for 2 continuous-valued fuzzy ser.

ey, ksl festoes Moo

ST
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ple

T T T
0 :—4— 1 SUppOrt |y
L+ Boundary-»! ‘+Boundary+!

Elgure 10-2 Fearures of the membership functions.

I 10.3 Lambda-Cuts for Fuzzy Relations

The A-cur for fuzzy relations is similar to thar for fuzzy sers. Ler B be a fuzzy relation where each row of

the relational matrix is considered a fuzzy set. The jth row in a fuzzy relation marrix £ denotes a discrere

membership function for a fuzzy ser B. A fuzzy relation can be converted into a crisprelatiorrimthetfottowing
P function fora uzzy set

manner:

—
[ i

| ‘
!I'Rx = (s Plupixy) = A) .'
. . R an
whete Rj is a A-cut relation of the Rrzzy refation §. Since here R is defined as a wo-dimensional array, defined
on the universes X'and ¥, therefore any pair (x, ) € & belongs to 8 with a relation grearer than or equal to A.
Simnilar to the properries of A-cut fuzzy set, the A-cuts on fuzzy reladions also obey ceruwin propeities. They
are listed as follows. For two fuzzy relations R and § the following properties should hold:

L (RUSH =R US.
2. BNI =R NS

3. (R # (R except when K= 0.5, -
4. Forany A <8, where 0 <F< 1, itis crue cha ﬁgj

l10.4 Defuzzification Methods

Defuzzification is the process of conversion of a fuzzy quantity into a precise quantity. The output of a fuzzy
process may be union of two or more fuzzy membership fincdons defined on the universe of discourse of the
Uaut variabler——

Consider a fuzzy output comprising wwo parts: the first parc, G, a tiangular membership shape [as
shown in Figure 10-3(A}], the second part, (3, a trapezoidal shape [as shéwn in Figure 10-3(B)}. The union
of these two membership functions, ie., G = Gi U C, involves the max-o r, which is going to I_Je
the auter envelope of the two shapes shown in Figures 10-3(A) and’(—];)%_lrf?ﬁa;?shape of  is shown in
Figure 10-3(C).
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I i
1 A 1
0.5 G

f * t } F4 z
0 2 4 6 8 10
(A
H
L . R
05 - - - f - e ————— - - - -
T T Y T Y z
o 2 4 8 B 10

©
Figure 10-3 (A) First parr of fuzzy outpur, (B) second parc of fuazy outpur, (C) union of parts (A} and (B).

A fuzzy outpur process may involve many oucput parts, and the membershlp,fuﬂenmr'r'éfj‘memmg_each
parc_of the ourput can have any shape. The membership function of the fuzzy output need notalways
be normal. In general, we have

=Ug=¢ NN
i=1 ( . K v
R . J iy
Defuzzification merhods include the following: ot \y\
{

1. Max-membership principle. P_{CLH-" J l)_J.*‘ ¥ I
2. Centroid method. | 0 e all o -4[—'("”:“ A
3. Weighted average merhod it FIRIE ‘

4. Mean-max membership.

R
I

10.4 Deluzification Methods a5

J7l
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I
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l
1
x

Figure 10-4 Max-membership defuzzification methed.
ENCNILS
5. Centerofsums.  * * 0 47

6. Center of largest area.

7. First of maxima, last of maxima.

Now we discuss the mechods listed abave.

l1 0.4.1 Max-Membership Principle

This method is also known as heighl.: method and is limiced tWﬂms. This method is given
by the algebraic expression —_

T

}";};(x*) >pgl forallxe X

The method is illustrated in Figure 10-4,

I 10.4.2 Centroid Method

This method is also known as cener - of mass, center of area or center of graviy method. Ie is che most

commonly used defuzzification method. The defuzzified ourput x* is defined as
e

* f,ug(x)-xdx
[igtide

where the symbol f denotes an algebraic ineegration. This method is illuseraced in Figure 10-5.
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qp--—----—===

Figure 10-5 Cenrroid defuzzification methed.

I 10.4.3 Weighted Average Method

This method is valid fof symmetrical ouquu_t‘ miémbership functiofis only) Each membership function is
_ weighted by its maximum membership value. The output in This case is given by
. Y-
DA N

- ——

where 3~ denotes algebraic sum and X; is_the_maximum of the ith membership.function. The method
is illustrated in Figure 10-6, wheretwo fuzzy sets are consideredl. From Figure 10-6, we notice thac the
defuzzified outpur is given by

«_ 0524085
T 05408 ©

-y

o.eW ___________
a5 F -

1
1
I
I
I
i
a

o] X

Figure 10-6 Weighted average defuzzification method {towa symmetrical membership functions).
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Figure 10-7 Mean-max membership defuzzification method.

As this method is limited to symmetrical membership functions, the values of 2 and é are the means of
their respective shapes.

10.4.4 Mean-Max Membership

This method is also known as the middle of the maxima. This is closely related ro max-membership

method, except that the locations of the maximum membership can be nonunique. The output here is

iven b e

g ¥ '\‘1” \s'

g = it ® SRR
" : .

R

This is illustrated in Figure 10-7. From Figure 10-7, we norice that the defuzzified oucput is given by

. até
x =
2

where # and # are as shown in the figure.

I 10.4.5 Center of Sums

This method employs theatgebraic sum of the individual Eummhcu uifam The calculations
here are very fast, bur the main drawback is that Intersecting areas are added twice. The defuzzified value «*

is given by ‘ —_———
LT g @
Je Xk ng: (e
Figure 10-8 illustrates the center of sums method. In center of sums methad, the weights are the areas of
the respective membership functions, whereas in the weighted average method the weights are individual

membership values.
—_

I 10.4.6 Center of Largest Area

This method can be adopted when the outpur consists off; least wo convex fuzzy shibsets which are not

overlapping. The cutput in this case is biased rowards a Wlon. ‘When outpur fuzzy
e

x o
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set has ar least rwo convex regions, then the{center ter of pravity of the ifip, the far
i i Chis value is given by ‘

atea is used to obtain the defuzzified value x

* _ f“_ﬁ(x)'xdx
I g, (e

where ¢ is the convex subregion that has the largest area making up g

largest area. \

l1 0.4.7 First of Maxima (Last of Maxima)

i Figure 10-9 illuserates the center of

This mechod uses the overall outpur or union of all individual output fuzzy sews—¢ for deternining the

smallest value of the domam With maximized membership In g. The steps used for obtaining »* are
'M

P e e — et

) . o~ >
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-

o AT
X..
Boundary
Figure 10-9 Cenrer of largest area method.
as follows:
1. Initially, the maximum height in the union is found:

hgt(g) = supp; (2)
xeX

where sup is suprerum, i.e., the{w,
2. Then the first of maxima is found:

x = inf {xeX|,% (x) =hgt(5)]
xeX

where infis the infimum, ie., the greatest lower bound.y

3. After this the last maxima is found: . b

** = sup {x & X|ieg () = hgtlg) |
xeX

0.54

o O
Figure 10+10- First of maxima (last of maxima) method.



320 Defuzzification

where sup = supremum, i.e., the least upper bound; inf = infimum, i.e., the greatest lower bound. This
is illustrated in Figure 10-10. From Figure 10-10, the first maxima is also the last maxima, and since it is
a distinct max, it is also the mean-max.

I 1.5 Summary

In this chaprer we have discussed the methods of converting fuzzy variables into crisp variables by a process
called a5 defuzzification. Defuzzification process is essential because some engineering applications need exact
values for performing che operation. For example, if speed of a motor has to be varied, we cannot inseruct to
raise it “slighely,” “high,” erc., using linguistic variables; rather, it should be specified as raise it by 200 rpm
or 5o, a specific amount of raise should be mentioned. Defuzzificarion is a natural and essential technique.
Lambda-cut for fuzzy sets and fuzzy relations were discussed. Apart from the lambda-cut method, seven
defuzzification merthods were presented. There are analyses going on to justify which of the defuzzification

method is the best? The method of defuzzification should be assessed on the basis of the outpur in the conrext
of data available.

l 10.6 Solved Problems

1. Consider wwo fuzzy sets 4 and B, both defined  (a} @os = 1-14 ()

| gl fe : :
on X, given as follows 08 07 06 03 09
==+ —+—=

X)) o o on ox o _ oo s
A 0.2 03 04 07 01 Ao = {x1.x2, %5}
B 04 05 0.6 0.8 0.9

4 05 06 08 0
®) g=[°_+_5+°6+2§+91
X X x3 x4 i

Express the following A-cut sets using Zadeh's

notation: (Bhoa = {xy, X2, %3, %4, %5}
o

4 (€ (AU =maxlpy(x), nplx
(ﬂ) (4)0,7: (b) (@U.Z; (C) (’.ﬂuﬁ)o_ﬁ; < max “4_ x) ‘U'E .\‘.‘]

_ = 04 05 06 08 09
) idnghs (UMD BN B = ?+;+T+x_4+};
1 3
® @NBog: B [@UB)s (AU Blag = {x3,24, x5}
Solution: The rwo fuzzy sets given are d) AN B) =minfpy (x), ppx))
[0.2 « 0.3 + 0.4 + 0.7 + 0.1
2 0. 4 3 . s\ r T T T
4=[0_+__3+0_+E+E x] x2 *3 x4 %5
oA S (A0 Blys = (x4} ~.
|04 05 06 08 09
Sl m X s (€ (AUAD = max{py (), puy ()]
08 07 06 07 09
We now find the A-cur set: = o + = + ™ + ™ + -
o 5
@LiM‘ZX_EJ (AU A7 = o, x2, x4, 25}
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(f) (8N B) = minlug (), up 0] : - |9 05 065 085
' 0 20 40 60
04 05 04 02 0.1, 1.0 10
=l === ==
x) x: x3 X4 x5 30 100]
(BN Blys = bxy,xz,x3) o (51 U S$)p5 = {20, 40,60, 82,\;({)1(\)}@
@ @B =t-pyng . (b 5N %) =minfug (), ug ()]
0 045 06 08
08 07 06 03,09 =l =+ 2
=l—+—+—+—=+—= {0 0 "0 e
oo x3 XX 95 10
(AN Bog = [x1, 52,33, x5} +t30 T 0o
) @UB = maxuz 0, sz (9] 151N Slos = 140.60, 80, 100]
=[%+£+0_'6_+9j_3.+9 (c) E:l—,ug,(x)
x| X2 3 x4 X5
= 1 05 035 015
AU Bpg = {xi, x Y BN Rt Wit Wi
0.8 = {x1,x5) |0 %50 T e
2. Using Zadeh's notation, determine the A-cur sets +}_)_ + o

for the given fuzzy sets: 80 100

($\o5 =10,20
3_{9 05,065 085 10 10 tos = (0,20
MTloT 20" 40 T 60 80 ' 100 -

@  H=l-pgl

s _|9+0.45+0.6 0.8+.95+ 1.0
#T1o" 20 T " 60 T80 " 100 ={l 035 04,02
0 20 40 60
Express the following for & = 0.5: 0.05 + l]
B0 100

@EUSE B ENS: ©5 @& (S2)o.5 =10, 20)
D EHVES): B G0N

& (Huh)= L =45 U 820

Solution: The rwo fuzzy sets given are 1 05 035 015
= {a Tt tw
&=[Q+E+@+o.85+1.0+1.0 0 0
0 20" 40 " 60 ' 80 ' 100 *30 100
0, 045 06 08 95 10
G=dp 2 2 00 0 P (St U3z}, . =10,20)
=2 {0 zo+4o+60+so+1ool o
The A-cut set is obuained using H (Gng)= I-pgin g0
: A = N —1+0_'5_5.+g'é+y
= [xlpg ) 243 G “loT 20 T 40" 0
Hoer N L L0050 0
ere A= 0.3, N 80 ' 100

(@) G Ush) = max(ug (), g, ()] {5y S2)y 5 =10, 20}
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3. Consider the two fuzzy sers ® 4nB= min(s7 (9, 15 ()
o 08 1 01 02 0
d={ﬁ+a§+a‘ﬁ'] =lﬁ 0406
d B=[%+0—'7-+92} ANBpg=(¢}
’ = 02 04 006 Case (1): A=0.7
g s s, oS Ve ) o= |+ 2 )
following operations: o7 =10.2)
() 4 (b)iii . (C)dui.il b —_— 3 0_1 9_2 0.7
@4ng @©4VE (N4nB R “E(’)"lo.z’*oﬂo.é}
Solution: The two fuzzy sets given are Bos = {06}

1

02 Toat g

_[o 0.8

0.9 07 03
and 8= {.[B + a‘ + (—)_6.]
Case (: A =04
@ A= () L + 02 +
=\ ¥)={— —_—
a=17R 02 04
(o4 =102}
- 0.1 03
(b B=1- =14+ =
) B=l-pp(y) [02+04+

{Blo.s={0.6)
(&0 AUB=max{pug{x)ugOi)
(2,0,
102 04 7 06
(AU By ={0.2,0.4, 06
(d} AN B=min{p,(x), 5]
.
1oz " 04 06
(AN B)g 4 =1{0.4)
(€ dUB=maxluz (=) g ()]
2.y
“loz2 04 06

(AU By4=1{0.2,0.6)

|

|=

o
=)

I o

<
[}

~J

|

©  AUB=maxlug (9, kg ()]
_[92 0.8 1]

02t 0a o8
(AU Bla7=1{0.2,0.4,0.6}

(d) AN B=minfp, (x}, g (4]

i + 0.7 + _0_3.
0.2 04 06
{0.4)

1

(AN Bz =

@ 4UB

max{pey (o g ()
1 03 07
4@*&*&

(AU B)g»=[0.2,0.6)

Hh  4AnB= minlp (), ug ()
NN
0.2 04 06
ANBoy=16}

4, Consider the discrere fuzz defined on the
universe X = {a,*z, ‘ j, ¢} as

1,0906 03,0
b c d

Using Zadeh's notation, find the A-cut sets for
1=1,09,0.6,0.3,07 and 0.
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Solution: The furzy ser given on the universe of (a) A= 0.1,

di e i
scourse is 01 ﬂ
1 09 06 03 0 =
d= —+—-+—+—+—] Roy=11 11
a b c d ¢ 111
TheA-cuc set is given as (b) A= 0%,
A= {xfpg (9 22} [0 1 1]
Ie should be noted thar the sets present i;1 A-cut Ryt = 11
set will have unity membership and the sers not 111 1]
in A-cur ser have zero membership. Hence A-cut (@ i=03
sets for different values of A can be expressed as "
follows. o @J [0 0 17
I 0 ¢ 0 0 Rs=|110
=1, = -4+ —-+—-+-}
(a) Ay a+b+c+a’+e AN 11 1]
1 1.0 0 0 (dy A=09,
b) A=09, Apg={-+-+-+-+-
a b ¢ d ¢ Mo 0 0]
1 1 1 0 0 Roo = 0
A=06, Adyg={~+-+-+-+- -
(c) 06 tptoteto 01 1.
1 6. For the fu lation £,
() A=03, Ags= l+%+_1_+2+9 or the fuzzy relarion £
‘ ¢ ¢ 1 01 0 05 03
S U R T B 0.02 0.1 055 1 06
(e) A=0%, Ao+=l—+—+—+—+—] R=
o a b ¢ d e 02 1 06 1 O
1 1 11 003 05 1 03 0
6 r=0 An=[—+—+—+—+—;
a b oo 4 e find the A-cut relation for A= 0%,0.1,0.4
_ and 0.8.
5. Determine the crisp A-cut relation when A= Solution: For the given fuzzy refation, the A-cur

0.1,0%,0.3 and 0.9 for the following refation £  relarion can be obrained by the following relation:

0 02 04 L ppgen A

R= p—

E: 0.3 07 01 0, H'ij,_))<k

08 09 1.0
(@) =107,
Solution: For the given furzy relation, the A-cur 11011
refation is given by

R 1 1111
Ry = {00} gy 22} TTliriro
= {1 |itgpp 225 0 |pggy <A} 11110
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(b) A=10.1, {b) A=04,
11011 0111 1
01 1Y) 014111
e Boa=1ly 111
01110 IR

(c) A=104, (¢) A=10.7,
1001 0 000 1 11
001 11 00111
Ba=10 1 1) o Bor=16 0111
0110 0] 11100

(dy A=10.8, (d) =09,
1000 0] 00011
0001 O RD_UUOIO
Ror=lo 101 0 "Tloooto
001 0 0] 11000

7. For the fuzzy relation &,

02 05 07 1 09
03 05 07 1 08
04 06 08 09 04
09 1 08 06 04

(=]
Il

find the A-cur relation for A = 0.2, 0.4, 0.7
and 0.9

Solution: For the given fuzzy refacion, the A-cut
refation is given by

1, .u-[!‘(x,)) ZA

Ry =
0, Ry < A
(a) A=10.2,
11 1
11
Roa

I
_ = e

8. Show thav any A-cur relation of a fuzzy rolerance
relation results in a crisp tolerance relation.

Solution: Consider the fuzzy relation

1 08 0 01 02
08 1 04 0 09
E=[{0 04 1t 0 0
01 0 0 1 05
0209 0 05 1

It is a fuzzy rolerance relation because it does not
satisfy transitive properry, i.c.,

HRlx,x) =08, pplnm,xs)=09
From the relation R, we have
teglxy, ) = 0.2 (n
But on calculating we obtain

1g (e, x5) =1m1n (g (eyy 3y 1. (22, 55)]
= Em 08,091 =08 2)

10,6 Solved Prablems
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As (1} # (2}, therefore transitive properry is nor
satisfied | Now assume X = 0.8.JThen the crisp rela-

tion for IS ,
Q)

%3
WD

00
11 00(1 '
Rog=|0 0100 /
o000
s {01 0 01 ‘

Now {x].x2) € R (xnx3) € R burlx.x) ¢
Rlxy.xs) & R Hence Ry y is a crisp tolerance relarion.
Thus A-cut relation for a fuzzy rolerance relation 1 a

crisp mlW

9. Show that A-cut relation of a fuzzy equivalence
relacion results in a crisp equivalence relation.

Solution: Consider the following fuzzy equivalence
relation:
1 0.8 004 05 08
08 1 04 05 09
R=|04 04 1 04 04
05 05 04 1 05
08 09 04 05 1

The relation R satisfies transitive property, i.e.,
Ml x2) =08, pgplo.xs) =09
From the refation R, we have
fip v, ) =08 iy
Un caleulating we obrain
M by, x5} = min [ g (v, x2), g (xa, 53]
= min[0.8,09] = 0.8 (2}

As (1}-= (2}, cherefore transitive property sarisfied;

hence it forms an equivalence relation. Now assume
#.= 0.8. Then the crisp relation formed is

11001

100

Ry g 010

0 I

0

I
- 0o o -
(= — R

—

Now {x1,x1) € R, {x3,x5) € Rand (x|, x5) € R.
Hence, A-cut refation of a fuzzy equivalence relation
results in a crisp equivalence relarien.

e
A0, Forthe giv’c‘rﬁl’é—ﬁn'f):r_ship funcrion as shown in
Figure | below, determine the defuzzified ourput
value by seven methods.

H
1
OJJ 0.7
ar,
05 o
&
Ay
0 7 — T _— X
1 2 3 4 5 6
M
1
051
)

Figure 1 Membership funcrions.

Solution: The detuzzified outpus value can be
obrained by she following methods.

* Cenrroid method
The two poingsare {0.0yand (2, 0.7). The straighe
ling is given by (p — 31} = mix — x1). Hence.

y=0=%(x-0
Ay = y=035x
A =y=107
A13 = not necessary

Aay = the two points are {2,0), (3. 1)

y=x-2

An=y=1



326

Defuzzification

Azz = the two points are (4, 1),(6,0)
wepgety = —0.5x 4+ 3

(A) From Ay we obrain y = 0.7.
(B) From Az; we obrain y = x—2. On substituting
the value y = 0.7 in (B), we obtain
x—2=07=2x=27
y=07

The centroid method defuzzified ourput is

o f g ()xdx
g xdx

2 2.7 3 . G b
J0352dx + [ 0Tede+ [ (2 — 2)dx enter of largest area:
0 2 27

Area of |
dr}

4 [
+ [ xdx+ f (~0.5¢ + 3v)
3

[
I:f [%xO.'/'x(3+2)x2+%x1
0

[

(3.5 + 12)dx
=284

x (2+4) x 41&]

(3 x07xB+20+41x1

S

x (24 4) x 4]a’x:|

oo

1175+ 3)ae
1]

1
= - x07x (27407) = 119

Area of 11

27
[foasnix +f07xdx+ f(r 2)dx

+ fa'x+ Jr'(—o.SJr2 + 3x)dx
3 4

* Weighted average method: The defuzzified value
here is given by

. 2007) +4(1)
= —F =131
X 071 3.176

* Mean-meax method: The crisp outpur value here
is given by

= a+b 25435
T2 2
* Censer of sums method:  The defuzzified value x*
is given by

=3

fxiugma
T
[T ne e

1
=5><1><(2+3)x%x0.7
= 2,255

Area of 1] is found to be larger; therefore the
defuzzified outpur value is given by

. f,ug {x)xdx
Jug (e

;

G
+f1x1x3.5dx+f;x2x1a&]
4

—w

3 % 0.3 x 0.3 x 2.85dx

EN

L2

3 4
[f 5% 03x03de+ f1x 1
2.7 P 3
+fix2x Idx]
4
3 4 6
[ 0.12825d¢+ [ 3.5d% + [ 5dx
_2.? 3 4 _
=— 7 z =449
[ 0.045de+ [ dx+ fdx
27 3 4

= First of maxima:  The defuzzified outpur value is
H=3

* Last of maxima:  The defuzzified ourpur value is
s =4

~ '_-m.-.-le.ﬁ

B P

L £ A 4 T 134

10.8 Exercise Problems
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!l 10.7 Review Questions

1. Define defuzzification.
. State the necessity of defuzzificarion process. .
. Write short note on lambda-cut for fuzzy sets.

. List the properties of lambda-cur for fuzzy sets.

VRO e D

. How is a fuzzy relation converted into a crisp
relation using lambda-cur process?

6. Mention the properties of lambda-cur for fuzzy
relations.

7. Whar are the different methods of defuzzifica-

tion process?

I 10.8 Exercise Problems

8. Explain in detail the methods employed for
converring fuzzy form into crisp form.

< 9, Compare first of maxima and last of maxima

method.

10. Wharis the difference between centroid method
and center of largest area method?

11. Differentiate between center of sums and
weighted average method.

12. Which of the seven methods of the defuzzifica-
tion technigue is the best?

1. Two fuzzy sets defined on X, 4 and B, are as
follows:

Wix) 1 2 x3 x x5 x5 a7
4 0 01 02 03 04 05 06
B 1 09 08 07 06 05 04

Express the following A-cur sets using Zadeh's
notation:

{2) (Aa.z; (b) (Blos: {c) (AU Bo+:
() @NBlos: ) @UDez: (A (AN Aos:
(8) (BU By, (h) (BN Blog

2. Using Zadeh's notation, derermine the A-cut sets
for the given fuzzy sets:

01 04 035 1.0
M —_
B TR 4 50]
My |9 09 081 027 033
“2T10 T 20 T30 TTde T s0

Express the following for A = 0.2,0.3 and 0.7:

(@) M1 UMY, (B) @ NM2):

@ @ UM (d) 3 NAR);

© G NARY (DG UML), (@M

(h) Mz G 04 UED: ) 3 )

3. Consider the rwo fuzzy sets

0.35 0625 0.256

A2V 07 Tors T o
095  0.815 067

+ ——

- 0 7 0.725 075
Using Zadeh’s notation, express the fuzzy sets
as A-cut sets for A= 0.2 and A = 0.8 for the

following operations:
(a) 4; b B, AU E:

B d4nE
©4UE (AANB

4. Consider the fuzzy sets

08 05 0.2
5|+ 3+ 5 i)

400
07 04 01
2= [100 200 + 300 ﬁl

Using Zadeh’s notation, express the fuzzy sets
as A-cuc sets for A= 0.2/, = 1 10 5, for the
following aperations:

@3 ®) % @& N %
DHUS: %NS OHuss
EEUSR: GRS OEUD:
MENE
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5. Consider the discrete fuzzy ser defined on che
universe X = {a. b e.dve [ as

. 0+0.5 02 04 1+0.3
. b ¢ d ¢ f

Using Zadeh's notation, find the A-cut sers for
the values A = 1,0.7,0.2,0.4,0" and 0.

6. Derermine the crisp a-cut relaton for A=
0.1,07.0.3.0.6.0.7, 1.0 for the fuzzy relation

given by

10 02 0l 04
06 07 03 05 0 10.
0.8 09 06 0.3 02
01 0 1 09 07

R=

7. Consider che fuzey relation

Fo9 1.0 07

0.35 0.01 03
04 002 047
K=
h 06 08 04

01 0 023
L0.68 0.7 005 ]

Find the a-cut relation for i = 07 11, 1,0.5,0.7.

8. Tor che fuay refation

025 035 075 0.62

1 i gd 09
s 03 06 0.7
0.4 4} 1 0y

find the z-cut relations for o~ =0.3.0,5.4.
(h9.0.7.

9. The fuzzy ses 4,8 and C are all defined on

the universe X = [0,5] with the following 0 1

membership functions:

1
0= e
2x

x+4

gt =3 el =

{a] Sketch the membership functiens.

(b) Define the intervals along the x-axis corre-
sponding to the A-curt sets for each of the
fuzzy sets A, Band Cfor i = 0.2, 0.4, 0.6,
0.9.1.0.

For cthe logical union of the membership func-
tions shown below, find cthe defuzzified value x*
using each of the defuzzification methods.

O —— e —————
>

o 4

TPV 7 Sher T

Fuzzy Arithmetic and
Fuzzy Measures

—— lLearning Objectives

* Basic conceprs of fuzzy arithmeric. * Discusses on extension principle for general-

+ How interval analysis is performed for uncer- izing crisp sets into fuzzy sets.

tain values.

+ Adescription on belief, plausibility, probabil-

* A note on furzy numbers, fuzzy ordering and iry, possibiliry and necessity measures.

fuezy vectors,

* Gives a view on fuzzy integrals.

l 11.1 Introduction

In this chaprer, we will discuss the basic concepts involved in fuzzy arithmeric and fuzzy measures. Fuzzy
arithmeric is based on the operations and computations of fuzzy numbers. Fuzzy numbers help in exptessing
fuzzy cardinalities and fuzzy quantifiers. Fuzzy arithmeric is applied in various engineering applications when
only imprecise or uncertain sensory dara are available for computation. In this chaprer we will discuss various
forms of fuzzy measures such as belief, plausibility, probabilicy and possibilicy. A representation of uncersaingy
can be done using fuzzy measure. All the measures to be discussed are functions applied to crisp subsers,
instead of elements, of a universal sec.

p1.2 Fuzzy Arithmetic

In the present scenario, we experience many applications which perform compuration using ambiguous
{imprecise) dara. In all such cases, the imprecise data from the measuring instruments are generally expressed
in the form of intervals, and suitable mathematical operations are performed over these intervals to obrain
a reliable data of the measurements (which are also in the form of intervals). This type of compuration
is called inzerval arithmetic or interval analysis. Fuzzy arithmecic is a major concept in possibility theory.
Fuzzy arithmetic is also a tool for dealing wich fuzzy quantifiers in approximare reasoning {Chaprer £2). Fuzzy
numbers are an extension of the concept of intervals. Intervals are considered at only one unique level. Fuzzy
numbers consider them at several levels varying from D ro 1.

11 1.2.1 Interval Analysis of Uncertain Values

Consider a data set to be uncertain. We can locate this uncertain value o be lying on a real line, A, inside a
closed interval, i.e., x € |a1, az] where #) < a2. The value of x is greater than or equal to 4 and smaller than
or equal to az. In interval analysis, the uncertainty of the dara is limited berween the intervals specified by the
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Table 11-1 Ser operations on intervals

Conditions Union, U Intersection, N
a> b [61, 2] U [a1,43) ¢
by>a [a1,a2] U [61, 8] &

o> bLm<h (61, 62) (a1, a2]
b>abhi<a [a1,42) (61, 2]
aj<bi<a<h [z, 4] (&1, a2]
h<m<h<a [61, 4] [a1, &)

lower bound and upper bound. This can be represented as
d=[z.4]={x|a £x< a)

where 4 represents an interval (4}, 43). Generally, the values #; and a; are finite. In few cases, 4y = —co
and/or a3 = 400, [f value of x is singleton in R then the interval form is x = [x,x]. In general, chere are four
gypes of intervals which are as follows:

. [21,42] = fx|a; < x < a3) is a closed interval.
. [@1,2) = {x|@1 < x <a3) is an interval closed ar the left end and open at right end.
(a1, 23] = {xlay <x < a2} is an interval open at left end and closed ar right end.

. (a1, a2) = {x|m <x< 23} is an open interval, open at both left end and right end.

Lol R

The set operations performed on the intervals are shown in Table 11-1. Here {a1, 2] and [}, &7] are the
upper bounds and lower bounds defined on the two intervals 4 and B, respectively, i.e.,

A=[a, ), wherea) <
B=1[b.62), whereb =&
The machematical operacions performed on intervals are as follows:

1. Addition {+): Let 4 = [a),22] and B = [#, 6;] be the two intervals defined. If x € [#),42] and
y € [1, B3], then

x+)) € [ + b, + &)
This can be written as
A4 B=la, @] + b1, b2] = [a1 + b1.a2 + £2]
2. Subtraction (—): The subtraction for the two intervals of confidence is given by
A—B=la.m] - b, &) =[a1 — b2,m = &]

That is, we subtract the larger value out of 41 and £, from 4; and the smaller value out of &; and &
from a3.

3. Muldiplication (-): Let the two intervals of confidence be 4 = [a1,4,] and B = [&), &3] defined on
non-negative real line. The multiplication of these two intervals is given by

4-B=lay,m)-[61,&2] =11 - b1, a2 - B3]

sipbortons e SefueRyighape

7 ldv

PSS
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If we mulriply an interval with a non-negative real number o, then we get

ed=[u,a] la.a)=leaa -a3]
o-B=[a,al [b.é&) =[a-b.ab]

4. Division (+): The division of two intervals of confidence defined on a non-negative real line is given by

0 h
If b, = 0 then the upper bound increases t6 400. If &y = &; = 0, then interval of confidence is extended
w0 +00.

4+§=[41-52]+[b|:5‘21= [al az]

5. lmage {A: If x € [a1,a7] then its image —x € [—az, —m]. Also if 4 = [a1,4] then its image
A= [~a3;, —a]. Note that

A+d=laal+ - -—al=la-a.a-al#90

Thar is, with image concepr, the subtraction becomes addition of an image.

6. Inverse (471 Ifx € a1, 23] is a subset of a positive real line, then its inverse is given by

()<l
-_— E e

X dy )

Similarly, the inverse of 4 is given by

A =l = [l,l]

ay M

That is, with inverse concepr, division becomes multiplication of an inverse. For division by a non-ncgative
number & > 0, Le. (1/&) - 4, we obrain

[ ) a2
proma L] o[8.2]
a o o

7. Max and min operations: Ler two intervals of confidence be A = [#),a2] and B = {61, b2]. Their max
and min operations are defined by

Max: AV B= a1, @] v &1, 62) = [y vV braay v B2
Min: 4 A B=[a, @] A Lby, b2} = [ A bryma A B

The algebraic propertics of the intervals ate shown in Table 11-2.

Table 11-2  Algebraic propertics of intervals

Property Addition (+) Multiplication {-)
Commatativity A+B=B+4 4 B=84
Associacivity (A+B+C=A+E+C) 4-B-C=4-B-O
Neutral number A+0=0+4=4 A-1=1-4=4
Image and inverse A+A=4+A4#0 A4 =4 4#1
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l 11.2.2 Fuzzy Numbers

A fuzzy number is a normal, convex membership function on the real line R. Its membership function is
piecewise continuous. That is, every A-cut set A, A € [0, 1], of a fuzzy number 4 is a closed interval of R
and the highest value of membership of 4 is unicy. FoL two given fuzzy numbers 4 and B in R, for a specific
A1 € [0, 1], we obrin two closed intervals:

Ay = [a(lm (AZ)] from fuzzy number 4

= [!7(])"), bgu)] from fuzzy number B

The interval arithmeric discussed can beapplied to both these closed intervals. Fuzzy number isan extension
of the concept of intervals. Instead of accounting intervals at only one unique level, fuzzy numbers consider
them ax several [evels with each of these levels corresponding to each A-cut of the fuzzy numbers. The notation
A= [a{:'), ag”] can be used to represent a closed interval of a fuzzy number 4 at a A-level.

Let us discuss the interval arithmeric for closed intervals of fuzzy numbers, Let {*) denote an arithmeric
operation, such as addicion, subtraction, multiplication or division, on fuzzy numbers. The result 4 * B, where
4 and B are two fuzzy numbers is given by

Hap (2) = ziﬁ[#@ (=) 12z (1]
Using extension principle (see Section 11.3), where x,y € R, for min (A} and max (V) operation, we have
taep (@) = sup [igg {x) * g ()]
I=xhy

Using A-cu, the above two equations become

EYINE By forall A € [0,1)
where 4; = [ﬂ?‘),a(;‘lj and By = lb(lj‘), bg_,)“)]. Note that for 2y, 43 € [0,1), if &) > a3, then 4, € 4uy-

On excending the addition and subtraction operations on intervals to two fuzzy numbers 4 and B in R,
we get

Similacly, on extending the multiplication and division operarions on two fuzzy numbers 4 and B in RT
(non-negarive real line) == [0, 00}, we get
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Table 113  Algebraic properties of addition and muldiplication on fuzzy numbers

Property Addition Mulriplication
Fuzzy numbers ABCCR A B.CCR*
Commurativity A+B=8+4 A-B=8-A
Associativity A+B+C=A+(B8+0) A-B)-C=A-(B-C})
Neutral number A+0=0+4=4 A1=1.-A=4
Image and inverse A+A=A+A#0 AA =41 4#1

x

The mulriplication of a fuzzy number 4 C R by an ordinary number § € R* can be defined as
(B-Ah = [B4),84)

The support for a fuzzy number, say 4, is given by
supp 4 = {xitg (x)> 0)

which is an interval on the real Yine, denoted symbolically as A. The support of the fuzzy number resulting
from the arithmeric operation 4 + B, i.e.,

supple) = A+ B
4*8B
is the arichmeric operation on the oo individual supports, A and B, for fuzzy numbers 4 and B, respectively.
In general, arithmerie operarions on fuzzy numbers based on A-cur are given by {as mcnnoned eartier}

(A% B = Ay =By

The algebraic propercies of fuzzy numbers are listed in Table 11-3. The operacions on fuzzy numbers
possess the following properties as well,

1. IfAand B are fuzzy numbers in R then (4 + B) and (4 — B) are also fuzzy numbers. Similarly if A and B
are fuzzy numbers in R, then (4 - B) and (4 < B) are alse fuzzy numbers.
2. Thete exist no image and inverse fuzzy numbers, Aand A}, respectively.

3. The inequalidies given below stand true:

(A—B+B#A and (A+B) B#A4

IJ 1.2.3 Fuzzy Ordering

There exist several methods to compare two fuzzy numbers. The technique for fuzzy ordering is based on the
congepe of possibilicy measure,

For a fuzzy number 4, two fuzzy sets 4) and 4 are defined. For this number, the set of numbers that are
possibly greater than or equal to 4 is denoted as 4y and s defined as

g, W) = n {—00, 1) = sup ey ()

HEw
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Figure 11-1  Fuzzy number 4 and its associaced fuzzy sets.

In a similar mannex, the ser of numbers that are necessarily greacer than 4 is denoted as 4; and is
defined as

thdy () = Ny{—c0, w) = inf[1—py ()]

HE

where |4 and N4 are possibility and necessity measures (see Section 11.4.3). Figure 11-1 shows the fuzzy
number and its associated fuzzy sets 4) and 4.

When we try to compare rwo fuzzy numbers 4 and 8 to check whether 4 is greater than B, we split both
the numbers into their associated fuzzy sets. We can compare 4 with By and Bz by index of comparison such
as the possibility or necessity measure of a fuzzy set. Thae is, we can calculate the possibility and necessity

measures, in the set B of fuzzy sees By and Ba. On the basis of this, we obtain four fundamental indices of
comparison which are given below.

L n,@(Bl = Sup min (g (x), sup,ug () = sup min{gtg (z), up (4))

This shows the possibility that the largest value X can take is a least equal o smallest value that ¥'can wake.
2. H,g(Bz = sup min (14 (1), inf[1—pp {#))) = sup inf min (4 (), [1—pp (2)])

This shows thc possibilicy th:t r;he largest value )g c:;:ake is greacer than the largest value that ¥ can rake.
3. Ng(B1) = mfmax (1—py (2), sup‘uﬂ (#)) = infsup max (1 -y (), g (v))

This shows thc possibiliey chac :he"smallest val:c‘;:.an take is at least equal to smallescvalue that Yecan ake.
4. Ny(lh) = mFmax(l —ta (3, lnf[l-].tg( W=1- SI-J:P min (g (i}, g ()]

This shows rhe possibiliry that the smallest value X can take is greater than the largest value thar ¥can take,
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L1 .2.4 Fuzzy Vectors

Avector P= (P, P, Pn) I8 called a furzy vector if for any element we have 0 < P; < 1 fori=lto .
Similarly, the transpose of the fuzzy vector P, denotcc[ by ', isa column vector if 2 is a row vector, i.c.,

P
Py
PT = -

Py
Let us define P and Q as fuzzy vectors of length nand - QT = v (P A Q) as the fuzzy inner product
of Pand Q. Then the fuzzy outer product of 2 and Qis defined by

poQ = APivQ)
< T L
The component of the fuzzy vecror is defined as
z’=(] —Ply 1 _PZ:---:I _Pu)= (FIIE’.P;!""—I)_;)

The fuzzy complement vector £ has the constraint 0 < Pr < 1, for i = 1 v n, and it is also a furzy vecter.

The largest component ?’in the fuzzy vector P is defined as its upper bound, i.e.,
A
P = max(P;)
The smallest component P of the fuzzy vectar Pis defined by its bower bound, i.e.,
I
P= m_in{P,')
Fa i

The properties that the owo fuzzy vecrors Pand Q both of length #, are given as follows:

1. P QT=73@QT
2P0Q =P 0
Al Il
3.2 F<(PaQ
4 PoQ =(pvQ
Q ={pva
5. 0Pl =p
6 Poriz2p
Al
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It should be noted that when two separate fuzzy vectors are idendeal, ie., £ = @Q, the inner product vl
reaches a maximum value while the outer praduct P @ QT reaches a minimum value. "

I 11.3 Extension Principle

Extension principle was introduced by Zadeh in 1978 and is a very important tool of fuzzy set theory. This
extension principle allows the generalization of erisp sets into the fuzzy set framework and extends point-
to-point mappings 1 mappings for fuzzy sets. This principle allows any function £ — that maps an #-tuple
(¥1,x2, ..., 2) i the crisp ser U'to a point in the crisp set ¥ — 1o be generalized as a sec that maps n fuzzy
subsets in U'to a fuzzy set in V. Thus, any mathemarical relationship berween nonfuzzy crisp elements can be

extended to deal with fuzzy entities. The extension principle is also useful to deal with set-theoretic operations
for higher order fuzzy sets,

Given a function f: M — N and a fuzzy set in M, where

U S

X1 L] Xn

the extension principle states that

@=(ﬂ+£+m+&}?ﬂ_ﬁi g M
TO=AT+3 o) " Fe T i T o

If fmaps several clements of M to the same element y in N {i.c., many-to-one mapping), then the maximum
among their membership grades is taken. Thar is,

B b= max (g (x:)]
nNE
il =,
where x;'s are the elemencs mapped to same element y. The function fmaps #-tuples in M 1o a pointin N.
Ler M be the Cartesian prodluct of universes M = M) x My x -+ x M, and A4, ..., 4, be n fuzzy
sets in My, My, ..., M, respectively. The function fmaps an n-uple {x1, %2, ..., x,} in the crisp set Mo a
point y in the crisp set V, Le., y = f(xy,x2,...,%,). The function flxy,x2,...,%n) to be extended to act on
the n fuzzy subsets of M, 41,42, .. 4, is permitted by the extension principle such that
L=fd
where [is the fuzzy image of 41, 42, .. ., 4x through f{). The fuzzy set B is defined by

B={lr.ugOy=flxr, 0. .o, G xa, . x) € M)
where
ug () = sup

(x],x, .xn) €M
y=fleyng....m)

min[g, (x1), tg, (e2),. .., g, (2a)]

with a condition that g {3) = 0 if there exists no (x1,%2,...,%,) € Msuch that y = f{x), xp,.... %,

The excension principle helps in propagating fuzziness through generalized relations thar are discrete
mappings of ordered pairs of clements from input universes to ordered pairs of clements from other universe.
The extension principle is also useful for mapping fuzzy inputs through continuous-valued functions. The
process employed is same as for a discrete-valued funcrion, but it involves more compurarion,

- -
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l1 1.4 Fuzzy Measures

A fuzzy measure explains the imprecision or a.mbiéuir}'nin the assignment of an element 2 to two or more crisp
sets, For representing uncerminty condition, known ag ambiguiry, we assign a value in the unis interval [0, 1]
10 each possible crisp set to which the element in the problem might belong, The value assigned represents
the degree of evidence or certainty or belief of the element’s membership in the set. The represencadon of
uncertainty of this manner is called fuzzy measure. In sum, a fuzzy measure assigns a value in the unit interval
[0, 1] to each classical ser of the universal set signifying the degree of belief thar a particular element » belongs
to the crisp set. In this section several different fuzzy measures such as belief measures, plausibility measure,
probability measure, necessity measure and possibility measure are covered. All these measures are functions
applied to crisp subsets, instead of elements of a universal set.

The difference between a fuzzy measure and a fuzzy set on a universe of elements is that, in fuzzy measure,
the imprecision is in the assignment of an element to one of two or more crisp sets, and in fuzzy sers, the
imprecision is in the prescription of the boundaries of a set.

A fuzzy measure is defined by a function

g: PX) — [0,1]

which assigns to each crisp subser of a universe of discourse X a number in the unit interval [0, 1], where
P(X) is power set of X. A fuzzy measure 1s obviously a set function. To qualify a fuzzy measure, the function
£ should possess cérain properties. A fuzzy measure is also described as follows:

g B—[0,1]

where B C P(X) is a family of crisp subsers of X. Here B is a Borel field or a o field. Also, g sarisfies the

following three axioms of fuzzy measures:
Axiom I: Boundary Condicions (gl)
g =0;¢X) =1
Axior 22 Monotonicity (g2) — For every classical set A, B € P{X), if A C B, then g{A) < g(5).
Axiom 3: Continuity (g3) — For each sequence (4; € P(X)|i € N) of subsets of X, ifeitherA| €A C ...

ord; 2 A; 2 ..., then

Jim, 24 = i 4)
where NV is the set of all positive integers.
A o field or Borel field satisfies the following properties:

l. Xe Bandg € B.
2. IfAc B then A< B
3. Bis closed under ser union operarion, i.e., if A € Band B & B (o field), then AU B € B (o field)

The fuzzy measure excludes the additive property of standard measures, 4. The additive property states
that when two sets A and B are disjoint, chen

HAYU B) = b(A) + HB)
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The probability measure possesses this additive property. Fuzzy measures are also defined by another weaker
axiom: subadditivity. The other basic properties of fuzzy measures are the following:

1. Since d € AU Band 8 C AU B, and because fuzzy measure g possesses monotonic property, we have

gAU B) = max(gld), g(B)]

2. Since AR B € Aand AN B C B, and because fuzzy measure g possesses monotonic property, we have
£dN B < min[gld), gB)]

I 11.4.1 Belief and Plausibility Measures

The belief measuye is a fuzzy measure that satisftes three axioms g1, £2 and g3 and an addirional axiom of
subadditivity. A belief measure is 2 function

bel : B — [0,1]
satisfying axioms g1, g2 and g3 of fuzzy measures and subaddicivity axiom. It is defined as follows:

bel (A1 Uz U+ UA,) 2 Y el (4] = 3 bel (4:N 4)

i<j
4ot =D hd (4 N4 N NA)

for every n € Nand every collection of subsets of X. N'is set ofall positive integer. This is called axiom 4 (g4).
For n = 2, g4 is of the form

bel (A1 U Az) = bel (4)) + bel (42) — bel {4; NAy)
For n=12,if A) = Aand A = A, axiom g4 indicares

bel (4, U A2} = bel (4 U A)
bel (AU A) > bel {4} + bel (A) — bel (AN A)

Since AUA = Xand AN A =¢, we have

bet {X) > bel {A) + bel (A4}
bel {4) + bel () <t

On the basis of the belief measure, one can define a plausibitity measure Pl as
PL(A) =1 —bel (4)
for all 4 € B(CP{X)). On the other hand, based on plausibility measure, belief measure can be defined as
bel () = 1 — PL (4)

Plausibiliry measure can also be defined independent of belief measure. A plausibility measure is a funcrion

Pl: B—[0,1]

o e = meeae

—_—
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.

satisfying axioms g1, g2, g3 of fuzzy measures and the following addicional subadditivity axiom {axiom g5):
PL{Ay NAZ M- N A) <3 DA = PL(A U A
i i
o TP U A U Ud)
for every » € Nand all collection of subsets of X. For # = 2, consider 4 = Aand Az = A, then we have

PHANA) < Pl(4)+Pl (A) - PNAU A)
= PlA+PI#A) 21
The belief measure and the plausibitity measure are munally dual, so it will be beneficial to express both

of them in terms of a set function 7z, called a basic probability assignment. The basic probabilicy assigrment
m is a set function,

m:B—[0,1]

such that m(¢= 0} and 3", . pm(A) = 1. The basic probability assignments are not fuzzy measures. The
quanticy m({A) € [0,11,4 € B(CP(X)), is called A's basic probability number. Given a basic assignment r,
a belief measure and a plausibility measure can be uniquely determined by

bel (4) = Z m(B)

BCA
Pl = Y miB)
BnAZ0
for all A € B(CP(X)).
The relations among m{A), bet(4) and PI(A) are as follows:

1. m(A} measures the belief chat the clement (x € X) belongs to set A alone, not the roral belief that the
element commits in A.

2. bel () indicates toral evidence thar the element (x € X) belongs 1o set A and to any other special subsetsof A

. Pl (4) includes tlie toral evidence thar the element (x € X) belongs 1o set A or 10 other special subsets of
A plus the additionat evidence or belief associated with sets thac overlap with A.

Based on these relations, we have
PU(A} > bel (4) > m(A) ¥ A € Blg feld}

Belief and plausibility measure are dual to each other. The corresponding basic assignment m can be
obrained from a given plausibility measure Pl:

midy =" (~)4~O[1 ~PI(B)] YA€ B field)
BcA

Every set 4 € B{CP(X)) for which mi{A) > 0 is called a focal element of m. Focal elemenus are subses of X
on which the available evidence focuses.
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l 11.4.2 Probability Measures
On replacing the axiom of subadditivity (axiom g4) with a seronger axiom of addirivity (axiom g6),
bel (4 U B) = bel(4) + bel (B) whenever AN B =¢; A, B € Blo field)

we get the crisp probability measures (or Bayesian belief measures). In other words, the belief measure becames
the crisp probability measure under the addirive axiom.
A probability measure is a function

P:B—{0,1]
satisfying the three axioms g1, g2 and g3 of fuzzy measures and the addirivity axiom (axiom g6) as follows:
PAU By = PA) + P(B) whenever ANB=¢,A,Be B

With axiom g6, the theorenr given below relates the belief measure and the basic assignment to the probability
measure,

“A belief measure bel on a finite a-field B, which is a subset of X(X), is a probability measure if and only if its

basic probability assignment m is given by m{{x]) = bel ({x}) and m{A4)} = 0 for all subsets of X that are not
singletons.”

The theorein mentioned is very significant. The theorem indicates that a probability measure on finite
sets can be represented uniquely by a funcrion defined on the elements of the universal sec X rather chan its
subsecs. The probability measures on finite sets can be fully represented by a function,

P:X— [0,1] suchthar Pix) = m{|x})

This funcrion P(X) is called probability distribution function. Within probability measure, the total
ignorance is cxpressed by the uniform probability distribution funcrion

Plx) = mi{jx]) = ﬁ forallxeX

‘The plausibility and belief measures can be viewed 25 upper and lower probabilities that characterize a set
of probability measures.

l 11.4.3 Possibility and Necessity Measures

In this section, let us discuss two subclasses of belief and plausibiliry measures, which focus on nested focal
elements. A group of subsers of a univesal set is nested if these subsets can be ordered in a way that each is
contained in the nexg; Le., Ay C Ay C A3 C -+ € Ay, A; € P(X) are nested sets. When the focal elements of
a body of evidence (E, m) are nested, the linked belief and plausibility measures are called consonants, because
here the degrees of evidence allocated to them do not conflict with each other. The belief and plausibilicy
measures are characeerized by the following theorem:

Theorem: Consider a consonant body afj'avidence (E, m), the associated consonant beliefand plausibility measures
posses the following properties:
bel (AN B) = min [bel (A), bel {B)]
PI{AU B) = max [P] (4), PI(B)]
Jor all 418 € B{CP(X)},
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Consonant belief and plausibility measures are referred to as necessicy and possibility measures and are
denored by Nand [T, respectively, The possibility and necessity measures are defined independentdy as follows:
The possibiliry measure [ ] and necessity measure N are functions

I'[ :=‘.B—>_' 0,1
N:B—[0,1]

such that both [] and N satisfy the axioms g1, g2 and g3 of fuzzy measures and the following additional
axiom (g7):

Fl

H(A U B) = max (H(A),H(B)) YA, Be B
NAN B) = min(N(A), N(B)) VA,BecB

As necessity and possibility measures are special subclasses of belief and plausibility measures, respectively,
they are related to cach other by

[T =1-nA)
NAy=1-T]@ vAeo field

The properties given below are based on the axiom g7 and above ser of equarions.

. minfN(A), N(A)} = N(ANA) = 0. This implies that A or A is not necessary ar all.

. max{]{A), [T = TT{AU D) = [[(X) = 1. This implies that either 4 or 4 is completely possible.
N 2 M YA Co field. 7

. I N(A) > 0 then [[{A) = 1 and if [{(4) <1 then N(A) = 0.

R

The two equations indicate that if an event is necessary then it is completely possible. Ifit is not completely
possible then it is not necessary. Every possibility measure [] on B C P{x) can be uniquely derermined by a
possibility distribution function

n:x-a»[ﬁ,].]

using the formula
Jlw= lﬁcﬂ(x) Vxeo feld

The necessity and possibility measure are mutwally dual with each other. As a result we can obuain the
necessity measure from the possibilicy distribation function, This is given as

NA=1~[@=1- mc[‘[(x)

The rotal ignorance can be expressed in terms of the possibility diseribution by [](x,) = 1 and [[xy=0
fori =110 n - 1, corresponding to [1(4,) = [1{X) = 1 and T](4) = 0.
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l1 1.5 Measures of Fuzziness

The concept of fuzzy sets is a base frame for dealing with vagueness. In particular, the fuzzy measures concept
provides a general mathematical framework to deal with ambiguous variables, Thus, fuzzy sets and fuzzy

mieasures are tools for representing these ambiguous situations. Measures of uncertainty related to vagueness
are referred to as measures of fuzziness.

Generally, a measure of fuzziness is a funcrion

fPX)y—> R
where R is the real line and P{X) is the set of all fuzzy subsets of X. THe function fsatisfies the following

axioms:

L. Axiorr § (f1): f{4) = 0ifand only if A is a crisp ser.
2. Axiom 2(f2): IfA (shp) B, then /' (4) < f(B), where A (shp) B denotes that A is sharper than B.
3. Axiom 3 (f3): f(A)} rakes the maximum value if and only if A is maximally fuzzy.
Axiom 1 shows that a crisp sec has zero degree of fuzziness in it. Axioms £2 and 3 are based on concept
of “sharper” and “maximal firuzy,” respectively.
1. The first fuzzy measure can be defined by the funcrion:

S == " {ra 0 logy la () 1~p14 ()] logy[1—pe.4 (]}

xed

It can be normalized as

Fi =14

=)

where x| is cardinality of universal set X. This measure of fuzzine
fuzzy set

2. A (shp) B, A is sharper than B, is defined as

ss can be considered as the entropy of a

bald) < pg(x) forpg <05
Al > pplx) forpug()>05 Vee X
3. Ais maximally fuzzy if

i) =05 forallxe X

l1 1.6 Fuzzy Integrals

Sugeno in the year 1977 defined fuzzy integral using fuzzy measures based on a Lebesque integral, which is
defined using “measures,”

Let K'be 2 mapping from Xto{0,1]. The fuzzy integral, in the sense of fuzzy measure g, of K over a subser
Aof Xis defined as

LK(x)-g: sup min[f#,g{4 N Hg)]

aef0,1]
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where Fig = [x € x|K{x) > B}. Here, A is called the domain of integration. If £ = 2 € [0,1j 152 constant,
then irs fuzzy integral over Xis “4” itself, because g (XN Hy) = 1 for B < zand g (XNHyg) = 0for f > 4, ¢,

faog;a,' z€[0,1]

Consider X to be a finite set such that X = {x1,x3,...,xs}. Without loss of genera'lit.y, assu‘ming the
function to be integrated, £ can be obrained such that &x;) > &(x3) > - - = #{x,). This is cbrained after
proper ordering, The basic fuzzy integral then becomes

f k(%) ) g= max min[£(x), g(f))
X i=lon

e

where f; = {x1,x2,.. ., ). The calculacion of the fuzzy measure “g” is a fundamenral point in performing
a fuzzy integration.

l11.7 Summary

In this chapter we discussed fluzey arithmetic, which is considered as an extension of interval arifh_metic. The
chaprer provides a general methodology for extending crisp concepts wo address fuzzy quantities, such as
real algebraic operations on fuzzy numbers. One of the important wols of fuzzy ser theory introduced by
Zadeh is the extension principle, which allews any mathemarical relationship beeween nonfuzzy elements ©
be extended 1o fuzezy entities. This principle can be applied to algebraic operations to deﬁr_le set—thfforen-c
operations for higher order fuzzy sets. The operations and properties of fuzzy vectors were discussed in this
chapter for their use in similarity mettics. Also, we have discussed the concepr of fuzzy mcasures and rl-'le
axiowns that must be sarisfied by a set function in order for it to be a fuzzy measure. We also dlscuss_b.:{:q“
and plausibility measures which are based on the dual axioms of subadditivity. The belief :f.nd plauSIblll't}'
measures can be expressed by the basic probability assignment m, which assigns degree of evidence or belief
indicating that a particular element of X belongs only to ser 4 and not o any subser oFA._ Facal elcme.n-ts
are the subsets that are assigned with nonzero degrees of evidence. The main characteristic of probabifity
measires is thar each of them can be distincily vepresented by a probability distriburion function defined on
the clements of a universal ser apart from its subsers. Also the necessity and possibility measnres, which are
consonant belief measures and consonant plausibilicy measures, respectively, are characterized distineely by
functions defined on the clements of the universal set rather than on its subsets, The fuzzy integrals defined
by Sugeno (1977) are also discussed. Fuzzy integrals are used to perform integration of fuzzy functions. The
measures of fuzziness were also discussed. The definitions of measures of fuzziness dealt in this chaprer can
be extended to noninfinite supports by replacing the summarion by integracion appropriacely.

l 11.8 Solved Problems

1. Perform the following operacions on ineervals:

(a) [31 2] +[4, 3] (b) [21 l] X [115]
() [4,61-(1,2) (d)[3,5]—[4,5]

(@ [3.2] + [4.3]= e, a2] + [41, £2]

= [a) + 61,22 + 5]
[3+4,2+31=1[7.5
[a1, a2} - (61, £2]
[a1 -51,ﬂ2'b2]
=[2-1,1-31=102,3)

(b} [2,1]1x 11,3}

nn

Solution: The operations were performed on the basis
of the interval analysis.
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© [46]+[1,2} =[ana]+1{b1, 2]

4

46
= [5- I] =24

& 13,5]1-14,5] =I[an,a]—[51, 2]
=[a) — by, 87— b1]
=[3-55-4=[-21]

2. For the interval 4 = [5,3], find its image and
inverse.

Solurion: The given interval is
A=1[53] = [a1,4]
{a) Image A = [—a3,—a)] = [~3, =5]
{b) Invemse A~V = [~1~, L] = [l, 1]
@ a 35
=[0.333, 0.2]

3. Given the wo intervals £ = [2,4], F =[-4,5],
perform the max and min operations over these
intervals.

Solution: The given intervals are £ = [a),23] =
(2,4]and E=[&),6] = [-4,5]

(2) Max operation

Ev Eslan,m]vb. k]l =laV b,a3V b}

=[2v—-44v5]=1[25]
(b) Min operation

EnE=lana]Alb, ] =12,4 A[-4,5]
=[2A—4,4A5]=[-44]

4. Consider a fuzzy number 1, the normal convex
membership function defined on integers

05 1 05

Perform addition of wo fuzzy numbers, i.c., add
1 ro 1 wsing extension principle.

Solution:

0.5 1 05 05 1 05
~1'+'1~‘(T+T+T)+(F+T+T)

[ min{0.5,0.5)
0
4 max[min{0.5, 1), min(1, 0.5}]
1
max [min{0.5, 0.5}, min(1, 1),
min(0.5,0.5)]
2
max[{min(t, 0.5}, min(0.5, 1)]
+ 3
min(0.5,0.5)
+ 20309 ]

_ [E + max[(.5, 0.5]

+

max(0.5, 1,0.5]
0 I + 2

+ max[0.5, 0.5] + min(Ol.:,O.S) ]

3
0.5 0.5
2={2422
= [o+0+

05 05
5t

1
2 4

5. The two fuzzy vectors of length 4 are defined as

2 =1(05,0.2,1.0,0.8)
and b =(0.8,0.1,0.9,0.3)

Find the inner producrand ourer product for these
two fuzzy vectors.

Solution:

(a) Inner product.

0.8

0.1

0.9

0.3

=105A08 v{0.2A0.DV(1.0A0.9
v(08A0.3)

=05v01v09v03=09

g &' =(0.5,02,1.0,0.8)
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{b) Outer product:

0.8
® 4 =(0.5,0.2,1.0,0.8) 0.
£0 8 = 02040591 69
0.3

=(05v08)A{0.2v0.1)

A{LOV 0.9 A (0.8 v 0:3)
=(0.8) A (0.2) A (1.0) A (0.8) = 0.2

6. Ler X be the universal set and let A, B, and Cbe
the subsets of X. The basic assignments for the
corresponding focal elements are mentioned in
the following table. Determine the corresponding
belief measure.

Focal elements ml-)
P 0.04
B 0.04
E 0.04
PUB 0.12
PUE 0.08
BUFE 0.04
PUBUE 0.64

I 11.9 Review Questions

Solution: The belief measures are obtained as follows:
bel(P) = m(P) = 0.04
bel(B) = m{B) = 0.04
bel{£) = m(E) = 0.04
bel(PU B) = m(P U B) + m(P) 4+ m(B)
=0.1240.0440.04=0.2
bellPU E) = m(PU E) + m(P) 4+ m(E)
=0.08+0.04+004=016
bel{BU £} = m(BU E) + m(B} + m{£)
=0.04 + 0.04 + 0.04 = 0.12
bel(PUBU E) = m(PUBU EY+ m(PU B)
+ m(PUE)+ mBUE)
+ m(P) + m(B) + m(E)
=0.6440.12+0.08 4+ 0.04
+0.04 + 0.04 +0.04
=1.0

L. State the importance of firzzy arithmetic,

2. How is an interval analysis obrained in fuzzy
arithmetic?

3. List the ser operations performed on intervals.

4. Discuss the mathemarical operations performed
on intervals.

5. What are the properties of performing addition
and multiplication on intervals?

6. Define fuzzy numbers.

7. Mention the properties of addition and multi-
plicacion on fuzzy numbers.

8. White short note on fuzzy ordering.

9. Explain in derail the concept of fuzzy vectors.
10, State the extension principle in fuzzy set theory.
11. Whar are fuzzy measures?

12, Explain in derail the belief and plausibiliry

mMEaseres.

13. How are necessity and possibility measures
obrained from belief and plausibilicy measures?

14. Discuss in detail:

* Probability measure;
* Fuzzy integrals.

15. Mendon the measures of fuzziness in detail.
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l 11.10 Exercise Problems

1

Perform the following éoperations on intervals
@ [5.31+4.2) b [63 9] —[2,4]

(© [L2Ax (53] (@[7.3]+[36

(e) [5, 3] (ﬂ [6: 5]_1

. Perform the max and min operations over the

intervals £= [5,6] and ¢ = [9,2].

. Given the following fuzzy numbers and using

Zadeh's extension principle, calculate K = 4- 8
and show why 10 is nonconvex.

02 1 0.1

. Given

calculate the following: A+ B, 4 — B,
A+BA+E

. For the owo triangular fuzzy numbers fand B,

whose membership functions are respectively

2—x f—-1<x<0
x—2

5

0  otherwise
x+1 f-1<x<0
3—x

5

0  otherwise

pals) = fozx>0

pgl) = fFozx>0

compute the following:
@ A+B A-B
b) AnB AvE
A8 4+8

6. Consider the three fuzzy sets 4, B and € and

10.

theit membership functions:
1 13y
ﬂv,d(x)-:m. #,ﬁ(x)'-(l_l_x).

1 0.5
H) = (H—zx)

Order the fuzzy sets. Take x = 0.

. ‘The two fuzzy vectors of length 6 are defined as

2=(05,07, 02,03, 1, 0.8)
&=1(0, 0.2, 0.1, 0.4, 0.6, 1.0)

Find the inner product and outer product of two
vectors.

. Determine the corresponding belief and plausi-

bility measures from the table below:

Focal elements m

P 0.05
B 0.05
E 0.03
PUB 0.50
PUE 0.15
BUE 0.03
PUBUE 0.15

. Consider the possibility distribution induced by

the proposition “x is an even integer” is

[1=10.0.2.3,3,05,404),
X
(5,0.6),(6,0.3}}

If A = {1,2,3)} is a crisp ser, then find the
possibility and necessicy measures of A.

With suitable example, show that the maximum
measure of fuzziness is | X|.

Fuzzy Rule Base and Appruxlmate
Reasoning

— Learning Objectives

* Discusses on various fuzzy propositions, Different modes of fuzzy approximate

* This chapter gives an idea of how to form reasoning,

the fuzzy rules, decompose and aggregare * Anoteon fuzzy inference system and irs rypes.

chem. + An overview of fuzzy expert system.

I 12.1 Introduction

This chapter focuses on formation of fuzzy rules and reasoning. The degree of an element in a fuzzy set
corresponds to the eruth value of a proposition in fuzzy logic systems. The chapter continues with using
natural language in the expression of various knowledge forms; such systems are known as rule-based systems.
Thereafter we address concepts such as formation, decomposition and aggregacion of fuzzy rules. We explore
and discuss nor only the different modes of fuzzy reasoning but also introduce the basic conceprs of fuzzy

inference system, along with its two different cypes. The chaprer closes with a basic overview of fuzzy expert
system.

hz.z Truth Values and Tables in Fuzzy Logic

Fuzzy logic uses linguistic variables. The values of a linguistic variable are words or sentences in a matural or
artificial language. For example, height is a linguistic variable if it takes values such as rall, medium, shore
and so on. The linguistic variable provides approximate characterization of a complex problem. The name of
the variable, the universe of discourse and a fuzzy subser of universe of discourse characterize a fuzzy variable.
A linguistic variable is a variable of a higher order than a fuzzy variable and its values are taken to be fuzzy
variables. A linguistic variable is characrerized by

. name of the variable (x);
. term set of the variable £ (x);

« syntactic rule for generaring the values of x;

W L o

- semantic rule for associating each value of x with its meaning,

Apare from the linguistic variables, there exists what are called as finguistic hedges (linguistic modifiers). For
fxample. in the fuzzy ser “very 1all”, the word “very” is a linguistic hedge. A few popular linguistic hedges
include: very, highly, slightly, moderaely, plus, minus, fairly, rather.
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Reasoning has logic as its basis, whereas propositions are text sentences expressed in any language and are
generally expressed in an canonical form as

zis P

where z is the symbol of the subject and 2 is the predicate designing the characteristics of the subject. For
example, “London is in United Kingdom” is a proposition in which “Landon” is the subject and “in United
Kingdom” is the predicate, which specifies a property of “London,” L.e., its geographical location in United
Kingdom. Every proposition has its opposite, called negation. Forassuming opposite truth values, a proposition
and its negation are required,

Truch tables define logic functions of two propositions. Let X and ¥ be two propositions, either of which
can be tnze or false. The basic logic operations performed over the propositions are the following:

1. Conjunction{n): XANDY.

2. Digunction (v): XORY.

3. Implication or conditional (=): 1F X THEN Y.

4. Bidirectional or equivalence (<) X IF AND ONLY IF Y.

On the basis of these operations on propositions, inference rules can be formulated. Few inference rules
are as follows:

ArnX=2=Y
Falk= =X
((X=NaAY=222)=3X=2)

The above rules produce certain propositions thar are always true irrespective of the truth values of
propositions X and Y. Such propositions are called senrologies. An extension of set-theoretic bivalence logic is
the fuzzy logic where the truth values are rerms of the linguistic variable “cruch.”

The truth values of propositions in fuzzy logic are allowed to range over the unit interval [0, 1]. A trech
value in fuzzy logic "very true” may be interpreted as a fuzzy set in [0, I]. The truth value of the proposition
“ZisA," or simply the truth value of 4, denoted by tv(4} is defined by a point in [0, 1] {called the numerical
truch value) or a fuzzy sex in {0, 1] (called the linguistic truth value).

The truch value of a proposition can be obrained from the logic operations of other propositions whase
truth values are known. If ev(X) and (¥} are numerical cruth values of propositions X and ¥, respectively,
then

(X AND ¥) = ov(X) A v(¥) = min {ov(X}, w{Y)} (Intersection)
w{XOR Y) = (X} v ov(Y) = max {v(X}), o(¥}} (Union)
vNOT X} =1 — v(X) (Complement)

v(X = ¥) = w(X) = w{B) = max {1 — (X)), min [v(X), 0{ 1]}

I 12.3 Fuzzy Propositions

For extending the reasoning capability, fuzzy logic uses fuzzy predicates, fuzzy-predicare modifiers, fuzzy
quantifiers and fuzzy qualifiers in the fuzzy propositions. The fuzzy propositions make the fuzzy logic differ
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from classical logic. The fuzzy propositions are as follows:

V. Fuzzy predicates: In furzy logic the predicates'can be furzy, for example, rall, shorr, quick. Hence, we have
proposition like “Peter is tall.” It is obvious that most of the predicates in natural language are fuzzy rather
than crisp. :

2. Puzzy-predicate modifiers. In fuzzy logic, there exists a wide range of predicate modifiers that acr as hedges,
for example, very, fairly, moderately, rather, slightly. These predicate modifiers are necessary for generating
the values of a linguistic variable. An example can be the propasition “Climate is moderately cool,” where
“moderately” is the furzy predicate modifier.

3. Fuzzy guantifiers. The fuzzy quantifiers such as mosr, several, many, frequently are used in fuzzy logic.
Employing these, we can have proposition like “Many people are educared.” A fuzzy quantifier can be
interpreted as a fuzzy number or a fuzzy proposidon, which provides an imprecise characterization of the
cardinality of one or more fuzzy or nonfuzzy sers. Fuzzy quandfiers can be used to represent the meaning
of propositions containing probabilities; as a result, they can be used to manipulate probabilities within
fuzzy logic.

4. Fuazy qualifiers. There ate four modes of qualificarion in fuzzy logic, which are as follows:

* Fuzzy ruth qualification: It is expressed as “x is 7,” in which 7 is a fuzzy truth value. A fuzzy truch
value claims the degree of truth of a fuzzy proposition. Consider the example,

(Paul is Young) is NOT VERY True.
Here the qualified proposition is (Paul is Young) and the qualifying fuzzy truch value is “NOT Very True.”

Fuzzy probability qualification: It is denoted as “x is A,” where A is fuzzy probability. In conventional
logic, probability is either numerical or an interval. In fuzzy logic, fuzzy probability is expressed by
terms such as likely, vety likely, untikely, around and so on. Consider the example,

(Pzul is Young) is Likely.

Here the qualifying fuzzy probability is “Likely.” These probabilities may be interpreted as fuzzy
numbers, which may be manipulared using fuzzy arithmetic.

Fuzzy possibility qualification: Ivis expressed as “xisxr,” where 1t s a fuzzy passibility and can be of the
following forms: possible, quire possible, almost impossible. These values can be interprered as labels
of fuzzy subsers of the real line. Consider the example

(Pau! is Young) is Almost Impossible.
Here the qualifying fuzzy possibility is “Almost Impossible.”

Fuzzy ustealicy qualification: It is expressed as “usually (X} = usually {Xis F),” in which the subject X
is a variable taking values in a universe of discourse I/ and the predicate Fis a fuzzy subser of &/ and
interpreted as a uswal value of X denoted by L(X) = F. The propasitions that are usually true or the
events that have high probability of occurrence are related by the concept of usualicy qualification.

I 12.4 Formation of Rules

The general way of representing human knowledge is by forming natural language expressions given by

IF antecedant THEN consequent.

The above expression is referred to as the IF-THEN rule-based form. There are three general forms thar exist

for any linguistic variable. They are: () assignment statements; {b) condirional statements; (c) unconditional
statements.
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Table 12-1 The canonical form of fuzzy rule-based system

Rule 1: If condicion €y, THEN zestricrion £)
Rule 2: If condition Gy, THEN restriction f;
Rule m: If condition C,,, THEN restriczion £,

1. Auignment statements.  They are of the form

y = small

Orange color = orange

a=s

Paul is not tall and not very short
Climate = auturmn

Ourside temperature = normal

These statements utilize “=" for assignment.

2. Conditional statemenss: The following are some examples.

IF y is very caol THEN stop.
IF A is high THEN B is low ELSE B is nor low.
IF temperature is high THEN climate is hor.

The conditional statements use the “TF-THEN" rule-based form.

3. Unconditional statements:  They can be of the form

Goto sum.
Stop.
Divide by a.

Turn the pressure low.

The assignment statements limit the value of a variable to a specific quantity. The canonical rule formation
for a fuzzy rule-based system is given in Table 12-1, Generally, both unconditional as well as conditional
statements place some resuictions on the consequent of the rule-based process. Fuzzy sets and relations
generally model the restrictions. The restriction statements, irrespective of condjtional or unconditional
sratements, are usually connected by linguistic connectives such as “and,” “or” or "else.” The restrictions
denoted by Ry, Ry, ..., R, apply to the consequent of the rules.

l12.5 Decomposition of Rules (Compotnd Rules)

A compound rule is a collection of many simple rules combined rogether. Any compound rule structure
may be decomposed and reduced to a number of simple canonical rule forms. The rules are generally based

on natural language representations. The following are the methods used for decomposition of compound
linguistic rules into simple canonical rules,

e
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1. Multiple conjunctive antecedents

IF xisdy,42,.:.,4n THEN yis By,
Assume a new fuzzy subset Ay, defined as

417: =41 nél M- ndu
and expressed by means of membership function

nu',d,,,(x) = min [.u'd| (<), r’-’-éz(x)l (R P'/j;.(x)]

In view of the fuzzy intersection operation, the compound rule may be rewriren as

IF A, THEN B,

. Multiple disjunctive antecedents

IFxis 4 ORxisdy, ... ORxis A, THEN yis B,.

This can be writen as

IFxis Ay THEN yis B
where the fuzzy set 4, is defined as

An=A1UAUAsU - U4,
The membership function 1s given by

2o, (o = max[ge g, (), peg, 80, .. 1 g, ()]

which is based on fuzzy union operation.

. Conditional statements (with ELSE and UNLESS):

Statements of the kind
IF 4 THEN (8 ELSE B5)

can be decomposed into two simple canonical rule forms, connected by "OR”™:

IF 4, THEN B,

OR

IFNOT A, THEN 3,

IF 4; (THEN B;) UNLESS 4;

can be decomposed as

IF 4; THEN B,

OR

IF 4, THEN NOT

IF 4; THEN (8;) ELSE IF 4; THEN {5,)

can be decomposed into the form
1F 41 THEN 5

OR
IF NOT 4, AND IF 4; THEN B
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4. Nesred-IF-THEN rules:
"The rule “IF 4y THEN [IF 4; THEN (8,)]” can be of the form

IE 4; AND 4, THEN B

Thus, based on all the above-mentoned methods compound rules can be decomposed into series of
canonical simple rules.

Lz.s Aggregation of Fuzzy Rules

The rule-based system involves more than one rule. Aggregation of rules is the process of obtaining the overall
consequents from the individual consequents provided by each rule. The following cwo methods are used for
agpregation of fuzzy rules:

L. Conjunctive syseem of rules:  For a system of rules 1o be jeindy sadsfied, the rules are connected by “and”
connectives. Here, the aggregated outpur, 3, is determined by the fuzzy intersection of all individual rule
consequents, ¥;, where f = 1 to 7, as

y=xyandyand...andy,
or y=nNpipn.. Ny

This aggregated output can be defined by the membership function

f‘l')"(y) = min [#,Vl(.y)’ Hﬂ(}’): - -:Ily,,(}')] fOl' ¥ ey

2. Disjuncrive systemt of ruler: In this case, the satisfaction of at least ene rule is requited. The rules are
connected by “or” connectives. Here, the fuzzy union of all individual rule conrributions determines the
aggregated output, as

Y= Oryior...ory,
or y=pnUpUpu.--Uy,

Again it can be defined by the membership funcrion

iy O = max{y, () n(p)s .-y, ()] forye ¥

l12.7 Fuzzy Reasoning (Approximate Reasoning)

Fuzzy reasoning is the collection of topics discussed in Sections 12.4-12.6. In fuzzy logic both the antecedents

and consequents are allowed to be fuzzy propositions. There exist four modes of fuzzy approximate reasoning,
which include:

1. caregorical reasoning;

2. qualitative reasoning;

3. syllogistic reasoning;

4. disposttional reasoning.
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I 12.7.1 Categorical Reasoning

In chis type of reasoning, the antecedents contain no fuzzy quantifiers and fuzzy probabilities. The antecedents
are assumed to be in canonical form. For understanding the inference rules of categorical reasoning in fuzzy
logic, one should take note of the following notations:

LM N, ... = fuzzy variables taking in the universes U, V, W;

4, B, C = fuzzy predicazes.

1. The projection rule of inference is defined by
LM s R
Lis[R1 L)

where [R | L} denoes the projection of fuzzy relation Ron L,
2. The confunction rule of inference is given by

Lisd LisB=>LisdAN3
LMis4LisB= (LM isANBx V)
LMisLMUNisB=> LY M=UxWNUxB

3. The digunetion rule of inference is given by

LisAOR LisB=> Lis4 x B
LisAMisB=> L MisdxB

4. The nzgative rule of inference is given by
NOT (Lisd) = Lis4
5. The compositional rule of inference is given by
Lisd(LMisR=>Mis4 R
where 4 - R denotes the max-min composition of a fuzzy set A and a fuzzy refation R given by
Hgp{t) = max min [t 4(u), 2 plo, 2)]
0. The extension principle is defined as
Lisd=fDisf

where *f" is 2 mapping from « to v 50 that L is mapped inte f(L); and based on the extension priaciple,
the mermoership funcrion of F(A) is defined as

#ﬁd)(u) = uitlﬁ(,,)“d(u)' uelveV
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l 12.7.2 Qualitative Reasoning

In qualitative reasoning the input-output relationship of a system is expressed as a collection of fuzzy IF
THEN rules where the antecedents and consequents involve fuzzy linguistic variables. Qualitative reasoning
is widely used in control system analysis. Ler 4 and B be the fuzzy input variables and ¢ be the fuzzy outpuc
variable. The relation among 4, B and C may be expressed as

14 s x; AND Bis y1, THEN Cis 2y

IFAisx; AND Bisyp, THEN Cis 2

If 4 is x, AND Bis y,, THEN Cis 2,

where %;, y; and z;, i = 1 10 n, ase fuzzy subsers of their respecrive universe of discourse, This is similar to the
canonical rule formation shown in Table 12-1.

I 12.7.3 Syllogistic Reasoning

In syllogistic reasoning, antecedents with fuzzy quantifiers are relared to inference rules. A fuzzy syllogism can
be expressed as follows:

x=k A'sare B's

y=k CsareD's

2=k Elsae F's
In the above A, B, C, D, E and F are fuzey predicates; £ and £2 are the given fuzzy quantifiers and #3 is
the fuzzy quantifier which has to be decided. All the fuzzy predicates provide a collecrion of fuzzy syllogisms.

These syllogisms create a set of inference rules, which combines evidence through conjunction and disjuncrion.
Given below are some imporrant fuzzy syllogisms,

. Produce spllagism: C-AnB,F=CnAD

. Chaining syllogism: C=B,F=D.E=4

. Consequent conjuncrion syllogisr. F=BnaD A=C=E
. Consequent disjunction syllogism: F=BvDA=C=E

. Precondition conjunction syllagism. E=ANCB=D=F
. Precondition disjunction syllogism: E=Av CGB=D=F

I 12.74 Dispositional Reasoning

In this kind of reasoning, the antecedents ace dispositians that may concain, implicitly or explicitly, the fuzzy
quantifier “usually.” Usuality plays a major role in dispositional reasoning and ir links rogether the dispositional
and syllogistic modes of reasoning, Theimportantinference rules of dispositional reasoningare the following:

[N, T - SR S e

1. Dispositional projection rule of inference:
usually ((Z, M) is &) = usually (L is [R{LD

where [R | £] is the projection of fuzzy relation Ron L.
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2. Dispositional chaining hypersyllogism: &1.4% ate B, & B are s, usually (B C A)

usually (= (Q)(-}Qa) As are C’)
The fuzzy quanifier “usually” is applied to the conrainmenc relation 8 C A
3, Dispositional consequence conjunction syllogism:
usually (A's are B's), usually (A% are C's) = 2 usually (—) 1 (A% are {B and C)'s}
is a specific case of dispositional reasoning,
4. Dispositional enrailment rule of inference:
usvally { xis A}, A C B = usually (x is B)
xis A, usually (A C B} = usually {xis B)
usually (x is A), usualty (AT B) = usually*(x is 5)

is the dispositional entailment rule of inference. Here “usually?” is less specific than “usually.”

L1 2.8 Fuzzy Inference Systems (FIS)

Fuzzy rule-based systems, fuzzy models, and fuzzy expert systems are generally known as fuzey inference
systems. The key unir of a fuzzy logic system is FIS. The primary work of this system is decision making.
FIS uses “IF ... THEN" rules along with connecrors "OR” or “AND” for making necessary decision rules.
The input o F1S may be fuzzy or crisp, but the curput from FIS is always a fuzzy ser. When FIS is used as
a controller, it is necessary to have crisp outpur. Hence, there should be a defzzification unit for converting
fuzzy variables into crisp variables along FIS. The entire FIS is discussed in deail in following subsections.

I 12.8.1 Construction and Working Principle of FIS

ATIS is constructed of five funcrional blocks (Figure 12-1). They ace:
1. A rule base that conrains numerous fuzzy [F-THEN rules. \U\C A

- A darabase thas defines the membership functions of fuzzy sexs used in fuzzy rules. l e O
« Decision-making unir that performs operation on the rules. .

. Fuzzification interface unit that converts the crisp quantiries into fuzzy quancicies,

A e W b

- Defuzzification interface snir that converts the fuzzy quantities into crisp quantities.

The working methodolagy of FIS is as follows. Initially, in the fuzzification unir, the crisp inpuc is converted

into a fuzzy inpur. Various fuzzification methods are employed for this. After this process, rule base is formed.
Darabase and rule base are callectively called the énomwledge base. Finally, defuzzification process is carried out

to produce crisp ourpuc. Mainly, the fuzzy rules are formed in the rule base and suitable decisions are made
in the decision-making unir.

I 12.8.2 Methods of FIS

There are two important types of FIS. They are:
1. Mamdani FI§ {1975);
2. Sugeno FIS (1985),
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y Figure 12-1 Block dizgram of FIS.

The difference berween the two methods lies in the ¢ f rules. Fuzzy sers are used as rule
consequents in Mamdani FIS and ligear functions of inpur variables are used as rule conseqUEREISugeno’s

method. Mamdants rule finds & greater acceprance in all universal approximators than Sugeno’s model.
method. ¥

12.8.2.1 Mamdani FIS

Ebsahim Mamdani proposed this system in the year 1975 to control a steam engine and boiler combination
by synthesizing a set of fuzzy rules obrained from people working on the system. In this case, the_outpur

membership functions are expected to be fuzzy sets. Afer aggregation process, cach ourpuc variable 5
a fuzzy set, hence defurzification is imporeant at the ourput stage. I Re [oltowing steps have to be followed to

compute the outpur from this FIS:

Step 1: Determine a set of fuzzy rules. l
Step 2: Make the inputs fuzzy using inpuc membership funcrions.
Step 3: Combine the fuzzified inputs according 16 the fuzzy rules for establishing a rule strength.

Step 4: Determine the g;/qnscguent of the Tgle by combining the rule strength and the outpur membership
- pp——— —

funcrion. ) A~
N

el
i

The fuzzy rules are formed using “IF-THEN” stacements and “AND/OR” connectives. The consequence
of the rule can be obrained in two steps:

Step 5: Combine all the consequents to get an outpur distribution.

| Step & Finally, a defuzzified output distribution is obtained.

1. by computing the rule stength completely using che fuzzified inpucs from the fuzzy combination;
2. by clipping the cutput membership function ar the rule strength.
The ourpus of all the fuzzy rules are combined ro obtain one fuzzy outpuc distribucion. From FIS, it is

desired to gec only one crisp outpur. This crisp output may be obrained from defuzzification process, The
common techniques of defuzzification used are center of mass and mean of maximum.
! AT of T

Ak
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Figure 12-2 A pwo-input, vwo-rule Mamdani FIS with a fuzzy inpur.

Consider 2 two-input Marndani FIS with two rules. The model fuzzifies the two inpurs by finding the
intersection of two crisp input values with ¢he input membership funcrion. The minimum operation is
used to compute the fuzzy input “and” for combining the two fuzzified inputs to obeain a rule strength.
The output membership function is clipped at the rule strength. Finally, the maximum operator is used

10 compure the fuzzy ourput “ar” for combining the outpur of the two rules. This process is illustrated in
Figure 12-2,

12.8.2.2 Takagi—Sugeno Fuzzy Mode! (TS Method)

Sugeno Ruzzy method was proposed by Takagi, Sugena and Kang in the year 1985. The format of the fuzzy
rule of a Sugeno fuzzy model is given by

IFxisAandyis BTHEN £ = f(x.5)

where AB are fuzzy sers in the antecedents and z = £ (x3) is a crisp function in the consequent. Gen-
erally, f (x,3) is a polynomial in the inpuc variables x and y. If f () is a first-order polynomial, we ger
fis-order Sugeno fuzzy model. IF fis a constant, we ger zero-order Sugenmaimorder
Sugeno fuzzy model is functionally equivalent to a radial basis fuiiction network under certain minor

constratns.
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Z=ax+by+c
Figure 12-3 Sugeno rule.
The main steps of the fuzzy inference process namely,
1. fuzzifying the inpurs;
2. applying the fuzzy operator

arc exactly the same. The main difference between Mamdanis and Sugeno’s mechods is that Sugeno output
membership functions are either linear or constant,

The rule formar of Sugeno form is given by i
“If3 =xand 5 = ythen output is 2 = ax + by + &

For a Sugeno Wﬂmﬂﬂgﬂmm. The operation of a Sugeno rule is as shown
in Figure 12-3.

Sugeno’s method can act as an ipterpolating supervisor_for multiple linear conrollers, which are to be
applied, because of the linear dependence of each rule on the input variables of a system. A Sugeno model
is suited for smooth interpolation of linear gains that would be applied across the inpur space and for
modeling nonlinear systems by interpolating berween mulriple linear models. The Sugeno system uses adaprive

techniques for constructing fuzzy models. The adaptive téchniques are used to customize the membership
functions.

12.8.2.3 Comparison between Mamdanj and Sugeno Method %\

The main difference between Mamdani and Sugeno methods lies in thgout urMership Ffunctions. The
Sugeno output membership functions are cither linear or constant. The difference also Jies in the consequents
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of their fuz s and as a result theic

et of fuzzy rules must be employed TH Sugeno method for approximating periodic or highly oscillatory
Functions. The configuration of Sugeno fuzzy systems can be reduced and it becomes smaller than thar of
Mamdani fuzzy systems if nontriangular or nontrapezoidal fuzzy input sets are used. Sugeno conerollers have
more adjustable paramerers in the rule consequent and the number of parameters grows exponentially with the
increase of the number of inpuc variables. There exist several mathematical results for Sugeno fuzzy controllers
than for Mamdani controllers. Formatior: of Mamdani FIST more easier than Sugeno FIS.
Fhé main adi?aﬂtﬁges?mamdani method are:

i

1. it has widespread acceptance;
2. itis well-suitable for human inpug;
3. itls intuirive.
On the other hand, the advantages of Sugeno method include:
. Itis computarionally efficient.

. It is compact and works well with linear rechnique, optimization technique and adaptive technique.
. Itis best suired for mathemarical analysis.

sbw 3 R

. Tt has 2 guaranteed continuiry of the output surface

S — e P s 15 A g

The most important modeling tool based on fuzzy set theory is FIS, and is widely used in various
applications.

L12.9 Overview of Fuzzy Expert System

An expert fuzzy system is 2 concep that is much like an expert for a parricular problem in humans. There are
rwo major funcrions of expert systems:
1. Itis expected 1o deal with uncertain and incomplere information.

2. It possess user-interaction function, which contains an explanarion of systems intenrions and desires as
well as decisions during and after the application has been solved.

The basic block diagram of an expert system is shown in Figure 12-4. From Figure 12-4, it can be noticed
that an expert system conrains three major blocks:

L. Knowiedge base that contains the knowledge specific to the domain of applicasion.

Knowtedge
base \
User User
. [——
interface
Inferance /
enging

Figure 12-4 Block diagram of an experc system.
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2. Inference engine that uses the knowledge in the knowledpe base for performing suitable reasoning for user’s
queries. -

3. Uer.interface that provides a smooth communication beeween the user and the system.

This also helps the user for understanding entire problem-solving method carried ouc by the inference engine.
An example of an expert system is MYCIN, which introduces the concept of certainty factors for dealing
uncercainty. MYCIN rulies have a strength, called as certainty facror, This factor lies in the unit incerval [0, 1].
When a rule is fired, its prestate condition is evaluated and -2 firing strength, a value between ~1 and +1, is
assaciated with the prestate condition. For the firing strengeh higher than the previously mentioned chreshold
interval, the consequent of the rule is derermined and the conclusion is made with a certainty. The obrained
conclusion and its certainey are the evidence provided by chis fired rule for the hypotheses given by user. The
hypatheses evidence from different rules is combined into belief measures and dishelief measures which are
values lying in the incerval [0, 1] and [—1, 0], respectively. If belief measure lies above a threshold value, a
hypothesis is believed, and if disbelief measure is below a threshold value, a hypothesis is disbelieved. The
use of fuzzy logic in traditional expert systems leads to fuzzy expert systems. Fuazy expert systems are those
systems that incorporate fuzzy sets and/or fuzzy logic for their reasoning process and knowledge represenration
scheme. The fuzzy sets and possibility theory applications o rule-based expert system are mainly developed
along the following line.

1. Generalization of certainty faccor in MYCIN: enlarging the operations to be used for combining the
uncercainty coefficients or by allowing the use of linguistic certainty values along with conventional
numerical cerrainty values,

2. Merhod of handling of vague predicares in the expression of experr rules or available information.
Fuzzy expert systems effectively handle both uncertainty and vagueness (imprecision). Examples of fuzzy
expert system include Z-IT, MILORD, etc. Researchers are in the process of developing a wide variery of fuzzy

expert systems. One such system is SPERIL, which is a special fuzzy expert system for analyzing earthquake
damages.

I 12,10 Summary

In fuzzy logic, the linguistic variable “truth” plays an important role. The various forms of fuzzy propositions
and fuzzy [F-THEN rules char are a useful paradigm for the implementation of human knowledge are
discussed. This provides a means for sharing, communicating and cransfersing the human knowledge w0
systems and processes. Fuzzy rules are presented in canonical form. The decomposition of fuzzy compound
rules and aggregation of fuzzy rules were also discussed, as also four methods of approximare reasoning thereby
creating fuzzy inference rules. The Mamdani and Sugeno FIS give 2 base for building fuzzy rule base sysrem.
The comparisons between the two methods are also included. Finally, we provide an overview of fuzzy expert
systemn, which deals with cerrainty factor.

I 12.11 Review Questions

1. Define linguistic variable. 3. What is meant by linguistic hedges?
2. State the importance of truth values and truth

tables.

4. What are the characteristics of a linguistic
variable?

12.12 Exercise Problems
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. List the basic logic operations performed over

the propositions.

6. Write short note on fuzzy propositions.

10.

I1.

12.
13.

14.

. How is a canonical rule formed based on the

human knowledge?

. Mention the general forms thar exist for a

linguistic variable.

- In what ways is cthe decomposiion of compound

linguistic rules established?

Discuss the methods of aggregation of fuzzy

rules.

Why is approximate reasoning important in

fuzzy logic?
Whar are four modes of approximate reasoning?

Explain in detail: caregorical reasoning and qual-
irative reasoning,

How is a fuzzy syllogism expressed and list the
important fuzzy syllogism used generally?

l 12.12 Exercise Problems

15.

16.
17.

18.
19.

20.
21

22
23,

24,

25.

Stre the inference rules of dispositional
reasoning. '

What is fuzzy inference system (FIS)?

With suitable block diagram, explain the work-
ing principle of an FIS.

List the methods of FIS.

Describe in derail of formation of inference rules
in a Mamdani FIS.

Discuss in brief on Takagi-Sugeno FIS.

State the advaneges and disadvanwges of
Mamdani FIS.

List the applicacion of Sugeno FIS.

Differentiate berween Mamdani FIS and Sugeno
FiS.

Define expert system. How is a fuzzy expert
system formed? State its imporrance.

Menrion a few fuzzy expert systems used in
CULTENE SCENATio.

L.

The membership funcrions for the linguistic
variables “call" and “shart” are given below.

a0 62 03 07 09 10
ral] = D + —+ — —_— _
[ s "7ttt
« » 0.3 0 1 0.5 [4]
shor" =4 -2 4 — 4 — 22 Y
[0 3% et 120]

Develop membership functions for the following
linguistic phrases:

(@) Very wll;

(b} Fairly rall;

(c) Not very shorr.

- Develop an FIS editor for a liquid leve] con-

Froller model (Mamdani and Sugeno - fuezy
inference models)

- Develop an FIS (Mamdani) model for control-

ling temperature in an air conditioner.

. With a suitable case study, demonstrate the

canonical rule formation, aggregation of the
fuzzy rules and decompasition of compound
rules formed.

- Give an example for the following propositional

priniciples:

(a) Fuzzy truch qualification

(b) Fuzzy possibility qualification
{c) Fuzzy probability qualificarion

(d) Fuzzy usuality qualification

. Provide examples for fuzzy propositions includ-

ing fuzzy predicares and fuzzy quantifiers.

. Give an example for each of the following

approximate reasoning rules:

{a} Compositional rule of inference
{b) Conjunction rule of inference

(c) Disjunction rule of inference
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- 8. Change the following symbolic rule o canonical
form: ’ .
§f Ly is Ry (THEN M; AND M; (IF Ly is B
(THEN M; (IF L; is Ry THEN Ma)))

9. Develop a Sugeno FIS for a satellire tracking
control system.

10, Wich suitable application case sudy, ana-
lyze MILORD fuzzy expert system. Com-
pare its performance with conventional fuzzy
system.

SmnrrEer wrEno v
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Fuzzy Decision Making .

Learning Dbjectives

* Discusses on variable paradigms available for + How evaluation of alternacives are carried out
fuzzy decision making, using the atuributes of the object.
* The importance of multiobjective and mulxi- * An overview on fuzzy Bayesian decision

person decision making. making,

l13.1 Introduction

Decision making is a very important social, economical and scientific endeavor. Decisic -making activities
are the steps taken to choose a suirable alternative from thase thar are needed for realizing a certain goal. The
decision-making process involves three steps:

1. determining the ser of alternatives;
2. evaluating aleernatives;

3. comparison between alternadives.

In any decision process, the information abour the outcome is considered and a suitable path has to be
chosen from rwo or more alrernatives for subsequent action; when good decisions are made, good output
is expected, If a decision is made under certainty, then the ouccome for each process can be determined
precisely; one should note chat whenever decision is made, it is under risk conditon. The prime domain
for fuzzy decision making is the existing uncertaincy. There are several situations under the decision-making
process. There may be situations when even though decisions made are good, the outpur may be adverse
or vice-versa. When good decisions are made continuously for a longer period, advantageous situations may
prevail. )

When there are several objectives to be realized in making a decision, the decision making is called
mulriobjective decision making. The knowledge of experts becomes very essential when decision making is very
tedious. The informarion may be available for the following;: the possible cutcomes, change in conditions wich
respect to time abour value of new informarion, when the priority for each action is typically ambiguous, vague
and otherwise fuzzy. Obraining an evaluation structure for selecting alternatives and establishing selection
stndards are very important stages. The evaluation of alernaives may be carried out based on several atcributes
of the object; such a decision making is called multiattribure decision making,. In this chaprer we would discuss
the various paradigms available for decision making.
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l 132 Individual Decision Making
A decision-making model in this situation is characterized by the following:

1. set of possible actions;
2. setof goals Gi{i € X,);
3. sec of constraines Gi{j € Xn).

The goals and constraints are expressed in terms of fizzy sets. These fuzzy sets in individual decision
making are not defined directly on the set of actions, but by means of other sets thar characterize relevant
stares of nature. Consider a set A. Then the goal and constraine for this ser are given by

Gi(a) = Composition] G;{a)] = G}(G,-(:z)) with G}
Gla) = Composition[ ()] = C{Ci{a)) with C}

for 2 € A. The fuzzy decision in this case is given by

Fp = min | inf Gi{a), inf Cfa)
iEXy je&m

I 13.3 Multiperson Decision Making

Decision making in chis case includes several persons. The expert knowledge from various persons is urilized
to make decisions. The difference berween the individual decision making and multiperson decision making
is: The goals of individual decision makers differ, i.e., each places a different ordering arrangement. On the
other hand, in multiperson decision making, the decision makers have access to different information upon
which o base their decision.

Here, cach member of a group of “x” individual decision makers has a preference ordering POy, £ € x,,
which totally or partially orders a set X . A social choice (sc) function has to be found, given the individual
preference ordering, The fuzzy relavion for a social choice preference function is given by

SC: XxX—[0,1]

which has a membership of SC{X;, X;), which indicates the preference of alternarive X; over X;. Let

Number of persons prefecring X; 10 X; = N(X,, X))
Total number of decision makers = n

Then,

N(x %)

SClxinxj) =
The multiperson decision making is also given by

1 if x; > % for some &
Q0 otherwise

SClxix) =

I}
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I 13.4 Multiobjective Decision Making

In making a decision when there are several objectives-to be realized, then the decision making is called
multiobjective decision making. Many decision processes may be based on single objectives such as cost
minimization, time consumption, profit maximizarion and so on. However, ifall the above-mentioned objec-
tives are to be considered for a decision-making process, then it becomes multiobjective decision making. The
main issues in multiobjective decision making are:

1. o acquire proper information related to the satisfacrion of the objectives by various alternarives;

2. to weigh the relative imporrance of each objective.

Mulriobjective decision making involves selection of one alternative 4; from universe of alternatives 4 given a
collection of objectives (o} that are important for a decision maler. It is necessary to evaluare how best each
alternative satisfies each objective, The main aim here is to combine the weighted objectives into an overall
decision function in some way. The decision function represents a mapping of alternatives in 4 to an ordinal

set of ranks. In order 1o make suirable decisions, the process needs to weigh the relative importance of each
abjective.

Let us define a universe of n alternatives as
A={ay,a3,...,4,...,a,}

and a ser of “nr” objectives as

O={o1,01,....0,....00)

where o; indicates the ith objective. The degree of membership of aliernative # in #;, denoted wo;{a), is the
degree to which alternative a satisfies the criteria mentioned for this objective. A decision funceion is formed,
which simultaneously sarisfies all the decision objectives. As a result, the decision function, DF is given by
the intersection of all the ser of objectives, Le.,

DF=o1NeanN--No;N-- Noy,
The grade of membership that DF has for each alternarive « is defined by
mpr{a) = wminfuoy, (), ioala), ..., poda), . .., uoe)]

The optimal decision, &*, will then be the alternative that satisfies the equation ‘

mpr(a*) = max e[ e (4)]

Ler (P} be the sec of preferences — linear and ordinal. The element of the preference ser will possess linguistic

values or will have values in the incerval [0,1], or in the intervals [—1,1],[1, 10], etc. The preferences are
a}tltnched 0 each of the objectives in order to notify the decision maker about the influence thar each objective
should possess on the chosen alternaive. The preference set P contains the parameters 8;, i = | 1o m, i.c.,

[P} = [b[.bz,...,bi,...,bm’
Thus for each object, we have a measure as to say how important it is to the decision maker for 2 given

dec;‘sion. The dct.:ision function is then defined by decision measure (DM), which involves objectives and
preterences. The intersection of m-tuples of DM gives the decision function:

DM = DM(g;, b} - DM(objectives, preferences)
) DF = DM(G], bl) A DM (02, b}_) A--- A DM (0;, bi) A ADM (ﬂrm bm)
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The DM fora pa:t'icular alrernarive, a;, is given by
DMoi(a), b) = b; — oi{a) = b; v oila)

where & = 1 — b; and &; — o; indicaces a distince relationship between a preference and its corresponding
objective. Neverthless, several objectives can have the same preferences weighting in a cardinal sense; however,
they will be distinct in an ordinal sense, even though the equality sicuation & = & for { # j can exist for

w_n

certain objectives, A joint intersection of “m"” decision measures will give an appropriate decision model:

oF =[] Gua)

=1
The optimal solution, 2*, is the alternative thar maximizes the decision function. When we define
Ci=5Uos
te, (@) = max{pg(a), podal)

the optimal solution in membership form is given by

tosld®) = Teaji[min{#q @ iglad..., k@), . .o e, (@)

When ith objective becomes very important in the final decision, ; increases, so &; tends to decrease. As a resule
C;{a} decreases, thereby increasing the likelthood thar C;(a) — a;{a), whete 0i{(«) at present will be the value of
the decision function, is DF, denoting alternacive 4. When this process is repeated for several alternatives «,
the largest value #;{a) for other alternatives will automarically result in the choice of the oprimum solurtion,
«*. The multiobjective decision-making process works in this manner.

I 13.5 Multiattribute Decision Making

When there are several objectives to be realized in making a decision, then the decision-making process is
known as mulriobjective decision making. On the other hand, the evaluation of alternatives can be carried
out based on several actributes of the object, in which case the decision-making process is called mulciaceribure
decision making, The atcributes may be classified into numerical daca, linguistic dara and qualitative darz. In
case of multiactribute measurement and evaluation of alternarives, which have the addition of probabilistic
noise, probabilistic statistical methods are used o identify the structures. The problem of decision-making
structure in multiattribures deals with determinarton of an evaluation structure for the multiactzibure decision
making from the available multiattribuce dara Xj{7 = 1 to ) shown in Table 13-1 and alsernative evaluations
¥. It can also be said thar the multiattribute evaluarion is carried out on the basis of the linear equation

Y=y + X+ +AXi+ -+ AKX

and this is the determination of the weight of each attribute. In Table 13-1, x;; s the value for atribute £ of
alternative j. The term y; is the evaluation of alternativej. Forj = 1 to #2and i = 1 to r, each value is obrained
here as a numerical value or a lifiguistic expression based on their respective problems.

It is necessary o determine the coefficient 4; for linear multiattribute evaluation which best estimates the
evaluation of the alternarive for the given object. A few vector expressions are given below:

Y= le)’!:---:}_’fn---lyn]
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Table 13-1  Multiarcribute dara evaluation

Alternative number Alternative evaluation Evaluation of alternative attributes

J ¥y ‘ . K] oo XjuoXp
1 H - X{) oo Xl .a. 50
2 n X2 X2 X0
i .
7 ¥ KhjooXjjen Xy
n ¥Yn Xlps--Xigo . Xrm

L3 1 I )

X=
Xty 0t Xig T Xm

A= a2, .., 4]

Triangular fuzzy numbers are used to explain possibilistic regression analysis. The triangular fuzzy number
Alis given by

- la — x|
gl = f

0, otherwise

Ca~f<x<atf

1‘? is a fuzzy number with center # and width £ In this case it can be written as A = (¢, /). The possibilistic
linear muldiarrribute evaluation equarion is expressed by

Y=AXi+ A%+ +AX + - + Ay

Using extension principle, its membership function can be calculated as

ly— xTa|.

Y R
x
prlyy=q
I; x=0,y=0
0: x=0,y%0

Here, x = (2,1, ... yXha = (ay,42,...,a5) and f= (4, ,..../u) and £l gives a transposition of vector
x. Also note that here, y and A; are fuzzy numbers. Additionally, for y such that ¢7 1< |y — xTal, £ () = 0.
For determining this kind of possibilistic evaluation function, a measure for minimizing the possibilicy widch

S=f+A+--+f++h
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is used. To determine the possibilistic evaluation, the following linear equation has o be solved:
mind = T|i:1(ﬁ+---+ﬁ+---+ﬁ.)
Here
=B Mol + g x5 2 3
(1-- k)Zﬁlx,-jl — Zaj-x;j >—y, i=ltwn
where £ = [0,1] indicares the congruence of the possibilistic regression model. Thus, for evaluation of

multiatrribute decision making, possibilistic regression analysis is effective.

I 13.6 Fuzzy Bayesian Decision Making

In classical Bayesian decision-making method, the future states of the nature are characterized as probabilicy
events. Conventionally, the probabilities sum to unity. The problem with the fuzzy Bayesian scheme is that
the events are ambiguous.

Consider the formation of probabilistic decision analysis. Let the set of possible states of narure be given
by & = {s1.52,-.., ). Then the vector representation of probabiliries of these states is

P= Pk M), Plea)) where Y Plsy =1

=1
These probabilities are called “prior probabilities.” The decision maker can choose from “r:” alrernarives,
A=la,an. . 8. .., a4)

For a given alternative 4, a utility value p1;7 is assigned, if the furure scace of nature becomes state 5;. The
decision maker determines these utility values. These values express the value or cost for each alcernarive state
pair, i.¢., for each 4; — 5; combination. The expected utilicy with the jih alternarive is given by

EX() = 3 s

=1
The common decision criterion is the maximum expected utility among all the alternarives, i.c.,

EX(«*) = llelx EX(x)

This leads to the selection of alternarives 2 if #* = EX (). Let the informarion regarding the true states of
nature § be from # experiments and let it be given by a data vector X = {x),x3, ..., x,}. This information is
used in Bayesian approach for updating the prior probabilities (s;). Based on the new information, conditional
probabilities are formed, where che probability of each piece of data is determined according to where the
true stare of nature 5; is known; these probabilities are the presumptions of the furure.

The conditional probabilicies are also known as likelihood values, given by P(x,|5;). This conditional
probabilities are used as weights over the previous information, i.e., prior probabilities P{s;), 1o determine
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updated probabilities called posterior probabilities, P(x;, x,). Bayes rule is used to determine the posterior
probabilities:

_ Plxalsi)
Pelsn) = 23

P(x,) is marginal probability of data (x,) and is found using the total probability theorem,

PGs))

Plgt = Z Plxg|s) Plsi)

i=1

For a given data xy, the expected utility for the alternarive is found from the posterior probabilities:

EX (i) = 3 wiPlsilon)

=1
and the maximum expected utility for a given data x; is given by

EX (".lxu) = mjax EX (”jlxn}

For derermining the uncondirional maximum expected uility, it is necessary to weigh each of the
n conditional compacted withies of the above equation by the respecrive marginal probabilities for each
Xy L., Play):

E{UD) =3 EX (U )Pl

n=\

Ar this stage, 2 notion called value of information, »{x}, is introduced. There exist certain uncertainey in
the new information X = [x(,x2,...,x,} called as imperfect informadon. This value of information V(X)
is found by the difference berween the maximum expecred urility withour any new information and the
maximum expected utility with the new information, i.e.,

WX) = EX (UY) — EX(UT)

There exist perfect informarion as well, For information to be perfecr, the conditional probabiliies are free
of dissonance. The perfect information is represented by the posterior probabilities of 0 or 1, ie.,

PiSiben) = [ 0

The perfect information is denoted by x,. For this perfect information, the maximum expected uriliry
becomes

EX(U%) = ) EX () lx) ()

n=1

and the value of perfect information becomes

Vix,) = EX (u:P) — EX (&™)
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Let the new information X = {x1,,...,%:...,%,} be a universe of discourse in the units appropriate
for the new information. Then the corresponding events {fuzzy events £ on this informarion are defined. The

membership for the fuzzy event may be given by pig (x,),x = 1 to m. Let us define the idea of a “probabilicy
of a fuzzy event,” i.e., the probability of £, as

PE) =) pglm)Plx)

=1

Tf the fuzzy event, for the above equarion is crisp, i.e. £ = E, then the probability reduces to

PE)=)  Px)
xeE
_fjL weM
te= 0, otherwise

This equarion describes the probability of a crisp event as the sum of the marginal probabilities of hose
dara poinrs, x,, which are defined to be in the event, E. The pasterior probability of S;, given fuzzy information
Lis

i P(x,.ls,-)p. E(xr)l’(:,-) -
P(S,l '.-\E.:) = =l — H'.EISI)HIJ)

ME) T OME)

where

N

PEIS) =) PlelS)nglx)

=1

Defining the collection of all the fuzzy events describing fuzzy information asan orthogonal fuzzy information
system, we have ¢ = {E1, B, ..., En).

The orthogonal means the sum of the membership values for each frzy event E;, for every data point in
the universe of information, x, equals unigy, Le.,

Z,{L&(x,)= lforallx, e X

=1

When the fuzzy events on the new information universe are orthogonal, we extend the Bayesian approach
for considering fuzzy information. The fuzzy equivalents for the posterior probability, maximum expected
urility and the marginal probability are given by, for a fuzzy event E,

Ew E) =Y wiP(Si B
=1

E=(E) = ma E(uwl £

3
Blag) =) E’| EVPE)

=l

A o L e e

13.9 Exercise Problems a7

The value of fuzzy information can be determined as

o) = Ely) ~ Ela)

I 13.7 Summary

In this chapter, various fuzzy decision-making methods are discussed. One of the decision-making method —
fuzzy Bayesian decision making — is given td a2ccept both fuzzy and random uncertainty. Based on the
several objectives to be realized in making a decision, muld.bjective decision making was included. The
evaluation of alternatives based on several arributes of the object can be carried our; this process called
muldiactzibute decision making is discussed. Also based on the decision of persons involved, individual
decision making and multiperson decision making are also dealt with. The main processes involved in deci-
sion making are the determinacion of ser of alrernatives, evaluaring alternatives and comparison between
alternatives. In many decision-making situations, the goals, constraints and consequences of the defined
alternatives are known imprecisely, which is due to ambiguity and vagueness. Methods for addressing this
form of imprecision are important for dealing with many of the uncertainties as we deal within human
systems.

l1 3.8 Review Questions

1. Whar are the steps involved in decision-making 6. Srate the decision function for a multiobjecrive
process? decision making.

2. Write shore note on individual decisien making. 7. Explain multiattribute decision making in detail.
3. Differentiate becween individual decision maker ~ 8. Compare and contrast multiobjective decision
and multiperson decision maker. making and multiattribute decision making,

4. Discuss multiperson decision making in derail. 9. Discuss fuzzy Bayesian decision makingin derail.
5. What is meant by multiobjective decision 10. What are the advantages of fuzzy Bayestan

making? decision-making process?

I 13.9 Exercise Problems

1. Evaluare three different approaches for conrrolling
condicions of 2 metal smelting cell. The control
approaches are:

g2 = over all efficiency
g3 = error reduction
@ = FT, fast wning The control approaches are rated as
ay = MT, medium tuning

a3 = 8T, slow tuning 035 07 02

2

S=F PMT ST

_fo1, 04 08
Q=Y T MT ST

There ate several objectives to consider which are
given below:

£1 = less power consumption
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_ |95, 065 03
B=1FT T MT ST

The preferences are given by &; = 0.6, = 0.5
and b3 = 0.4. Whar is the best choice of control?

2. With a suitable decision-making algorithm, help
a warer authority to decide whether or not w
build dive for preventing flooding in case of
excess rainfall. Assume necessary parameters and
membership functions.

Fuzzy Logic Gontrol SYstems

— Learning Objectives

* Need for a fuzzy logic controller. * A brief note on fuzzy logic controller model.

* How the control system design has to be * Application of fuzzy logic concroller o air-
carried our? craft landing control problem.

* Thebasic architecrure and operation involved
in a fuzzy logic controller system.

l 14.1 Introduction

Fuzzy logic control (FLC) is the most active research area in the application of fuzzy ser theory, fuzzy reasoning
and fuzzy logic. The application of FLC extends from industrial process control to biomedical instrumentation
and securities. Compared to conventional control rechniques, FLC hasbeen besc uilized in complex ill-defined

problems, which can be controlled by efficient human operator withour knowiedge of their underlying
dynamics.

A conrrol system is an arrangement of physical components designed to alter another physical system so
that chis system exhibits certain desired characteristics. There exist two types of control systems: open-loop
and closed-loop control systems. In open-loop control systems, the inpur control action is independent of the
physical system ourpur. On the other hand, in closed-loop control system, the input control action depends
on the physical syscem ourput. Closed-loop control systems are also known as feedbactk contral systems. The first
step toward controlling any physical variable is to measure it. A sensor measures the controlled signal. A plans
is ehe physical syscem under control. In a closed-loop control system, forcing signals of the system — called
inpurs - are determined by the output responses of the system. The basic control problem is given as follows:
The outpur of the physical system under control is adjusted by the help of error signal. The difference berween
the actual response (calculated) of the plant and the desired response gives the error signal. For obraining
satisfacsory responses and characreristics for the closed-loop control system, an addirional system, called as
compensator ot controller, can be added to the loop. The basic block diagram of closed-loop control system is
shown in Figure 14-1,

The basic cancept behind FLC is to urilize the expert knowledge and experience of a human operator for
designing a concroller for controlling an application process whose input—output relationship is given by a
collection of fuzzy control rules using linguistic variables instead of a complicated dynamic model. The fuzzy
control rules are basically IF-THEN rules. The linguistic variables, fuzzy conrrol rules and fuzzy appropriate
reasoning are best utilized for designing the controller.
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system - compensator Rasponse
| R of system
Sensor

Flgure 14-1 Block diagram of a closed-loop control system.

In this chapter we shall introduce the basic structure and design methodologies of an FLC model. FLC
is swrongly based on the concepts of fuzzy sets, fuzzy relations, fuzzy membership functions, defuzzification,
fuzzy rule-based systems and approximare reasoning discussed in the previous chapters.

I 14.2 Control System Design

Designing a controller for a complex physical system involves the following steps:

1. Decomposing the large-scale system into a collection of various subsystems.

2. Varying the plant dynamics slowly and lineatizing the nonlinear plant dynamics about a set of operating
points.

3. Organizing a set of state variables, control variables or output fearures for the system under consideration.

4. Designing simple B, PD, PID controllers for che subsystems. Optimal controllers can also be designed.

Apart from the first four steps, there may be uncertainties accurring due to external environmental condi-
tions. The design of che controller should be made as close as possible to the optimal controller design based
on the expert knowledge of the control engineer. This may be done by various numerical observations of the
input—outpur relationship in the form of linguistic, intuitive and other kinds of related informarion related
to the dynamics of plant and external environment.

Finally, a supervisory control system, either manual operator ot auromatic, forms an excra feedback control
loop to rune and adjust the parameters of the controller, for compensating the variational effects caused by
nonlinear and unmodeled dynamics.

In comparison with a conventional control system design, an FLC system design should have the following
assumptions made, in case it is selecred. The plant under,consideration should be observable and controllable.
A wide range of knowledge comprising a set of expert linguistic rules, basic engineering common sense, a set
of dara for input/outpur or a controller analytic model, which can be fuzzified and from which che fuzzy rule
base can be formed, should exist.

Also, for the problem under consideration, a solution should exist and it should be such that the control
engineer is working for 2 “good” solution and nor especially looking for an optimum solution. The controller
in this case should be designed to the best of our ability and within an accepiable range of precision. It
should be noted that the problems of stability 2nd optimality are ongoing problems in fuzzy controller
design.
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"In designing a fuzzy logic controller, the process of forming fuzzy rules plays a vital role. There are four
structures of fuzzy praduction rule system (Weiss and Dénnel, 1979) which are as follows:

1. A set of rudes that represents the policies and heiristic strategies of the expert decision maker.
2. A set of input data that are assessed immediately prior to the actual decision.

3. A method for evaluating any proposed action in terms of its conformity to the expressed rules when
there is available data.

4. A method for enerating promising actions and determining when to stop searching for berter ones.

All the necessary parameters used in fuzzy logic controlier are defined by membership functions. The rules
are evaluated using techniques such as approximate reasoning or interpolarive reasoning, These four strucmures
of fuzzy rules help in obmining the control surface that relates the control action to the measured stare or
output variable. The control surface can then be sampled down to a finite number of points and based on
this information, a look-up table may be constructed. The look-up table comprises the information abour the
control sutface which can be downioaded ifro a read-only memory chip. This chip would constinuce a fixed
controller for the plant.

I 14.3 Architecture and Operation of FLC System

The basic architecture of a fuzzy logic controiler is shown in Figure 14-2. The principal compenents of an
FLC system are: a fuzzifier, 2 fuzzy rule base, a fuzzy knowledge base, an inference engine and a defuzzifier.
It also includes parameters for normalization. When the output from the defuzzifier is nor a control action
for a plant, then the system is a fuzzy logic decision system. The fuzzifier present converts the crisp quantities
into fuzzy quantities. The fuzzy rule base stotes the knowledge about the operation of the process of domain
expertise. The fuzzy knowledge base stores the knowledge about all the inpur—output fuzzy relationships. It
includes the membership funcrions defining the input variables to the fuzzy rule base and the outpuc variables
to the plant under conrrol. The inference engine is the kernel of an FLC system, and it possess the capability
to simulate human decisions by performing approximare reasoning to achieve a desired conrrol strategy. The

defuzzifier converrs the furzy quantities inco crisp quantities from an inferred fuzzy conrrel action by the
inference engine.

Fuzzy
Fuzzy
knowledge
hase rule base

inputs | WNormalization | x, kix K v xp Outputs
~x | input scafing L5 Fuzsifier L) inéirei::a £ Defuzzifier Plant or
factors g slates
Xz
Normalization
oufput scating |« Sensors
factors

Figure 14-2 Basic archirecrure of an FLC system.
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The various steps involved in designing a fuzzy logic controller are as follows:

Step 1: Locate the input, outpuc and state variables of the plant under consideration.

Step 2: Split the complere universe of discourse spanned by each variable into a number of fuzzy subsecs,
assigning each with a linguistic label. The subsets include all the elements in the universe.

Step 3: Obtain the membership function for each fuzzy subset.

Step 4: Assign the fuzzy relationships between the inputs or states of fuzzy subsets on one side and the
outpucs of fuzzy subsets on other side, thereby forming the rule base.

Step 5: Choose appropriate scaling factors for che inpuc and output variables for normalizing the variables
berween [0, 1] and [—1, 1] interval.

Step 6: Carry out the fuzzification process.
Step 7: Identify the output contributed from each rule using fuzzy approximare reasoning,
Step 8: Combine the fuzzy outputs obtained from each rule.
‘ Step 9: Finally, apply defuzzification o form a crisp outpuc. J

The above steps are performed and execured for a simple FLC system. The following design elements are
adopred for designing a general FLC system:

1. Fuzzificarion strategies and the interpretation of a fuzzifier.

2. Fuzzy knowledge base:

normalization of the parameters involved;

partitioning of input and outpur spaces;

selection of membership functions of a primary fuzzy set.
3. Fuzzy rule base:

selection of input and outpur variables;

source from which fuzzy control rules are 1o be derived;

types of fuzzy conrrol rules;

complereness of fuzzy control rules.

4. Decision-making logic:
proper definition of fuzzy implication;
interprecation of connecrive “and”;
interpretation of connective “or™;
inference engine.

5. Defuzzificarion scracegies and the interpretation of a defuzzifier.

When all the above five design parameters are fixed, the FLC system is simple. Based on all chis, the features
of a simple FLC system are as follows:

fixed and uniform input and output scaling factors for normalization;

fixed and noninteracrive rules; -

fixed membership functions;

only limived number of rules, which increases exponentially with the number of input variables;

L femieo .Dm
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fixed expertise knowledge;
no hierarchical rule structure and low-level control.

I 144 FLC System Models

There are two €iferent forms of FLC systemn tmodels:
L. -fuzzy rule-based structures;

2. fuzzy relational equarions.

Fuzzy rule-based models have already been discussed in 2 previous chapter. The fuzzy relational equation
describing a commonly used FL.C model can be of the following forms:

The basic fuzzy model for a firsc-order discrete system with inpur @, which is described in scate-space
representation, is of the form

M1 =xpongo R fork=1,2,...,n

where o is the composition and § is the fuzzy system transfer relation. Consider a discrete pth order system

with single input « represented in state-space form. The basic fuzzy model of such 2 system is given by (for
k=1twn)

Xpbp = XpOXfy| O OXpypy | Attfy,) 6 R
Yitp = Xitp

where R is the fuzzy system transfer relation and Fixp is the single ourpur of the system considered.
A second-order system with complete state feedback is given by the Ruzzy system equationas (for &k = 110 2)

np=xpoxg_10 R
TE= X

where y; is the outpur of the system. Consider a discrete pth order single-inpuc—single-outpur system with
complete state feedback. The fuzzy model of such a system has the following form:

Higp = JEOYer10---0Ypip 10 R fork=1lton

The stability of a fuzzy system can be tested by Lyapunov's stability cheorem.

I 14.5 Application of FLC Systems

FLC systems find a wide range of application in various industrial and commercial products and systems,
In several applications — related to nontinear, time-varying, ill-defined systems and also complex systems —

FLC. systems have proved to be very efficient in comparison with other conventional control systems. The
applications of FLC systems include:

1. rraffic control;
2. steam enging;
3. aircraft flight control,
4. missile control;
5

- adaptive control;
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. liquid-level control;
. helicopter model;

. -automobile speed controller;

hY-J- - B I -

. braking system controller;

10. process conerol (includes cement kiln conerol);
11. robotic control;

12. elevator {auto lift) concrol;

13. automatic funing control;

14. cooling plant conerol;

15. water treatment;

16. boiler control;

17. nuclear reactor control;

18. power systems control;

19. air conditioner control {temperature controller);
20. biological processes;

21. knowledge based system;

22. faulc detection control unit;

23. fuzzy hardware implementation and fuzzy computers.

Amidstall these practical applications, the best performance was noticed in cement kiln control system. FLC
system has also been successfully implemented to automatic tuning operations and conrainer crane system. The
application of an FLC system 1o houscheld purposes include: washing machines, air conditioners, microwave
ovens, cameras, television, palmtop compucers and many others. The companies that manufacture fuzzy
logic technique based appliances as commercial products are Mitsubishi, Hitachi, Sony, Toshiba, Matsushira,
Canon, Sanyo and so on. In the next part of the section, as an illustration of fuzzy logic controller we discuss
the application of fuzzy logic in aircraft landing control problem in more detail.

Consider an aircraft landing approach (Figure 14-3). It is necessary to simulate the final descent approach.
When the aircraft lands onto the ground, the downward velocity is proportional to the square of the heighe.
Hence, at higher actitudes, a large downward velocity is desired. When the height scarcs decreasing, the desired
downward velocity goes on decreasing. As the height becomes negligibly small, the downward velocity goes
to zero. In chis manner, the flight descends from attitude promptly but touches the land very gently. The plot
for desired downward velocity vs. attitude is shown in Figure 14-4.

The variables urilized for performing this simulation are as follows:

1. height above ground, 4

2. vertical velocity of aircraft, v,

The outpur to be controlled is the force “f” When this force is applied to the aircraft, it will alrer the
aircrafts height “4" and velocity “#.” It is necessary to derive the differential equation for analyzing.

From Figure 14-5, the momentum “&” for a particle of mass “m” moving with a velocity “4” is given by
the product of mass and velocity, i.e. # = mv. When an external force “f” is applied in a time interval o
and the particle of mass “#” conrinues in the same direction with the same velocity “»”, then the change

in velocicy is given by A » = fA t/m. When A £ = 15 and m = 1.0, we get the change in velocity directly
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Figure 14-3 Aircraft landing problem.
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Figure 14-4  Ploc of desired downward velocity vs. height.
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Figure 14-5 Principle of mass and velocity (# = me).

Pproportional 1o the applied force. Based on this we obtain che following set of equations:
vy = "i+_ﬁ; }J;.H = ;),‘ 4 v;

.Where Yi+1 Is the new velocity; ; the eld velocity; £ the force; hi1) the new height; 4; the old height. To
implement an FLC model for this, the following steps should be adopted.
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Table 14-1  Membership values for height
Height (F) 0 100 200 300 400 500 600 700 800 900

Large (L) 0 0 0 0 0 0.2 0.4 0.6 0.8 1.0
Medium (M) 0 0 0.2 0.4 0.6 0.8 1 0.8 0.6 0.4
Small () i 0.8 0.6 0.4 0.2 0 0 0 0 0

1. Define the fuzzy membership functions for the state variables (height and velociry}.

2. Define the fuzzy membership funcrion for the ourput variable (force).

3. Form the fuzzy rule base system model.

4. Based on the fuzzy rules, form the fuzzy associative memory (FAM) table. The values in the FAM table

give the output (force),

5. Define the initial conditions and carry out simulation for one cycle. Several cycles of simuladon can be
carried out. Let the aircraft be started ac an altitude of 900 feer with a downward velocity of =20 frs™!.
The equations used for updation of state variables ate (for each cycle)

vipr =wi+f b=kt

The membership values for heighr are given in Table 14-1 and its triangular membership construction
is shown in Figure 14-6. The membership values for velocity are given in Table 14-2 and its uiangular
membership construction is shown in Figurel4-7. The membership values for control force are given in
Table 14-3 and its triangular membership construcrion is shown in Figure 14-8. The fuzzy rules are formed
as follows:

1. IF heighe is L. AND velocity is D, then conrol force is Z.
2, Ifheight is L AND velocity is DS, then conrrol force is DS.

In a similar manner, the ather rules are formed. There are three linguistic variables defined for height and

five linguistic variables defined for velocity; based on these 15 fuzzy rules are formed. The rules are scored in

FAM wable (Table 14-4). Here initial height, Ay = 900 f; initial velocity, oy = —20 fi s~1: conrrol force,
fo = to be computed. :

uth (M) L)
Medium Large
1.0 - _Small (S)

0.8
0.6
0.4

0.2 1

T T T T T T T T T T
0 100 200 300 400 500 600 700 8O0 900 1000
Height (ft}

Fitiure 14-6 Membership function of height (4).
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3a1
Table 14-2  Membership values for velocity
Vertical velocity (fi/s)
=30 =25 -20 -15 -0 -5 0 5 10 15 20 25 30
Up (U) © 0 0 0o "0 0 0 0 o0 05 1 1 3
Up small (US) 1] 0 0 0 0 0 0 05 1 0.5 0 0 0
Zero (Z) 0 0 0 0 0 05 1 05 0 0 0 0 0
Down small (DS) 0 0 0 0.5 1 05 0 0 0 0 0 0 0
Down (D) 1 1 1 0.5 0 0 0 0 0 0 0 1] 1]
! (DS) ra] (Us)
ﬂ(? 0 Daown (D) Downsmall  Zefo Up Small Up (U)
0.8 1
0.6
0.4 4
0.2
0 T T T T T T T T T T T -
-30 -25 20 -15 -10 -5 @ 5 110 15 20 25 3I0
v — Vertical velocity (it/s)
Figure 14-7 Membership function of velocicy.
Table 14-3 Membership values for control force
Qutput force (lbs)
=30 -25 20 —-15 -0 —5 ¢ 5 10 15 20 25 30
Up (U} 1] 0 0 0 0 0 0 0 0 0.5 1 I 0
Up small (US) 0 1] 0 0 0 0 0 05 | 0.5 0 4] 1]
Zero (7) 0 0 0 0 ¢ 05 1 05 0 o0 G 0 o0
Down small (DS) 0 0 0 05 1 05 0 0 ¢ 0 0 0 o
Down (D) 1 1 1 Q.5 0 4] 4 0 0 0 0 0 1]

Heighe 4 (900) fires L ac 1.0 and M ar 0.4; velocity # {~20) fires only D ar 1.0.

Height Yelocity Outpur

L(1.0) AND D(L0) = Z(L.0)
M(04) AND D(10) = US(0.4)

The defuzzification can be carried our and

the crisp quantity can be extracted. Figure 14-9 shows the

consequenss truncared and union of fuzzy consequent for cycle 1. The output is f; = 5.2 lbs (approximasely).
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Flgure 14-8 Membership value of conrrol force.

Table 14-4 FAM table

Height / Velocity D Ds Z US V
L Z D§ D D D
M Us Z DS D D
S U Us Z Ds DS
i 1
us
N o7 /\
10 0 HO e 0 A 20 >
1.0
DA e 04
. 7 % .
-10 0 b1 20
[, {Detuzzifier value)

Figure 14-9 Union of fuzzy.consequents for cycle 1.
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Based on this, the new values of the state variables and output for the next cycle are given by

by =hy 4w =900+(~20) =880 fi
v =w+fi=—20+52=—148 frs™'

These are used as the initial values for the next cycle. A number of cyeles are carried out until we get

a decent profile as shown in Figure 14-3. Generally, a fuzzy logic controller has only a single-layer-rule
firing,

L14.6 Summary

The basic architecrure and design aspects of fuzzy logic controller are introduced in this chapter. Also, an
applicadon to aircraft landing problem has been dealt with in decail.

The main key behind the fuzzy logic controller is the ser of fuzzy control rules, which describes the
input—outpur relationship of a controlled system. The two types of fuzzy contral rules used in the design of
fuzzy logic controllers are state evaluation and object evaluation. This chapter mainly focuses on the state
evaluation rules, because they find a wide application. The object evalwation fuzzy control rules predict the
present and future control actions; in addition the control objectives are evaluated. If these objectives are
satisfied, then the control action is applied to the process.

The concepts of stability, observability and controllability are well-established in modern controt theory.
Owing 0 the complexity of mathemarical analysis of fuzzy logic controllers, the notions of stability and
concepts of automatic control theory for fuzzy logic controllers are under research.

l 14.7 Review Questions

1. Srare the importance of a conrrol system. 8. Give the principle design element necessary for

2. What are the two types of control systems?

3. Differentiate berween open-loop and closed-
loop control systems.

4. List the various control system design aspects.

5. Mention the four structures of fuzzy production
rule system.

6. With a neat block diagram, explain the architec-
ture of a fuzzy logic contraller.

7. What are the steps involved in designing a fuzzy
logic controller?

14.8 Exercise Problems

the design of general fuzzy logic controller.
9. Mention the features of a simple FLC system.

10. Whar arc the special forms of FLC system
models?

11. List the various applications of fuzzy logic con-
troller,

12. With a suitable application case study explain a
fuzzy logic controller.

1. Write a computer program 1o implement a fuzzy
logic controller for a aircraft Janding problem deale
in Section 14.5.

2. Using fuzzy logic controller, simulate the camera
tracking control system.
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3. Design a fuzzy logic controller to simulate a

temperaruce conrol system for a room.

4. Implement a process contral application via a
fuzzy logic contraller.

5. Design and analyze a fizzy conuroller for an
inverted pendulum as shown in Figure 1.

g

ST

Figure 1 Inpur pattern.

Genetic Algorithm

=— Learning Objectives

* Gives an introduction 1o natural evolution. GA, parailel GA and independent sampling

* Lists the basic operators (selection, crassover, GA.
mutation) and other terminologies used in * The variants of parallel GA (fine-grained par-
Genetic Algorithms (GAs). allel GA and coarse-grained parallel GA) are
* Discusses the need for schemata approach. included.

Enhances the basic concepts involved in Hol-

Details the comparison of traditional algo- i
fand classifier system.

rithm with GA.

The various features and operational proper-

Explains the operational flow of simple GA. : . .
ties of generic programming are provided.

Description is given of the various classifica-

tions of GA — Messy GA, adaptive GA, hybrid * Theapplicarion areas of GA are also discussed.

Charles R. Darwin says that “Although the belicf thal an organ se perfect as the eye conld have been formed
by natural selection is enough to stagger any one; yet in the case of any organ, if we know af a long series of
gradasions in complexity, each good for its possescor, then, under changing conditions of life, there is no lagical
impossibility in the acquirement of any conceivable degree of perfection through narral seleceion.”

15.1 Introduction

Charles Darwin has formulazed the fundamentat principle of natural selection as the main evolutionary
tool. He put forward his ideas without che knowledge of basic hereditary principles, In 1865, Gregor Mendel
discovered these hereditary principles by the experiments he carried out on peas. After Mendels work generics
was developed. Morgan experimentally found thac chremosomes were the carriers of heredirary informa-
tion and that genes representing the hereditary factors were lined up on chromosomes. Darwin's natural
selection theory and natural genetics remained unlinked until 1920s when it was proved that generics and
selection were in no way contrasting each other. Combinacion of Darwin'’s and Mendel’s ideas lead o the
modern evolutionary theory.

In The Origin of Species, Charles Darwin stated the theory of nacural evolution. Over many generations,
biological organisms evolve according to the principles of narural selection like “survival of the fittest” to
reach some remarkable forms of accomplishment. The perfect shape of the albatross wing, the efficiency and
the similatity berween sharks and dolphins and so on are good examples of what randem evolution with
absence of incelligence can achieve. So, if it works so well in nature, it should be interesting to simulate natural
evelution and try to obtain 2 method which may solve concrete search and optimization problems.

For a berter understanding of this theory, it is important first to understand the biological terminology
used in evolutionary computation. I is discussed in Section 15.2.
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In 1975, Holland developed this idea in Adapsarion in Natural and Artificial Systems. By describing how
1o apply the principles of natural evolution to optimization problems, he laid down the first GA. Holland's
theory has been furcher developed and now GAs stand up as powerful adaprive methods to solve search
and optimization problems. Today, GAs are used 1o resolve complicated optimization problems, such as,
organizing the time table, scheduling job shop, playing games.

I 15.1.1 What are Genetic Algorithms?

GAs are adaprive heuristic search algorithms based on the evolutionary ideas of natural selection and genetics.
As such they represent an intelligent exploitation of 2 random search used to solve optimization problems,
Although randomized, GAs are by no means random; instead they exploit historical information to direct
the search into the region of better performance within the search space. The basic techniques of the GAs
are designed ro simulate processes in nawural systems necessary for evolution, especially thase thar follow the
principles first laid down by Charles Darwin, “survival of the fitvest,” because in nature, competition among
individuals for scanty resources results in the fiteest individuals dominating over the weaker ones.

I 16.1.2 Why Genetic Algorithms?

They are better than conventional algotithms in chat they are more robust. Unlike older Al systems, they do
not break easily even if the inputs are changed siightly or in the presence of reasonable noise. Also, in searching
a large state-space, multimodal state-space or #-dimensional surface, a GA may offer significant benefits over
more typical optimization technigues (linear programming, heuristic, depch-first, breath-first and praxis.)

Ls.z Biological Background

The science thar deals with the mechanisms responsible for similaricies and differences in a species is called
Generics. The word “generics” is derived from the Greek word “genesis” meaning “to grow” or “to become.”
The science of genetics helps us to differensiate berween heredity and variations and accounts for the resem-
blances and differences during the process of evolution. The concepts of GAs are directly derived from natural
evolution and heredity. The terminologies involved in the biclogical background of species are discussed in
the following subsecrions.

l 15.2.1 The Cell

Every animal/human cell is a complex of many “small” factories that work together. The center of all this is
the cell nucless. The genetic information is contained in the cell nucleus, Figure 15-1 shows anatomy of the
animal cell and cell nucleus.

I 16.2.2 Chromosomes

All the genetic information gets stored in the chromosomes. Each chromosome is build of deoxyribonucleic
acid (DNA). In humans, chromosomes exist in pairs (23 pairs found). The chromosomes are divided into
several parts called genes. Genes code the properties of species, i.e., the characteristics of an individual. The
possibilidies of combinarion of the genes for one property are called alleles, and a gene can rake different alleles.
For example, there is a gene for eye color, and all the different possible alleles are black, brown, blue and green
{since no one has red or violer eyes!). The set of all possible alleles present in a particular population forms
a gene peol. This gene pool can determine all the different possible variations for the future generations. The
size of the gene pool helps in determining the diversity of the individuals in the population. The set of all the
genes of a specific species is called genome, Each and every gene has a unique position on the genome called

S U
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Anatomy of the animal cell

Mitochondria Hough
o endeplasmic
reticulum

Microfitaments
Paroxisame

Cantrioles . - {5 ~ Nucleus
R Nuclear

pores

—- Plasma

- membrang

Micro . Nucleolus
tuubules Nuclear
Golgi ; anvelope
apparatus * “Chromatin
Rough
endoplasmic
. reticulum
endoplasmic RAibosomes
recticulum
The cell nucleotus
Nucleolus
Muclear
envelope

Nuclear
pores

Chromalin
Chromosomes
Figure 16-1 Anatomy of animal cell, cell nucleus.
focus. In fact, most living organisms store their genome on several chromosomes, but in the GAs, all the genes

are usually stored on the same chromosomes. Thus, chromosomes and genomes are synonyms with one other
in GAs. Figure 15-2 shows a model of chromosome.

‘ l 15.2.3 Genetics

For a particnlar individual, the entire combination of genes is called genotype. The phenotype describes the
physical aspect of decoding a genocype to produce the phenorype. One inceresting point of evolurion is that
selection is always done on the phenotype whereas the reproduction recembines genotype. Thus, morpho-
genesis plays a key role between selection and reproduction. In higher life forms, chromosomes contain two
sets of genes. These are known as diploids. In the case of conflices berween two values of the same pair of genes,
the dominant one will determine the phenotype whereas the other one, called recessive, will still be present and
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Flgure 15-2 Model of chromosome,

D__

Figure 15-3 Development of genotype 1o phenorype.

can be passed onto the offspring. Dipleidy allows a wider diversiry of alleles. This provides a useful memory
mechanism in changing or noisy environment. However, most GAs cancentrate on haploid chromosomes
because they ate much simple to conscruct. In haploid representation, only one set of each gene is stored, thus
the process of determining which allele should be dominant and which one should be recessive is avoided.
Figure 15-3 shows the development of genotype to phenorype.

lj 5.2.4 Reproduction

Reproduction of specics via genetic information is carried out by the following:

1. Mitosis:  In mivosis the same genetic informarion is copied to new offspring. There is no exchange of

information. This is a normal way of growing of melticell structures, such as organs. Figure 15-4 shows
mirosis form of reproduction.

2. Meiosin  Meiosis forms the basis of sexual reproduction. When meiotic division takes place, two gametes
appear in the process. When reproduction occurs, these two gametes'conjugare to a zygote which becomes
the new individual. Thus in this case, the generic information is shared berween the parents in order o
create new offspring. Figure 15-5 shows melosis form of reproduction.

15.2 Biological Background
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Table 15-1 Comparison of natural evolution and generic algorithm terminology

Natural evolution Genetic algorithm
Chromosome String

Gene Feature or character

Allele Feawure value

Locus String position

Genotype Structure or coded string
Phenotype Parameter ser, a decoded structure

15.2.5 Natural Selection

The origin of species is based on “Preservation of favorable variarions and rejection of unfavorable variations.”
The variation refers to the differences shown by the individual of a species and also by offspring’s of the
same parents. There are more individuals born than can survive, so there is a continuous struggle for life.
Individuals wich an advantage have a greater chance of survival, i.e., the survival of the fittest. For example,
Giraffe with long necks can have food from wll rrees as well from the ground; on the other hand, goat and
deer having smaller neck can have food only from the ground. As a result, nacural selecrien plays a major role
in this survival process.

Table 15.1 gives a list of different expressions, which are common in natural evelution and genetic
algorithm.

l15.3 Traditional Optimization and Search Techniques

The basic principle of optimization is the efficient allocation of scarce resources. Optimization can be applied
1o any scientific or engineering discipline. The aim of optimization is to find an algorichm which solves a given
class of problems, There exists no specific method which solves all optimization problems. Considera function,

f0: [, 2] - [0,1] (15.1)
where

_} vif fix—al<eg, ex0
S = —1 elsewhere

For the above function, fcan be maineained by decreasing € or by making the interval of [x!, x*] large. Thus,
a difficult task can be made easier. Therefore, one can solve optimizarion problems by combining human
creativity and the raw processing power of the computers,

The various conventional optimization and search rechniques available are discussed in the following
subsections.

l15.3.1 Gradieni-Based Local Optimization Method

When the objective function is smooth and one needs efficient local optimization, it is better 1o use gradient-
based or Hessian-based optimization methods. The performance and reliability of the different gradient
methods vary considerably. To discuss gradient-based local opeimization, let us assume a smooth objective
function {i.e., continuous first and second derivatives). The object function is denoted by

f) R >R (15.2)
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The first derivatives are conrained in the gradient vector Vf ()

3o
Vi =| (15.3)
3 f(x)18 x,
The second derivatives of the object function are contained in the Hessian marix H{x):

Pre )

%, 8% 8%,

Hi) =V 99 = (15.4)

9% f(x) - 32 f(x)
b 9,

Eew methods need only the gradient vector, bur in the Newton's method we need the Hessian marrix. The
general pseudocode used in gradiene methods is as follows:

Select an initial guess value x' and set n = 1.
Repeat
Solve the search direction P from Eq. (15.5) or (15.6) below.

Determine the nexr iteration poing using Eq. (15.7) below:
XrH-l =X"3A\ pr
- a

Setn=n+1.
Undl I1X" — X" < e
These gradient methods search for minimum and not maximum, Several different methods are obtained

based on the details of the algorithm.
The search direction P” in conjugate gradient method is found as follows:

P = —Vf(X") 4B, P! (15.5)

In secant method,

B, P" = Vf(") (15.6)

is used for finding search direction. The matrix B, in Eq. (15.6) estimares the Hessian and is updated in each
iteration. When B,, is defined as the identity matrix, the steepese descent method occurs. When the matrix
B, is the Hessian H{x"), we get the Newton's method.

The length ), of the search step is compured using:

Ay =argmin f(x"+A P") (15.7)
A=0
The discussed is a one-dimensional optimization problem. The steepest descent method provides poor perfor-
mance. As a resuls, conjugare gradient method can be used. If the second derivatives are easy to compute, then
Newtor's method may provide best results. The secant methods are faster than conjugate gradient methods,
but there oceurs mermory problems. Thus, these local optimizarion methods can be combined with other
merhods to get 2 good link between performance and reliability.
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I 15.3.2 Random Search

Random search is 2n ektremely basic methed. It only explores the search space by randomly selecring solu-
tions and evaluares their fitness. This is quite an uninrelligent strategy, and is rarely used. Nevercheless, this
method is sometimes worth resting. It doesn’t take much effore to implement it, and an important number
of evaluations can be done fairly quickly. For new unresolved problems, it can be useful to compare the
results of a more advanced algorithm to those obrained just with a random search for the same number
of evaluations. Nasty surprises might well appear when comparing, for example, GAs to random search.
It's good to remember thar the efficiency of GA is extremely dependent on consistent coding and relevant
reproduction operatots. Building a GA which performs no more than a random search happens more often
than we can expect. If the reproducrion operators are just producing new random solutions without any
concrete links to che ones selecred from the last generation, the GA is just doing nothing else than a random
search,

Random seatch does have a few intetesting qualities. However good the obtained solution may be, if ir's
not optimal one, it can be always improved by continuing the run of the random search algorithm for long
enough. A random search never gets stuck ar any point such as a local optimum. Furthermore, theoretically,
if the search space is finire, random search is guaranteed to reach the optimal solution. Unfortunately, this

result is completely useless. For most of problems we are interested in, exploring the whole search space takes
a lot of time.

l1 5.3.3 Stochastic Hill Climbing

Efficienr methods exist for problems with well-behaved continuous fitness functions. These methods use a
kind of gradienc wo guide cthe direction of search. Stechastic bill climbing is the simplest method of these kinds.
Each iteration censists in choosing randomly 1 solution in the neighborhood of the current solution and
recains this new solurion enly if it improves the fitness funcrion. Stochastic hill climbing converges rowards
the optimal sofution if the fitness function of che problem is continuous and has only one peak {unimodal
funcrion).

On funcrions with many peaks (multimodal functions), the algorithm is ltkely ro stop on the first peak
it finds even if it is not che highest one. Once a peak is reached, hill climbing cannort progress anymore,
and that is problemaric when this point is a local oprimum. Stochastic hill climbing usually scares from a
random select point. A simple idea o avoid getting stuck on the first local optimal consists in repeating
several hill climbs each time starting from a different randomly chosen point. This method is sometimes
known as frerated bill climbing. By discovering different local oprimal poinss, chances to reach the global
opumum increase. It works well if there are not too many local optima in the search space. However, if the
ficness function is very “noisy” with many small peaks, stochastic hill climbing is definitely nor a good method

to use. Nevertheless, such methods have the advantage of being easy to implement and giving fairly goed
solutions very quickly.

p5.3.4 Simulated Annealing

Simulated annealing (SA) was originally inspired by formation of erystal in solids during cooling. As discovered
a long time ago by Iron Age blacksmiths, the slower the cooling, the more perfect is the erystal formed. By
cooling, complex physical systems naturally converge rowards a state of minimal energy. The system moves
randornly, but the probability to stay in a particular configuration depends directly an the energy of the system
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and on its temperature. This probabilicy is formally given by Gibbs law:

o BT (15.8)
where E stands for the energy, # is the Boltzmann constant and T is the emperature. In the mid01970s,
Kirkpatrick by analogy of this physical phenomena; laid out the first descriprion of SA.

As in the stochastic hill climbing, che iteration of the SA consists of randomly choosing a new solution in
the neighborhood of the actual solution. If the fitness function of the new solution is better than the fitness
function of the current one, the new solution is accepred as the new currenc solution, If the fimess funceion
is not improved, the new solurion is rerained with a probabilicy:

pe oL F =S WlET (15.9

where f(y) — flx) is the difference of the fitness function beiween the new and the old sclutien.

The SA behaves like a hill cimbing merthod but with the possibility of going downhill to avoid being
crapped at local optima, When the remperature is high, the probabilicy of deteriorate the solution is quite
impareanc, and chen a lot of large moves are possible to explore the search space. The more the temperature
decreases, the more difficult it is to go downhill. The algorithm cthus eries to climb up from the current
solution to reach 2 maximum. When remperatuse is lower, there is an exploitation of the current solution. If
the temperature is too low, number deerioracion is accepred, and che algorichm behaves just like a stochastic
hill climbing method. Usually, the SA starts from a high temperature which decreases exponentially. The
slower the cooling, the beteer it is for finding good solucions. It even has been demonstrated that with an
infinitely slow cooling, the algorithm is almost cerrain to find the global optimum, The only poinc is char
infinitely slow cooling consists in finding the appropriate temperature decrease rate to obrain 2 good behavior
of the algorithm.

SA by mixing exploration features such as the random search and exploitation fearures like hill climbing
wsually gives quite good resules. SA is a serious compertitor of GAs. It is worth trying to compare the results
obrained by each. Both are derived from analogy with natural syscem evolution and borh deal with the same
kind of oprimization problem. GAs differ from SA in two main features which makes them more efficient.
First, GAs use a population-based selecrion whereas SA only deals with one individual at each ireration. Hence
GAs are expecred to cover a much larger tandscape of the search space at each ireration: however, SA iterations
ate much more simple, and so, often much faster. The grear advantage of GA is its exceprional ability ro be
parallelized, whereas SA does nat gain much of this. It is mainly due to the population scheme use by GA.
Second, GAs use recombination operatars, and are able o mix good characteristics from different soturions.
The exploitation made by recombination operatars are suppasedly considered helpful to find optimal solutions
of the problem. On the ather hand, $A is still very simple to implement and gives good results. SAs have
proved their efficiency over a large spectrum of difficulr problems, like the optimal layout of princed circuit
board or the famous traveling salesman problem.

I 1535 Symbolic Arificial Intelligence

Most symbolic arificial intelligence (Al) systems are very static. Mosc of them can usually only solve one
given specific problem, since their architecture was designed for wharever thav specific problem was in the
first place. Thus, if che given problem were somehow ro be changed, these systems could have a hard time
adapting to them, since the algorithm that would originally arrive to the sofution may be cither incorrect
or less efficient. GAs were creared to combat these problems. They are basically algerichms based on natural
biological evolution. The architecture of systems that implement GAs is more able to adapt o a wide range of
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problems. A GA functions by generaring a large set of possible solutions to a given problem. It then evaluates
each of those soluttons, and decides on a “fitness level” (you may recall the phrase: “survival of the fireest”™)
for each solution ser. These solurions then breed new solutions. The parent solutions that were more “fic”
are more likely o reproduce, while those that were less “fic” are more unlikely to do so. In essence, solutions
ate evolved over time. This way we evolve our search space scope to a point where you can find the solution.
GAs can be incredibly efficient if programmed correctly.

I 154 Genetic Algorithm and Search Space

Evolutonary computing was introduced in the 1960s by I. Rechenberg in the work “Evolution Strategies.”
This idea was then developed by other researches. GAs were invented by John Holland and developed this
idea in his book “Adaprarion in Natural and Artificial Systems” in the year 1975. Holland proposed GA
as a heuristic metbod based on “survival of the fittest.” GA was discovered as a useful tool for search and
optimization problems.

I 15.4.1 Search Space

Most often one is looking for the best solutian in a specific set of solurions. The space of all feasible solutions
(the set of solutions among which the desired solution resides) is called search space (also state space). Each
and every point in the search space represencs one possible solution. Therefore, each possible solurion can be
“marked"” by its fitness value, depending on the problem definition. With GA one looks for the best solution
among a number of possible solutions — represented by one poinc in the search space; GAs are used ro search
the search space for the best solution, e.g., minimum. The difficulties in chis case are the local minima and
the starting point of the search. Figure 15-6 gives an example of search space.
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Figure 15-6 An example of search space.
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L1 5.4.2 Genstic Algorithms World

GA raises again a couple of important features. First, it is a stochastic algorithm; randomness has an essential
role in GAs. Both selection and reproduction need random procedures. A second very important point is
that GAs always consider a population of solutions. Keeping in memory more than a single solution at each
iterarion offers a lot of advantages. The algorithm can'recombine different solutions to get better ones and se
it can uge the benefits of assortment. A population-based algorithm is also very amenable for parallelization.
The robustness of the algorithm should also be menrioned as someching essential for the algorithm's success.
Robustness refets to the ability to perform consistently well on a broad range of problem types. There is no
particular requirement on the problem before using GAs, so it can be applied 1o resolve any problem. All
these fearures make GA a really powerful optimization wol.

With the success of GAs, other algorithms making use of the same principle of natural evolution have
also emerged. Evolution strategy, generic programming are some algorithms similar to chese algorithms. The
classification is not ahways clear berween the different algorithms, chus to avoid any confusion, they are all
gathered in what is called Evolierionary Algorithms.

The analogy with nature gives these algorithms something exciting and enjoyable. Their abiliry to deal
successfully wich a wide range of problem area, including those which are difficult for other methods to solve
makes them quite powerful. However woday, GAs are suffering from wo much trendiness. GA is a new feld,
and parts of the theory siill have 1o be properly established. We can find almost as many opinions on GAs as
there are researchers in this field. In this document, we will generally find the most current point of view. But
things evolve quickly in GAs oo, and some comments might not be very accurare in few years,

It is also important to mention GA limits in chis introduction. Like most stochastic methods, GAs are
not guaranteed to find the global optimum solution 1o a problem; they are satisfied with finding “acceprably
good” solutions to the problem. GAs are extremely general tao, and so specific techniques for solving particular
problems are likely to our-perform GAs in both speed and accuracy of the final resulr. GAs are something
worth trying when everything else fails or when we know absolutely nothing of the search space. Nevertheless,
even when such specialized rechniques exist, it is often interesting to hybridize them with a GA in order
w0 possibly gain some improvemenss. It is important always w0 keep an objeciive point of view; do net
consider thar GAs are 2 panacea for resolving all oprimization problems. This warning is for thase who
might have the rempration o resolve anything wicth GA. The proverb says “If we have a hammer, all the

problems look like a nails.” GAs do work and give excellent results if they are applied properly on appropriate
problems.

I 15.4.3 Evolution and Optimization

To depicr the impartance of evolution and aptimization process, consider a species Basilosaurus thas originared
45 million years ago. The Basilosaurus was a protorype of a whale (Figure 15-7). Lt was abour 15 m long and

Figure 15-7 Basilosaurus.
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Figure 15-8 Tursiops flipper.

weighed approximately 5 tons. It still had a quasi-independent head and posterior paws, and moved using
undulatory movements and hunted small preys. Its anterior metmbers were reduced to small flippers with an
elbow articulation, Movements in such a viscous element (waer) are very hard and require big efforts. The
anterior members of basilosaurus were not really adapred ro swimming, To adapt them, a double phenomenon
must occur: the shoreening of the “arm” with the locking of the elbow articulation and the excension of the
fingers constitute the base structure of the flipper (refer Figure 15-8).

The image shows that two fingers of the common dolphin are hypererophied 1o the derriment of the rest
of the member. The basilosaurus was a hunter; it had to be fast and precise. Through rime, subjects appeared
with longer fingers and short arms. They could move faster and more preciscly than before, and therefore,
live longer and have many descendants.

Meanwhile, ocher improvements occurred concerning the general aerodynamic like the integration of the
head to the body, improvement of the profile, strengthening of the caudal fin, and so on, finally producing
a subject perfectly adapred 1o the constraines of an aqueous environment. This process of adaptarion and
this morphological optimization is so perfect rhat nowadays the similarity berween a shark, a dolphin or a
submarine is scriking, The first is a cartitaginous fish (Chondrichtyen) chac originared in the Devonian period
(~400 million years), long before the apparition of the first mammal. Darwinian mechanism hence generated
an optimization process — hydrodynamic sptimization — for fishes and others marine animals — aeredynamic
aptimization for prerodactyls, birds and bats. This abservarion is the basis of GAs.

I 15.4.4 Evolution and Genetic Algorithms

The basic idea is as follows: the genetic pool of a given popularion potentially conrains the soluclon, or a berrer
solution, to a given adaprive problem. This solurion is not “acrive” because the genetic combination on which
it relies is split amang several subjects. Only che associarion of different genomes can lead to the solurinn.
Simplistically speaking, we could by example consider thar the shoreening of the paw and the extension of
the fingers of our basilosaurus are controlled by two “genes.” No subject has such a genome, bur during
reproduction and crossover, new genetic combination occur and, finally, 2 subject can inherir a “good gene”
from both parents his paw is now a fipper.

Holland method is especially effective because he not only considered the role of mucation (mutations
improve very seldom the algorithms), but also urilized genetic recombination (crossover): these recombinarion,
the crossover of parial solutions, greatly improve the capability of the algorichm to approach, and evencuzlly
find, the oprimum.

Recombinarion or sexual reproducrion is a key opesator for natural evolution. Technically, it takes two
genotypes and it produces a new genotype by mixing the gene found in the originals. In biology, the most
common form of recombination is crossover: two chromosomes are cut at one point and the halves are spliced
to create new chromosomes. The effect of recombinacion is very important because it allows characteristics
from two different parents to be assorted. If the father and the mother possess different good qualities, we
would expect thar all the good qualities will be passed to the child. Thus the offspring, just by combining all
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the good features from its parents, may surpass its ancestors. Many people believe that L.his mixing oF_ genetic
material via sexual reproduction is one of the most powerful features of GAs. As a quick parcnthcsls‘abouc
sexual reproduction, GA representation usually does not differentiate male and _Female individuals (without
any perversity). As in many livings species (e.g., snails) any individual can be either a male or a female, In
fact, for almost all recombination operators, mother.and father are interchangeable.

Mutarion is the other way to get new genomes. Mutation consists in changing the value of genes. In namural
evolurion, mutation mostly engenders non-viable genomes. Actually mutation is not a very frequent operator
in narural evolution. Nevercheless, in optimization, a few random changes can be a good way of exploring
the scarch space quickly. - . N

Through those low-level notions of genetic, we have seen how living beings store Lhe:_r ?haraccensnc
information and how this information can be passed into their offspring, It very basic but it is more than
enough o understand the GA theory. S

Darwin was rorally unaware of the biochemical basics of genetics. Now we know how the genetic inherita-
ble informarion is coded in DNA, RNA, and proteins and that the coding principles are actually digim.l, much
resembling che information storage in computers. Information processing is in many ways u?ta]l}: dlﬁ“.crent,
however. The magnificent phenomenen called the evolurion of species can also give some insight into 1_nfot—
mation processing methods and optimization, in particular. According to Darwinism, inherited variation is
characterized by the following properties:

1. Variation must be copying because selection does not create directly anything, but presupposes a large
population to work on.

2, Variation must be small-scaled in practice. Species do not appear suddenly.

3. Variarion is undirected. This is also known as the blind watch maker paradigm.

While the natural sciences approach to evolution has for over a century been to analyze and study diﬂ:crcnt
aspecrs of evolution to find the underlying principles, the engineering sciences are happy to apply evolutionary
principles, that have been heavily tested over billions of years, to atrack the most complex technical problems,
including protein folding,

Ils.s Genetic Algorithm vs. Traditional Algorithms

The principle of GAs is simple: imirate generics and natural selection by a computer program: The param-
cters of the problem are coded most naturally as a DNA ~ like linear dara scructure, a vector or a sring.
Sometimes, when the problem is naturally two or three dimensional, corresponding arcay struceures are
used.

A set, called papularion, of these problem-dependent parameter valug vecrors is processed by GA. To starr,
there is usually a torally random population, the values of different paramesers generated by a random nurn!::er
generaror. Typical population size is from few dozens o thousands. To do optimization we need a cost funct!on
or fimess funcrion as it is usually called when GAs are used. By a firness function we can selece the best solution
candidares from the population and delete the not so good specimens.

The nice thing when comparing GAs to other optimization methods is thar the fitness ﬁ.mction. can be
nearly anything that can be evaluated by a computer or even something that cannot! In the larter case it might
be z human judgment thar cannot be stated as a crisp program, like in the case of eye witness, where a i.lur'nan
being selects from the alternatives generated by GA. So, there are not any definite mathemarical restricrions
on the properties of the fitness fenction. It may be discrete, multimodal, erc.
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The main criteria used 1o classify optimization algorithms are as follows: continuous/discrete, con-
strained/unconstrained and sequential/parallel, There is a clear difference berween discrete and continuous
problems. Therefore, it is instructive to notice that continuous methods are sometimes used to solve inher-
ently discrete problems and vice versa. Paralle] algorithms are usually used to speed up processing, There are,
however, some cases in which it is more efficient to run several processors in parallel rather than sequentially.
These cases include among others those in which there is high probability of each individual search run to
get stuck into a local extreme,

Irrespective of the above classification, optimization methods can be further classified into deterministic
and non-deterministic methods. In-addition, optimization algerithms can be classified as local or global. In

terms of energy and entropy local search corresponds to entropy while global optimization depends essendally
on the fitness, i.e., energy landseape.

GA differs from conventional optimization techniques in following ways:

1. GAs operare with coded versions of the problem parameters rather than parameters themselves, i.e., GA
works with the coding of solution set 2nd not with the selution icself,

. Almost all conventional oprimization techniques search from a single point, but GAs always operate on a
whole population of points (strings), i.e., GA uses population of solutions rather than a single selution for
searching. This plays a major role 1o the robustness of GAs. It improves the chance of reaching the global
optimum and also helps in avoiding loeal scationary point.

3. GA uses fitness funciion for evaluation rather than derivatives. As a result, they can be applied 10 any kind

of continuous or discrere optimization problem. The key point to be petformed here is to identify and
specify a meaningful decoding function.

. GAs use probabilistic transition operates while conventional methods for continuous aptimization apply
dererminiseic transition operates, i.e., GAs do not use dererministic rules.

These are the major differences that exist berween GA and conventional optimization techniques.

LS.B Basic Terminologies in Genetic Algorithm

The two distinct elements in the GA are individuals and populations. An individual s a single solution while
the population is the ser of individuals currently involved in the search process.

l1 5.6.1 Individuals

An individual is a single solution. An individual groups together two forms of solurions as given below:

1. The chromosome which is che raw “generic” information {genotype) that the GA deals.

2. The phenotype which is the expressive of the chromosome in the terms of the model.

A chromosome is subdivided into genes. A gene is the GA’ represensarion of a single factor for a control
factor, Each facror in the solurion set corresponds to a gene in the chromosome. Figure 15-9 shows the
representation of a genotype.

A chromosome should in some way contain informarion about the solution thar ic represents. The mor-
phogenesis function associates each genotype with its phenorype. It simply means that each chromosome must
define one unique solution, but it does nor mean that each solucion is encoded by exactly one chromosome.
Indeed, the morphogenesis function is not necessarily bijective, and it is even sometimes impossible (especially
with binary representation). Nevertheless, the morphogenesis function should ar least be subjective. Indeed;
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Flgure 15-9 Representation of genorype and phenorype.
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Flgure 15-10 Representation of a chromosome.

all the candidate solutions of the problem must correspond 1o at least one possible ch romesome, t0 be sure thar
the whole search space can be explored. When the morphogenesis function thar associates each chromosolme
to one solution is not injective, i.e., different chromosomes can encode the same solucion, the representarion
is said to be degenerated. A slight degeneracy is not so worrying, even if the space where the anonthxln is
looking for the optimal soluion is inevitably enlarged. Bura too importanc degeneracy could be a more serious
problem. It can badly affect the behavior of the GA, mostly because if several chromo_somes can represent the
same phenotype, the meaning of each gene will obviously nor correspond to a speqﬁc' chal_'actensuc-of t}:le
solution. It may add some kind of confusion in the search. Chromosomes encoded by bir strings are given in
Figure 15-10.

I 15.6.2 Genes

Genesare the basic “instructions” for buildinga GA. A chromosome is a sequence of genes. Gcncs_ may describe
a possible solution to a problem, without acrually being the solution. A geneisa bit string _ofarbma,ry lengths.
The bitstring is a binary representation of number of intervals from a lower bound, A gene is the GA's represen-
tation of a singlie factor value for a control factor, where control factor must have an upper bound )anc_l a lolwer
bound. This range <an be divided into the number of intervals that can be expressed by the gene's bu:mng.
Abir string of length “r” can represent (2" — 1) incervals. The size of the interval would be {(range)/(2" — 1).

The scructure of each gene is defined in a record of phenoryping paramercss. T.he_phenory.pe parameters
are instructions for mapping between genotype and phenocype. It can also be sa..ld as encoding a solurion
set into a chromosome and decoding a chromosome ¢o a solugion set. The mapping berween genorype and
phenotype is necessary to convert solurion sets from the model into 2 form that the GA can work with, and
for converting new individuals from the GA into a form that the model can evaluace. In a chromosome, the
genes are represented as shown in Figure 15-11.

15.6.3 Fiiness

The fitness of an individual in 2 GA is the value of an objective funcrion for its phenotype. For calculating
fitness, the chromosome has to be firsc decoded and che objective function has to be evahuated. The fimess
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Figure 15-11 Representation of a gene.

not only indicares how good the solution is, but also corresponds to how close the chromosome is to the
optimal one.

In the case of multicriterion optimization, the fitness function is definitely more difficult to derermine. In
multicriterion optimization problems, there is often a dilemma as how to determine if one solurion is betrer
than another. Whar should be done if a solution is better for one criterion but worse for another? But here,
the crouble comes more from the definition of a “berter” solution rather than from how 1o implement a GA
to resolve it. If sometimes a fitness function obrained by a simple combination of the different criteria can give
good result, it supposes thac criterions can be combined in a consistent way. But, for more advanced problems,
it may be useful to consider something like Pareto optimally or other ideas from multicriteria oprimization

theory.

L1 5.6.4 Populations

A pepulation is a collection of individuals. A population consists of @ number of individuals being tested,
the phenotype parameters defining the individuals and some information abour the search space. The two
imporrant aspects of population used in GAs are:

1. The initial populadon generation.
2. The popularion size.

For each and every problem, the population size will depend on the complexity of the problem. It is often
a random initialization of population. In the case of a binary coded chromosome this means that each bic
is initialized o a random 0 or 1. However, there may be instances where the inirializacion of popularion is
carried out with some known goed solurtions.

Ideally, the first populatien should have a gene pool as large as possible in order fo be able to explore
the whole search space. All the different pessible alleles of each should be present in the population. To
achieve this, the initial popularion is, in most of the cases, chosen randomly. Nevertheless, sometimes a kind
of heuristic can be used o seed the initial population. Thus, the mean fitness of the population is already
high and it may help the GA to find good solutions faster. Buc for doing chis one should be sure thac the gene
pool is still large enough. Otherwise, if the popularion badly lacks diversity, the algorithm will just explore a
small parc of the search space and never find global optdmal solutions.

The size of the population raises few problems too. The larger the population s, the easier it is to explore
the search space. However, it has been established thar the time required by a GA to converge is O(n log )
function evaluations where # is the population size. We say that the population has converged when all the
individuals are very much alike and further improvement may only be possible by mutarion. Goldberg has
also shown that GA efficiency to reach global optimum instead of local ones is largely derermined by the size of
the population. To sum up, a large population is quite useful. However, it requires much more computational
cost memory and time. Practically, a population size of around 100 individuals is quire frequent, but anyway

this size can be changed according to the time and the memory disposed on the machine compared o the
quality of the result to be reached.
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Population Chromasome 1 11100010

Chromosome 2 01111011

Chromaosome 3 10101010

Chromosome 4 11001100

Figure 15-12 Populadon.

Population being combination of various chromosomes is represented as in Figure 15-12. Thus the
population in Figure 15-12 consists of four chromosomes.

I 15.7 Simple GA

GA handles a popularion of possible solutions. Each solution is represented through a chromosome, which
is just an abstract representation. Coding all the possible solutions into a chromosome is the first part, buc
certainly not the most straightforward one of a GA. A set of reproduction operators has to be determined,
too. Reproduction operators are applied directly on the chromosomes, and are used to perform muradons
and recombinations over solutions of the problem. Appropriate representation and reproducrion operators
are the determining factors, as the behavior of the GA is extremely dependent on it. Frequentdly, it can be
extremely difficult to find a representation thar respects the scructure of the search space 2nd repreduction
operators that are cokerent and relevant according 1o the properties of the problems.
The simple form of GA is given by the following.

1. Start with a randomly generated population.
2, Caleulare the fitness of each chromosome in the population,

3. Repeat the following steps until i offsprings have been created:
* Select a pair of parent chromosomes from the current population.

* With probability p, crossover the pair ar 2 randomly chosen poinr o form two offsprings.

+ Murate r;n: two offsprings at each locus wich probability py.

4. Replace the current popularion with the new population.
5. Go w0 step 2.

Now we discuss each icerarion of this process.

Generation: Selection: is supposed to be able 1o compare cach individual in the population. Sclection is
done by using a fitness Function. Each chromosome has an associated value corresponding to the fitness of the
solution it represents. The fitness should correspond to an evaluartion of how good the candidate solution is.
The optimal solucion is the one which maximizes the fitness function. GAs deal with the problems thar
maximize the firness function. Bu, if the problem consists of minimizing a cost funcrion, the adapration is
quite easy. Either the cost function can be transformed inro a fitness funcrion, for example by inverting ig or
theselection can be adapted in such way that they consider individuals with low evaluation functions as better.
Once the reproduction and the fitness function have been properly defined, a GA is evolved according 1o the
same basic seructure. It stares by generating an initial population of chromesomes, This first population must
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offer a wide diversity of genetic marerials. The gene pool should be as large as possible so that any solution of ( Start )
the search space can be engendered. Generally, the initial population is generated randomly. Then, the GA
loops over an iteration process 1o make the population evolve, Each iteration consists of the following steps:
1. Selecsiom:  The first step consists in selecting individuals for reproduction. This selection is done randomly i Inital pofulation /
with a probability depending on the relative fitness of the individuals so thac best ones are often chosen J -
for reproduction rather than the poorones,. B e "
2. Reproduciion: In the second step, offspring are bred by selected individuals. For generating new i |
chromosomes, the algorithm can use both recombinarion and mutation. ' Selection |
3. Fvaluation: Then the fitness of the new chromosomes is evaluated. i ) E
4. Replacement: During the last step, individuals from the old population are killed and replaced by the new ; i :
ones. i Evoluticn 1 Crossover :
i | 1
The algorithm is stopped when the population converges toward the optimal solution. ! E
BEGIN /* genetic algorithm™/ ; ': '
Generate initial population; : ' Mutation .
Compute fieness of each individual; | LT a
WHILE NOT finished DO LOOP g
BEGIN y
Select individuals from old generations ‘
For mating; i Terminate No
Create offspring by applying ! 7
recombination and/or mutation :
wo the selecred individuals; ;
Compute fitness of the new individuals; ! Yes
Kill old individuals to make room for !
new chromosomes and inserc : Best individuals
offspring in the new generalization;
IF Population has converged t
THEN finishes: = TRUE; 5
END i Quiput
END
Genetic algorithms are not 100 hard to program or understand because they are biological based. An :
example of a flowchart of a GA is shown in Figure 15-13. i ( Stop )
l 15.8 General Genetic Algorithm Figure 15-13 Flowchart for peneric algorithm.
The general GA is as follows: Step 3: Reproduce (and children mutate): Those chromosomes with a higher fitness value are more likely
: to reproduce offspring (which can mutate after reproduction). The offspring is a produce of the
| Step 1: Create a random initial state: An initial populacion is creared from a random selection of solutions father and mother, whose composition consists of a combination of genes from the owo (this
{which are analogous to chromosomes). This is unlike the situation for symbolic Al systems, process is known as “crossingover”).
where the inidal statc in a problem is already given. Step 4: Next generarion: If the new generation contains a solution that produces an output that is close
Step 2: Evaluate fitness: A value for fitness is assigned to each solution {chromosome) depending on how enough or equal to the desired answer then the problem has been solved. If this is not the case,
close it actually is to solving the problem {thus arriving to the answer of the desired problem). then the new generation will go through the same process as their parents did. This will continue
(These “solutipns” are not to be confused with “answers” to the problem; think of them as possible I_ until a solution is reached.
characteristics thar the system would employ in order to reach the answer.)
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Table 15-2  Fitness value for corresponding
chromosomes (Example 15.1)

Chromasome Fitness

A: 00000110 2

B: 11101110 6

C: 00100000 1

D: 00110100 3

Table 15-3  Fimness value for corresponding

chromosomes

Chromosome Fitness

A: 01101110 5

B: 00100000 1

C: 10110000 3

D: 01101110 5
A

B Fitness-proporionate selection
(Roulette wheel sampling)

o

Figure 15-14 Roulette wheel sampling for fisness-proportionate selection.

Example 15.1: Consider 8-bir chromosomes with the following properties:
. Finess functdon f(x) = number of 1 bits in chromosome;

. population size N = 4;

. crossover probabilicy p, = 0.7;

oW b o

. mutation probabilicy p,, = 0.001;
Average fitness of population = 12/4 = 3.0.

1. If B and C are selected, crossover is not performed.
2. If B is mutated, then

B: 11101110 — B": 01101110

3. ItB and D are selected, crossover is performed.

B: 117101110 E: 10110100 — D: 00110100 E: 01101110
4. If E is murared, then

E: 10110100 — E': 10110000

1y
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Best-fit string from previous population is lost, but the average fitness of population is as given below:
Average fitness of population 14/4 = 3.5
Tables 15-2 and 15-3 show the fitness value for the corresponding chromosomes and Figure 15-14 shows

the Roulette wheel selection for the fitness proportionare selection.

I 15.9 Operators in Genetic Algorithm

The basic operators that are to be discussed in this section include: encoding, selection, recombination and
muration operators. The aperators with their various rypes are explained with necessary examples.

I 15.9.1 Encoding

Encoding is a process of representing individual genes. The process can be performed using bits, numbers,
trees, arrays, lists or any other objects. The encoding depends mainly on solving the problem. For example,
one can encode directly real or integer numbers.

16.8.1.1 Binary Encoding

The most common way of encoding is a binary string, which would be represented as in Figure 15-15.

Each chromosome encodes a binary (bit) string. Each bit in the string can represent some characreristics of
the solution. Every bit string therefore is a solution but not necessarily the best solution. Another possibility is
that the whole string can represent a number. The way bit strings can code differs from problem o problem.

Binary encoding gives many possible chromosomes with a smaller number of alleles. On the other hand, this
encading is not narural for many problems and sometimes corrections must be made after generic operation
is complered. Binary coded strings with 1s and Os are mostly used. The length of the string depends on the
accuracy. In such coding

1. Integers are represented exactly.
2. Finite number of real numbers can be represented.

3. Number of real numbers represented increases with string length.

15.9.1.2 Qctal Encoding
This enceding uses string made up of octal numbers (0-7) (see Figure 15-16).

Chromosome1 (110100011010

Chromosome 2 011111111100

Figure 15-15 Binaty encoding,

Chromosome 1 03467216

Chromosome 2 15723314

Figure 15-16 Ocral encoding,
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Chromosoma 1 9CE7

Chromosome 2 3DBA

Figure 1517 Hexadecimal encoding.

Chromosome A|1 532647498

ChromosomeB (8 56723149

Figure 15-18 Permurarion encoding,

15.9.1.3 Hexadecimal Encoding
This encoding uses string made up of hexadecimal numbers {0-9, A-F) (see Figure 15-17).

15.9.1.4 Permutation Encoding (Real Number Coding)

Every chromosome s a string of numbers, fepresented in a sequence. Somerimes corrections have 1o be done
after genetic operation is complete. In permuration encoding, every chromosome is a string of inceger/real
values, which represents number in a sequence.

Permutarion encoding (Figure 15-18) is only useful for ordering problems. Even for this problem, some

types of crossover and mutation corrections must be made to leave the chromaosome consistent (i.e., have zeal
sequence in it).

15.9,1.5 Valve Encoding

Every chromosome is a string of values and the values can be anything connected to the problem. This
encoding produces best results for some special problems. On the other hand, it is ofte
new genetic operator’s specific to the
complicated values, such as
be very difficulc.

In value encoding {Figure 15-19), every chromosome is 2 string of some values. Values can be anything
connected to problem, form numbers, real numbers or characters to some complicated objects. Value encoding

is very good for some special problems. On the other hand, for this encoding it is often necessary to develap
- - .
some new crossover and murarion specific for the problem.

n necessary to develop
problem. Direct value encoding can be used in problems, where some

real numbers, ate used, Use of binary encoding for this type of problems would

Ghromosome A 11.2824 5.3243 0.4556 2.3293 2.4545

Chromosome B | ABDJEIFJDHDIERJFOLDFLFEGT

Chromoseme C | (back), {back), {right), {forward), (left)

Flgure 15-19 Valye encoding,

[
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18.9.1.6 Tree Encoding

This encoding is mainly used for evolving program expressions for gcnctic_ programming. Every chromosome
is a tree of some objects such as functions and commands of a programming language.

l1 5.9.2 Selection

Sclection is the process of choosing two parents from _the Population for cro.ssir}g..dAjcf d;:"ldlngu?;izﬁ
encoding, the nexe step is to decide how to perform selection, i.c., how to.choose md_m uals mThe pop faton
that will creace offspring for the next generation and how many offspring m-ch will create. hf: pur[;
selection is to emphasize fitcer individuals in the populadon in hopes thar their oﬂ'spnng have Elher lm}lless.
Chromosomes are selected from the initial population to be parents for reproduction. The. problem is how
to select these chromosomes. According to Darwin's theory of evolution the best ones survive to create new
ing. Figure 15-20 shows the basic selection process. . _ .
OH'SSP:[':C%L?; mesthod that randomly picks chromosomes out of the po_pl_llation -:Ixccordmg to their wal;latfon
funcrion. The higher the fitness function, the better chance that an individual ‘-\flll be selected. .The se ecuodn
pressure is defined as the degree to which the better individuals are Ewo_red. The hlgher' the selection prusiur:a ,
the more the better individuals are favored, This selection pressure drives the GA to improve the population
ver successive generanions. o
ﬁm’?ﬁfciﬁniergcnce ragte of GA is largely determined by the magnitude of che selecltion pressure, :Jmh h;gl:lsr
selection pressures resulting in higher convergence rates. GAs should be able_m 1dennfy_op:|m or r;:‘.toz
optimal solurions under a wide range of selection scheme pressure, H.owever, if the se!c;non Pressiurel o
low, the convergence rate will be slow, and the GA will take unnecessarily longer to find the optimal soluc n
If the selection pressure is coo high, there is an increased chang.e of the GA prema‘turely converﬁmgl dtoa;;o
incorrecr (sub-optimal) selution. [n addition to providing selection pressure, selection schemes shou
preserve population diversity, as this helps to avoid premaure convergence. . L ondinal
Typically we can distinguish two types of selection SCl'lCl'l-lE, proporuonate—bas?d se ecuorll an 'r st
based selection. Proportionate-based selection picks out individuals based upon their fitness values re :1:]1
the fitness of the other individuals in the population. Ordinal-based selecrion schemes select md.mdu s not
upon their raw fitness, but upon their rank wichin the population.. This requires that th}f sel:l:ctfon p;;ss;;re
is independent of the fitness distribution of the population, and is solely based upon cthe relative ordering
(ranking) of the poputation.

7
1

The two best
individuals

New
Poputation

Mating
Pool

Figure 15-20 Selection.
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It is also possible to use a scaling funcrion to redistribute the fAtness range of the population in order to
adapr the selection pressure, For example, if all the solutions have their fitnesses in the range [999, 1000],
the probability of selecting a better individual than any other using a proportionare-based method will not be
important. If the fimess every individual is bringing to the range {0, 1} equitble, the probabiliry of selecting
good individual instead of bad one will be important.

Selection has to be balanced with variation from crossover and mutation. Too strong selection means
sub-oprimal highly fit individuals will tzke over the population, reducing the divetsity needed for change and

progress; too weak selection will result in too slow evolution. The various selection methods are discussed in
the following subsections.

15.9.2.1 Rouletie Whee! Selection

Roulette selection is one of the traditional GA selection techniques. The commonly used reproduction operaror
is the proportionate reproductive operator where a stting is selected from the mating pool with a probability
proportional to the fitness. The principle of Roulerte selection is 2 linear search through a Roulette wheel with
the slots in the wheel weighted in proportion to the individual’s fitness values. A rarger value is ser, which is
a random proportion of the sum of the fit nesses in the population. The population is stepped through until
the targer value is reached. This is only a moderarely strong selection technique, since fit individuals are not
guaranteed to be selected for, but somewhat have a greater chance. A fit individual will conttibute more to
the target value, bur if it does not exceed it, the next chromosome in line has a chance, and it may be weak.
It is essential thac the population not be sorted by fitness, since this would dramatically bias the selection.

The Roulette process can also be explained as follows: The expecred value of an individual is individual’s
fitness divided by the accual fitness of the population. Each individual is assigned a slice of the Roulette wheel,
the size of the slice being proportional to the individual’s fitness. The wheel is spun N times, where N is che
number of individuals in the population. On each spin, the individual under the wheel’s marker is selected
10 be in the pool of parents for the next generation. This method is implemented as follows:

1. Sum the roral expected value of the individuals in the population. Let it be T
2. Repear N times:
i. Choose a random integer “" between 0 and T.

it. Loop through the individuals in the population, summing the expected values, unil the sum is greacer

than or equal to “z” The individual whose expected value puts the sum over this limic is the one
selected.

Roulerte wheel sclection is easier to implement bue is noisy. The rate of evolution depends on the variance
of fitness’s in che population.

15.8.2.2 Random Selection
This technique randomly selects a parent from the popularion. In terms of distuption of genetic codes, random
selection is a lictle more disruprive, on average, than Roulerte wheel selection.

15.8.2.3 Rank Selection

‘The Roulerte wheel will have a problem when the fitness values differ very much. If the best chromosome
fitniess is 9094, its circumference oceupies 0% of Rouletre wheel, and then other chromosomes have too few
chances o be selected. Rank Selection ranks the population and every chromosome receives fitness from the
ranking. The worst has fitness | and the best has feness V. It results in slow convergence bur prevents oo

AT
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quick convergence, It also keeps up selecrion pressure when the fitness variance is low. It preserves diversity
and hence leads to a successful search. In effect, potential parents are selected and a tournament is held
to decide which of the individuals will be the parent. There are many ways this can be achieved and owo
suggestions are:

1. Select a pair of individuals ac random. Generate a random number R berween 0 and 1. If R < r use the
first individual as a parent. If the R > 7 then use the second individual as the parent. This is repeated to
select the second parent. The value of 7 is a parameter to this method.

2. Select owo individuals at random. The individual with the highest evaluation becomes the parent. Repeat
to find a second parent.

15.9.2.4 Tournament Selection

An ideal selection strategy should be such that it is able to adjust its selective pressure 2nd population diversity
50 as o fine-tune GA search performance. Unlike, the Rouletre wheel selection, the tournament selection
strategy provides selective pressure by holding a tournament competition among N individuals.

The best individual from the ournament is the one with tlie highest fitness, who is the winner of Nu.
Tournament competitionsand the winner are then inserred inte the mating pool. The tournament competition
is repeated undil the maring pool for generating new offspring is filled. The mating pool comprising the
toutnament winner has higher average populacion fitness. The frness difference provides the selection pressure,
which drives GA to improve the fitness of the succeeding genes. This method is more efficient and leads 1o
an optimal selurion.

15.8.2.5 Boltzmann Selection

SA is 2 method of function minimization or maximization. This method simulates the process of slow
cooling of molten meral to achieve the minimum funcrion value in a minimization problem. Controlling a
temperature-tike paramerer incroduced with the concept of Bolrzmann probabiliry distriburtion simulares the
cooling phenomenon.

In Bolrzmann selection, a continuously varying temperature concrols the rate of selection according to
a preset schedule. The remperarure srarts ouc high, which means thar the selection pressure is low. The
temperature is gradually lowered, which gradually increases the selection pressure, thereby allowing the GA
10 narrow in more closely to the best part of the search space while maintaining the appropriate degree of
diversity.

A logarithmically decreasing temperature is found useful for convergence withour getting stuck to a local
tiniua state. However, it rakes time to cool down the system to the equilibrium state.

Ler frnay be the finess of the currently available best string. 1F the next string has firness £ (X;) such that
SX) > fryax, then the new string is selected. Otherwise it is selected with Bolt/Mann probability

P = expl—{ fmax — fIXIT] (15.10)

where T= T,(1—a)* and & = (1 4 100 * g/ G); g is the current generation number; & the maximum value
of g The value of & can be chosen from the range [0, 1] and that of T;, from the range [5, 100]. The final state
is reached when computation approaches zero value of 7, i.e., the global solution is achieved at this point.

The probability that the best string is selecred and introduced into the mating pool is very high. However,
Elitism can be used to eliminate che chance of any undesired loss of information during the mutation stage.
Moreover, the execution time is less.
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Figure 15-21 Stochastic universal sampling,
Elitism

The first besc chromosome or the few best chromosomes are copted to the new population. The rest is done
in a classical way. Such individuals can be lost if they are not selected 1o reproduce or if crossover or mutation
destroys them. This significantly improves the GA's performance.

15.9.2.6 Stochastic Universal Sampling

Stochastic universal sampling provides zero bias and minimum spread. The individuals are mapped to con-
tiguous segments of a line, such that each individual’s segment is equal in size to its fitness exactly a5 in
Roulerte wheel selection. Here equally spaced pointers are placed over the line, as many as there are individ-
uals to be selecred. Consider NPointer the number of individuals to be selected, then the distance berween
the pointers are 1/NPointer and the position of the first pointer is given by a mndomly generared number in
the range [0, 1/NPointer). For 6 individuals to be selected, che distance berween the pointers is 1/6 = 0.167.
Figure 15-21 shows the selection for the above example.

Sample of 1 random number in the range [0, 0.167]: 0.1.

After selection the maring population consists of the individuals,

1,2,3,4,6,8

Stochastic universal sampling ensures selection of offspring that is closer to what is deserved as compared
o Roulette wheel selecrion.

I 15.9.3 Crossover {(Recombination)

Crossover is the process of taking two parent solutions and producing from them a child. After the selecdon
(reproduction) process, the population is enriched with better individuals. Reproduction makes clones of
good strings bur does not create new ones. Crossover operator is applied to the mating pool with the hope
thar It creates z better offspring,

Crossovet is a recombination operator that proceeds in three steps:

1. The reproducrion operaror selects at random a pair of two individual strings for the maring,
2. Across site is selected at random along the string length.
3. Finally, the position values are swapped between the rwo strings following the cross site.

That is the simplest way how to do that is 1o choose randomly some crossover point and copy everything
before this point from the first parent and then copy everything after the crossover point from the other
parent. The various crossover techniques are discussed in the following subsections.

§
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10110010

Parant 1

101015111

l | ,.I!

Child 1 10110111
1

Parent 2

Chid2 [101011010

Figure 15-22 Single-point crossover.

16.9.3.1 Single-Point Crossover

The tradirional genetic algorithm uses single-point crossover, where the rwo mating chromosomes are cut
once ax corresponding points and the sections after the cuts exchanged. Here, a cross site or crossover point
is selected randomly along the length of the mated strings and birs next to the cross sites are exchanged.
If appropriare site is chosen, berer children can be obrained by combining good parents, else it severely
hampers string qualicy.

Figure 15-22 illuscrates single-point crossover and it can be observed that the bits next to the crossover
poine are exchanged to produce children. The crossover point can be chosen randomly.

15.9.3.2 Two-Point Crossover

Apart from single-point crossaver, many different crossover algorithms have been devised, often involving
more than one cut point. It should be noted thar adding further crossover points reduces the performance of
the GA. The problem with adding additional crossover points is chac building blocks are more Jikely to be
disrupted. However, an advantage of having more crossover points is that the problem space may be searched
more thoroughly.

In two-point crossover, two crossover paintsare chasen and the contents berween these points are exchanged
berween rwo mated parencs.

In Figure 15-23 the doteed lines indicate the crossover points. Thus the contents between these points are
exchanged berween the parents to produce new children for mating in the next generation.
‘

Parent1 | 111011010
o1

Parent2 | 011011100
] 1

'
'
{
[
1
]

Chitd1 111101010

ono11100

Child 2

Figure 15-28 Two-point crossover.
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Originally, GAs were using one-point crossover which cuts rwo chromosomes in one point and splices the
wo halves to create new ones. But with this one-point crossover, the head and the rail of one chromosome
cannot be passed together to the offspring. If both the head and the tail of a chromosome contain good
genetic informarion, none of the offspring obrained directly with one-point crossover will share the two good
fearures. Using a two-point crossover one can avoid this drawback, and so it is generally considered bewer than
one-point crossover. In fact, this problem can be generalized o each gene position in a chromosome. Genes
thar are close on a chromosome have more chance to be passed together to the offspring obtained through
N-points crossover. It leads to an unwanted correlation becween genes next o cach other. Consequently, the
efficiency of an N-point crossover will depend on the position of the genes within the chromosome. In a
genetic representation, genes that encode dependent characteristics of the solution should be close together.
To avoid all the problem of genes locus, a good thing is to use a uniform crossover as recombination operator.

15.9.3.3 Muitipoint Crossover (N-Point Crossover)

There are two ways in this crossover. One is even number of cross sites and the other odd number of cross sites.
In the case of even number of cross sites, the cross sites are selected randomly around a circle and information

is exchanged. In the case of odd number of cross sites, a different cross point is always assumed at the sering
beginning.

15.8.3.4 Uniform Crossover

Uniform crossover is quite different from the N-point crossover. Each gene in the offspring is created by
copying the corresponding gene from one or the other parent chosen according to a random generated binary
crossover mask of the same length as the chromosomes. Where there isa 1 in the crossover mask, the gene is
copied from the first parent, and where there is a 0 in the mask the gene is copied from the second parent. A
new crossover mask is randomly generated for each pair of parents. Offspring, therefore, contain a mixture
of genes from each parent. The number of effective crossing poinc is not fixed, buc will average /2 (where Z
is the chromosome length).

In Figure 15-24, new children are produced using uniform crossover approach. It can be noticed that
while producing child 1, when there isa 1 in the mask, the gene is copied from parent 1 else it is copied from
parent 2. On producing child 2, when there is a 1 in the mask, the gene is copied from patent 2, and when
there is a 0 in the mask, the gene is copied from the parent 1.

15.9.3.5 Three-Farent Crossover

In this crossover technique, three parents are randomly chosen. Each bit of the first patent is compared with
the bit of the second parent. If bath are the same, the bit is taken for the offspring, otherwise the bit from the
third parenc is taken for the offspring, This concepr is illustrated in Figure 15-25.

Parent 1 10110011
Parent 2 000110160
Mask 11010110
Child 1 10011010
Child 2 00110011

Figure 15-24 Uniform crossover.
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Parent 1 11010001
Parent 2 01101001
Parent 3 01101100
Child 01101001

Figure 15-25 Three-parent crossover.

15.8.3.6 Crossover with Reduced Surrobate

The reduced surrogate operator constraints crossover to always praduce new individuals wherever possible.

This is implemented by restricting the location of crassover points such that crossover points only eccur where
gene vatues differ.

15.9.8.7 Shuffle Crossover

Shuffle crossover is related to uniform crossover. A single crossover position {as in single-point crossover) is
selected. But before the variables are exchanged, they are randomly shuffled in both parents. After recombina-
tion, the variables in the offspring are unshuffled. This removes positional bias as the variables are randomly
reassigned each time crossover is performed.

15.9.3.8 Precedence Preservative Crossover

Precedence preservative crossover (PPX)} was independencly developed for vehicle routing problems by Blanton
and Wainwright (1993) and for scheduling problems by Bierwirth et al. (1996}. The operator passes on
precedence relations of operations given in two parental permutations to one offspring at the same rate, while
no new precedence relations are introduced. PPX is illustrated below for a problem consisting of six operations
A-F The operator works as follows:

L. A vector of length Sigma, sub 7 = 1 to m, representing the number of operations involved in the problem,
is randomly filled with elements of the set {1, 2).
2. This vector defines the order in which the operations are successively drawn from parent 1 and parent 2.

. We can also consider the parent and offspring permurtations as lists, for which the operations “append”
and “delere” are defined.

4. First we starr by inirializing an empty offspring.

5. The lefrmost operation in one of the two parents is selecred in accordance with the order of parents given
in the vecror.

G. After an operation is selected, it is deleted in both parents.
7. Finally the selected operation is appended ro the offspring.
. Step 7 is repeated until both parents are empty and the offspring contains all operations involved.
Note that PPX does not work in 2 uniform-crossover manner due to the “deletion—append” scheme used.
Example is shown in Figure 15-26.
15.8.3.9 Ordered Crossover

Ordered two-point crassover is used when the problem is order based, for example in U-shaped assembly
line balancing, ete! Given two parent chromosomes, two random crossover poincs are selected partitioning

g o -
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Parentpermutaton1 A B C D E F

Parentpermulaton2 C A B F D E

Select parent no. (1/2) 12 11 22

Offspring permuiation A CBDFE

Figure 15-26 Precedence preservative crossover (PPX).

Parent1:4 2|1 3|65 Child1:4 2j3 1|65
Parent2:2 3|1 4|56 Child2:2 3|4 1|56
Figure 15-27 Ordered crossover.

them into a left, middle and right portions. The ordered two-paint crossover behaves in the following way:
child 1 inherics its left and right section from’ parent |, and its middle section is determined by the genes in
the middle section of parent 1 in the order in which the values appear in parent 2. A similar process is applied
to determine child 2. This is shown in Figure 15-27.

15.9.3.10 Partially Matched Crossover

Parcially marched crossover (PMX) can be applied usefully in che TSP Indeed, TSP chromosomes are simply
sequences of integers, where each integer represents a different ciry and the order represents the time atwhich a
city is visited. Under this representarion, known as permutation encoding, we are only interested in labels and
not alleles. It may be viewed as a crossover of permuctations that guarantees that all positions are found exacily

once in each offspring, i.c., both offspring receive a full complement of genes, followed by the corresponding
filling in of alleles from cheir parents. PMX proceeds as follows:

1. The two chromosomes are aligned.

2. Two crossing sites are selected uniformly ac random along the strings, defining a matching section.
3. The matching section is used to effect a cross through position-by-position exchange operation.

4. Alleles are moved to their new positions in the offspring,

The following illustraces how PMX works.

Name884.567.13210 Allele101.001.1100
Name871.2310.9546 Allele111.011,1101

Figure 15-28 Given strings.

Consider the two strings shown in Figure 15-28, where the dots mark the selected cross points. The matching
section defines the position-wise exchanges that must take place in both parents to produce the offspring.
The exchanges are read from the matching section of one chromosome to that of the other. In the example
illuserate in Figure 15-28, the numbers that exchange places are 5 and 2, 6 and 3, and 7 and 10. The resulting
offspring are as shown in Figure 15-29. PMX is dealt in derail in the next chapter.
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Name 984.2310.1657 Allele 101.010.1001

Neme 8101.567.9243 Allele 111.111.1001

Figure 15-29 Partially maeched crossover.

15.9.3.11 Crossover Probability

The basic paramerer in crossover rechnique is the crossover probability {P;). Crossover probability is a param-
erer to describe how often crossover will be performed. If there is no crossover, offspring are exact copies
of parents. If there is crossover, offspring ar¢ made from parts of both parents’ chromosome. IF crossover
probability is 100%, then all offspring are made by crossover. If it is 0%, whole new generation is made from
exact copies of chromosomes from old population (but this does not mean that the new generation is the
samel). Crossaver is made in hope that new chromosomes will conrain good parts of old chromosomes and
therefore the new chromosomes will be berter. However, it is good to leave some part of old popularion survive
10 NEXT generation.

I 15.9.4 Mutation

After crossover, the strings are subjected to muration. Mutation prevents the algorithm to be trapped in a local
minimum. Murarion plays the role of recovering the last generic marerials as well as for randomly distributing
generic information, It is an insurance policy against the irrevessible loss of genetic marerial. Mutation has been
traditionally considered as a simple search operator. If crossover is supposed to exploit the current solucion
to find better ones, mutation is supposed to help for the exploration of the whole search space. Murarion is
viewed as a background operator to maincain genetic diversity in the population. Ir introduces new genetic
structures in the popularion by randomly modifying some of its building blocks. Mutation helps escape from
local minimas trap and maintains diversity in the poputation. It also keeps the gene pool well stocked, thus
ensuring ergodicity. A search space is said to be ergodic if there is 2 non-zero probability of generating any
solution from any population state.

There are many different forms of mutation for the different kinds of representation. For binary representa-
tion, a simple mutation can consist in inverting the value of each gene with a smal probability. The probability
is usually taken abour 1/L, where L is the length of the chromosome. It is also possible to implement kind
of hill climbing mutation operators that do mutation only if it improves the quality of the solution. Such an
operator can accelerate the search; however, care should be taken, because it mighe also reduce the diversity
in the population and make the algorithm converge toward some local optima. Mutation of a bit involves
flipping a bit, changing 0 to | and vice-versa,

15.8.4.1 Flipping

Flipping of a bir invelves changing 0 to I and 1 ro 0 based on a muration chromosome generated. Figure 15-30
explains mutation-flipping concepr. A parent is considered and a muration chromosome is randomly gener-
ared. Fora 1 in muration chramosome, the corresponding bit in parent chromosome is flipped (0 ro 1 and
} to 0) and child chromosome is produced. In the case illustrated in Figure 15-30, 1 occurs ac 3 places of
muration chromosome, the correspending bits in parent chromosome are flipped and the child is generated.

15.9.4.2 Interchanging

Two random positions of the sering are chosen and the bits corresponding to those positions are interchanged

(Figure 15.31).
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Parem 1011 0101
Mutation 1000 100 1
chromosome

Child 06011 110 0

Figure 15-30 Mutation flipping,

Parant 10110101
Child 11110001

Figure 15-31 Intcechanging.

T
Parent 10110101

Chitd 10110':110

Figure 15-32 Reversing.
15.9.4.3 Reversing

A random pasition is chosen and the bits next to that position are reversed and child chromosome is produced

(Figure 15-32).

15.9.4.4 Mutation Probability

Animportant parameter in the mutation rechnique is the muration probability (P,). It decides how often parts
of chromosome will be mutated. If there is no muration, offspring are penerared immediately after crossover
(ar directly copied) wichout any change. If mutacion is performed, one or more parts of a chromosome are
changed. If mutation probability is 100%, whole chromosome is changed; if it is 0%, nothing is changed.
Mutation generally prevents the GA from falling into local extremes. Mutation should not occur very often,
because then GA will in facr change to random search,

l15.10 Stopping Condition for Genetic Algorithm Flow

In short, the various stopping condition are listed as Follows:

V. Maximum generations: The GA stops when the specified number of generations has evolved.

2. Elapsed time: The genetic process will end when a specified vime has elapsed.
Note: If the maximum number of generation has been reached before che specified time has elapsed, the
process will end.

3. No change in fitness: The genetic process will end if chere is no change to the population’s best fitness for
a specified number of generations,
Note: If the maximum number of generation has been reached before the specified number of gencration
with no changes has been reached, che process will end.
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4. Stafl generations. The algorichm stops if there is no improvement in the objective function for a sequence
of consecutive generations of length “Srall generations.”

5. Stall time limit. The algorithm stops if there is no improvement in che objective funcrion during an
interval of time in seconds equal ro “Stall time limic.™

The termination or convergence criterion finally brings the search 1o a halt. The following are the few
methods of termination techniques.

l 15.10.1 Best Individual

A best individual convergence criterion stops the search once the minimum fitness in the population drops

below the convergence value. This brings the search to a faster conclusion, guaranteeing ar least one good
soludion.

15.10.2 Worst Individual

Worst individual terminates the search when the least fir individuals in the population have fitness less than
the convergence criteria. This guarantees the entire population to be of minimum smndard, although the
best individual may not be significancly better than the worst. In this case, a stringent convergence value may
never be met, in which case the search will rerminare after the maximum has been exceeded.

l 15.10.3 Sum of Fitness

In this terminacion scheme, the search is considered to have satisfaction converged when the sum of the
firness in che entire population is less than ar equal ta the convergence value in the population record. This
puarantees char virtually all individuals in the population will be within a particular fitness range, although
it is berter to pair this convergence criteria with weakest gene replacement, ocherwise a few unfir individuals

in the population will blow out the fitness sum. The population size has to be considered while setting the
convergence value.

l1 5.10.4 Median Fitness

Here ar least half of the individuals will be better than or equal so the convergence value, which should give
a good range of solutions to chaose from.

l 15.11 Constraints in Genetic Algorithm

IF the GA considered consists of only objective function and no information abour the specifications of

variable, then ivis called unconstrained aprimization problem. Consider, an unconstrained optimization problem
of the form

Minimize f{x) = =* (15.11)
and there is no informarion abour “x” range. GA minimizes this function using its operators in random
specifications,

In the case of constrained optimization problems, the information is provided for the variables under
consideration. Conscraints are classified as:

L. Equality relations.

2, Inequalicy relations.

- e memee e e
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A GA generaees a sequence of parameters to be tested using the system under consideration, objective
function (to be maximized or minimized) and che constraints. On running the system, the objective function
isevaluated and constraints are checked ro see if there are any violarions. If there are no violatians, the parameter
set is assigned the firness value corresponding to the abjective funcrion evaluation. When the constraincs are
violated, the solution is infeasible and thus has no fitness. Many practical problems are constrained and it
is very difficulr o find a feasible point that is best. As a result, one should ger some information our of
infeasible solutions, irrespective of their firness ranking in relation to the degree of constraint violation. This
is performed in penalty method.

Penalty method is one where a constrained optimization problem is transformed to an unconstrained
optimization problem by associating a penalty or cost with all constraint violations, This penalcy is included
in the objective funetion evaluation,

Consider the original constrained problem in maximization form:

Maximize f(x}
Subjectwogi{e) 20, i=1,23,...,n (15.12)
where x is a &-vector. Transforming this to unconstrained form:
]
Maximize f{x) + 23 ® (g(x)] (15.13)
i=1

where & is che penalty funcron and P is the penalty coefficient, There exist several alrernatives for this
penalty function. The penalry function can be squared for all violared constraints, In cercain situations,
the unconstrained solution converges to che constrained solution as the penalty coefficient p rends o
infinity.

I 15.12 Problem Solving Using Genetic Algorithm

l 15.12,1 Maximizing a Function

Consider the problem of maximizing the function,
fley = {15.14)

where x is permitted to vary berween 0 and 31. The steps involved in solving chis problem are as follows:

I Step 1: For using GA approach, one must first code che decision variable “x” into a finice length stringT|
Using a five bit (binary integer) unsigned integer, numbers berween 0(00000) and 31{11111) can
be obrained.

The objective function here s f(x) = x? which is 1o be maximized. A single generation of a GA
is performed here with encoding, selection, crossover and murarion. To start with, select inicial
population at random. Here initial population of size 4 is chosen, but any number of populations
can be selected based on the requirement and application. Table 15-4 shows an initial population
randomly selected.

a
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Table 15-4  Selection

String no.  Initial xvalue  Fitness  Drob; r‘ercentage Expected Actual
population Sfla)= & prob- count count
(randomly - ability
selected) (%)
1 01100 12 144 0.1247 12.47 0.4987 1
2 11001 25 625 0.5411 54.11 2.1645 2
3 00101 5 25 0.0216 2,16 0.0866 1]
4 10011 19 361 03126  31.26 12502 1
Sum 1155 1.0000 100 4.0000 4
Average 288.75 0.2500 25 1.0000 1
Maximum 625 0.5411 54.11 21645 2

Step 2: Obrain the decoded x values for the initial population generated, Consider string 1,

Step 3

Step 4

=048+44+0+0

=12

Thus for all the four strings the decoded values are obrained.

01100 =02  + 1423 41522 +0x2' +0%2"

Caleulate the fitness or objective funcrion. This is obrained by simply squaring the “x™ value,
since the given function is f(x} = **. When x = 12, the firness value is

fla=x =010 =144
Forx =25, f( =+ = (25)° =625

and so on, unil the entire population is computed.

Compure the probabilicy of selection,

Prob;

f (&),

n

¥ fl;
=1

{(15.15)

where » is the number of populations; f(x) is the fitness value corresponding to a particular
individual in the population;

E f(x) is the summarion of all the fitness value of the entire population.

Considering string 1,

Fitness f{x) = 144

Zf () = 1155

The probability that string | occurs is given by

Py = 144/11553 = 0.1247
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The percentage prabability is obrained as
0.1247 % 100 = 12.47%
The same operation is done for all the strings. It should be noted that summation of probability
selecris 1,
Step 5: The next step is to calculate the expected count, which is calculared as
Sl
Expected count = ———— (15.16)
P (g fG);
where
2 [
(Avg fl)i = | =—
For string 1,
Expected count = Fitness/Average = 144/288.75 = 0.4987
We then compute che expected count for the entire population. The expected count gives an idea
of which population can be selected for further processing in the macing pool.
Step 6: Now the actual count is 1o be obuined to select the individuals who would participate in

the crossover cycle using Roulecte wheel selection. The Roulette wheel is formed as shown
Figure 15-33.

The entire Roulerce wheel covers 100% and the probabilities of selection as calculaced in step 4
for the entire populations are used as indicators to fir into the Roulerte wheel. Now the wheel
may be spun and the number of occurrences of population is noted to get actual count.

1. String 1 occupies 12.47%, so there is a chance for it 10 occur at least once. Hence irs acrual
count may be 1.

2. With scring 2 occupying 54.11% of the Roulette wheel, it has a fair chance of being selecred
twice. Thus its acrual count can be considered as 2.

3. On the other hand, string 3 has the least probability percentage of 2.16%, so their occurrence
for next cycle is very poor. As 2 result, ic actual count is 0.

4
2.16%

Figure 15-33 Selection using Roulerte wheel.

[
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Step 7:

Step 8:

Step 9:

Step 10:

L

Table 15-5 Crossover

String no.  Mating Pool Crossover ~ Offspring  x value Fitness value

point after fla=
crossaver

1 01160 4 01101 13 169

P lllOQl 4 11000 24 576

3 1jooe! 2 11011 27 729

4 14011 2 10001 17 289

Sum 1763

Average 440.75

Maximum 729

4. String 4 with 31.26% has ac least one chance for occurring while Roulette wheel is spun, thus
its actual count is 1.

The above values of actual count are rabulated as shown is Table 15-5.

Now, wrire the mating pool based upon the actual count as shown in Table 15-5.

The aceual count of string no. 1 is 1, hence it occurs once in the mating pool. The actual count
of string no. 2 is 2, hence it occurs twice in the mating pool. Since the actual count of string no.
315 0, it does not occur in the mating pool. Similarly, the actual counr of string no. 4 being 1. it
occurs once in the maring pool. Based on this, the maring pool is formed.

Crossover operation is performed to produce new offspring (children). The crossover point is

specified and based on the crossover point, single-point crossover is performed and new offspring
is produced. The parents are

Parent 1 01100

Parent 2 11001
The ofTspring is produced as

Offspring 01101}

Offspring 2 11000

ln a similar manner, crossover is performed for the next strings.

After crossover operations. new offspring are produced and “x” values are decoded and fitness is
calculated.

Ln this step, mutation operation is performed to produce new oftspring after crossover operarion.
As discussed in Section 15.9.4.1 mutation-flipping operation is performed and new offspring are
produced. Table 15-6 shows the new offspring after mutation. Once the offspring are obrained
after mutarion, they are decoded to x vafue and the firness values are computed.

This cotjnplcres one generation. The mutation is performed on a bit-bit by basis. The crossover probability
and muration probability were assumed to be 1.0 and 0.001, respectively. Once selection, crossover and
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Table 15-6 Murartion

Stringno. Offspring  Mutation Offspring ~ xvalue Fitness
after chromosomes  after fla=a
crossover for flipping  mutation

1 0110 10000 11101 9 841

2 11000 00000 11000 24 576

3 11011 00000 11011 27 729

4 10001 00100 10100 20 400

Sum 2546

Average 636.5

Maximum 841

mutation are performed, the new popularion is now ready to be tested. This is performed by decoding the
new strings created by the simple GA afrer murarion and calculaces the fitness function values from the x
values thus decoded. The results for successive cycles of simulation are shown in Tables 15-4 and 15-6.

From the rables, it can be observed how GAs combine high-performance norions to achieve better per-
formance. In the tables, it can be noted how maximal and average performances have improved in the new
popularion. The population average fitness has improved from 288.75 to 636.5 in one generation. The max-
imum fitness has increased from 625 1o 841 during the same period. Although random processes make this
best solution, its improvement can also be seen successively. The best string of the initial population {1100
1) receives two chances for its existence because of its high, above-average perfermance. When this combines
at random with the nexc highestsering (1 00 1 1) and is crossed at crossover point 2 (as shown in Table 15-5),
one of the resulting strings (1 1 0 1 1) proves o be a very best solution indeed. Thus after muration ar random,
a new offspring (1 1 1 0 1) is produced which is an excellent choice.

This example has shown one generation of a simple GA.

I 15.13 The Schema Theorem

In this section, we will formulate and prove the fundamencal resulr on the behavior of GAs — the so-called
Schema Theorem. Although being completely incomparable with convergence results for conventional opri-
mization metbods, it still provides valuable insight into the intrinsic principles of GAs. Assume a GA with
proportional selection and an arbitrary but fixed fitness funcrion £ Let us make the following notations:

1. The number of individuals which fulfill H ar time step r are denoted as
e =8N H|

2. The expression f (r) refers to the observed average fitness at time #:

3. The term f (H. &) stands for the observed average ficness of schema H in time step £:

- 1
FHA=— 3 fbd

’
He iel jlb; . €H }
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Theorem (Schema Theorem — Holland 1975). Assuming we consider a simple GA, the following inequality
halds for every schema H:

FUHD S(H
Elrpun] 2 iy, f}. ” (1 —PI-H(T‘I) (1 — pap)?"!

Proof. The probability that we select an individuat fulfilling # is

Z f(b!r)
féLfTb,.aefl}

"

> b
=1

This probability does not change throughout the execurion of the selection loop. Moreover, each of the #
individuals is selected independent of the others. Hence, the number of selected individuals, which fulfill H,

is binomially distributed with sample amount 7 and the probability. We ohtain, therefore, that the expected
number of selected individuals fulfilling A is

Y. fien > i 2 [

ieljifeen) _ THsiE (A8 resr} iefjlb,en} fF(H R
m m =m— = TH. m =THoTS

Yrka T Y fw S fibim £
=1 i=1 i=1

If owo individuals are crossed, which both fulfill H, the two offsprings again fulfill . The number of strings
fulfilling H can only decrease if one string, which fulfills A, is crossed with a string which does nor fulfill A,
but, obviousky, only if the cross sire is chosen somewhere in between the specifications of H. The probabilicy
that the cross site is chosen within the defining length of H is

§(H)

n—1

Hence the survival probability gy of H, i.e., the probabiliry shar a string fulfilling H produces an offspring
also fulfilling A, can be estimated as follows (crossover is only done with prohability pe):
§(H)
Pzl -po—r
n—1
Selection and crossover are carried our independently, so we may compute the expected number of strings
fulfilling H afver crossover simply as

H, H, S(H

fq( r]fH.JPS?_f-( t)’H.r(l_ A ))

fu Fw

After crossover, the number of strings fulfilling H can only decrease if a string fulfilling F is alered by mutarion

ara specification of H. The probabiliry that all specifications of H remain untouched by mutation is obviously

OH)

C
n-1

(1 — pas)

The arguments in the proof of the Schema Theorem can be applied analogously to many other crossover and
Murtarion operations.
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I 15.13.1 The Optimal Allocation of Trials

The Schema Theorem has provided the insight that building blocks receive exponentially increasing trials
in furure generations. The question remains, however, why this could be a good strategy. This leads 10 an
imporrant and well-analyzed problem from statistical decision theoty — the two-armed bandir problem and
its generalization, the k-armed bandit problem. Although this seems like a decour from our main concern, we
shall soon understand the connection to GAs.

Suppose we have a gambling machine with two slots for coins and two arms. The gambler can deposit the
coin either into the left or the right slor. After pulling the corresponding arm, either a reward is given or the
coin is lost. For mathematical simplicity, we just work with outcomes, i.e., the difference becween the reward
{which can be zero) and the value of the coin. Let us assume thar the lefr arm produces an cutcome with mean
value ¢t and a variance ai] while the right arm produces an outcome with mean value j22 and variance 0'22.
Without loss of generaliry, although the gambler does not know this, assume that py > 2.

Now the question arises which arm should be played. Since we do not know beforehand which arm is
associated with the higher outcome, we are faced with an interesting dilemma. Not only must we make a
sequence of decisions about which arm to play, we have to collect, ar the same time, informarion about which
is the berer arm. This trade-off berween explorarion of knowledge and its exploitation is the key issue in this
problem and, as turns out later, in GAs, oo, .

A simple approach to this problem is to separate exploration from exploitation. More specifically, we could
perform a single experiment at the beginning and thereafter make an irceversible decision thar depends on the
cesulits of the experiment. Suppose we have N coins. If we first allocate an equal number n {where 2n < M)
of trials ro both arms, we could allocate the remaining & — 2n trials to the observed betrer arm. Assuming
we know all involved parameters, the expected loss is given as

LN = oy —pa N — ndg(n) + nl1 — gla)l)

where 4(r) is the probability that the worst arm is the obsetrved best arm after 2n experimental trals. The
underlying idea is obvious: In case that we observe thar the worse arm is the best, which happens wich
probability g(n), the toral number of trials allocated ro the right arm is N — . The loss is. therefore,
(1 =122 YN — n). [n the reverse case where we actually observe cha the besc arm is the best, which happens
with probability 1 — g(n), the loss is only whar we ger less because we played the worse arm » times, ic.,
{st1 — 12 ). Taking the cencral limit theorem into account, we can approximate g{n) with the tail of a normal
diseribucion:

where
1 —p2
\/ r:rl2 +0’12
Now we have to specify a reasonable experiment size n. Obviously, if we choose # = 1, the obrained
information is porentially unreliable. If we choose, however, # = N/2 there are no trials left to make use of the

information gained through the experimental phase. What we see is again the wradeoff berween exploitation
with almost no exploration (n = 1) and exploration withour exploitation {z = : V/2). [t does nor take a Nobel

r=

b
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prize winner to see that the optimal way is somewhere in the middle. Holland has swudied this problem in
detail. He came to the conclusion thar the optimal strategy is given by the following equation:

1
4.2 N
g ln(BJr'la"lnNz)

|

where

b=
My —p2

Making a few transformations, we obrain that

N—n' = Vo 6510 N27128

Thar is, the optimal strategy is 1o allocate slightly more than an exponentially increasing number of trials
to the observed best arm. Although no gambler is able to apply this strategy in pracrice, because it requises
knowledge of the mean values 41 and 13, we still have found an important bound of performance a decision
strategy should try to approach.

A GA, although the direct connection is not yet fully clear, actually comes close to this ideal, giving at
least an exponentially increasing number of trials w the observed best building hlocks. However, one may still
wonder how the rwo-armed bandit problem and GAs are telated. Let us consider an arbitrary string position.
Then there are two schemara of order one which have their only specification in this position. According 10
the Schema Theorem, the GA implicitly decides berween these two schemata, where only incompleze data are
available {observed average fitness values). In this sense, a GA solves a lot of rwo-arned problems in parallel.

The Schema Theorem, however, is not restricted o schemata of order one. Looking at competing schemata
{different schemata which are specified in the same positions), we observe that a GA s solving an enormous
number of £-armed bandit problems in paraltel. The #-armed bandir problem, although much mare com-

plicated, is solved in an analogous way — the observed better alternarives should receive an exponentially
Increasing number of trtals. This is exacrly whar a GA does!

I 15.13.2 Implicit Parallelism

S0 far we have discovered two distinct, seemingly conflicting views of genetic algorichms:

1. The algorithmic view that GAs operate on strings;

2. the schema-based interprecation.

So, we may ask whar a GA really processes, strings or schemata? The answer is surprising: Both. Nowadays,
IJ'lle ommon interpretation is that a GA processes an enormous amounc of schemara implicitly. This is accom-
plished by exploiting the cusrently available, incomplere information about these schemara continuously, while
trying o explore more information about them and other, possibly better schemata. .

This remarkable property is commonly called the implicic parallelism of GAs. A simple GA has only »
Sttuctures in one time step, without any memory or bookkecping about the previous generarions. We will
Row try ta et a feeling how many schemaca a GA actually processes.

Obviously, there are 3" schemara of length . A single binary string fulfills 2 schema of order 1, (3)
schemara of order 2, in general, {7) schemata of order & Hence, a suring fulfills

"

>(4)-7

k=1
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" Theorem, Consider a randomly generated start population of a simple GA and let & € (0, 1} be a fixed error
bound. Then schemata of length

L<e{n—1}+1
have a probability of at least {1=€) to survive one-point crossover {compare with the proof of the Schema

Theorem). If the population size is chosen as m = 2//2, the numbser of schemata, which survive for the next
generation, is of order Olnr?).

15.14 Classification of Genetic Algorithm

There exist wide variety of GAs including simple and general GAs discussed in Sectiens 15.4 and 15.5,
respectively. Some other variants of GA are discussed below.

l 15.14.1 Messy Genetic Algorithms

In a “classical” GA, the genes are encoded in a fixed order. The meaning of a single gene is deterinined by
its position inside the string, We have seen in the previous chapter that a GA is likely 1o converge well if the
optimization task can be divided into several short building blocks. What, however, happens if the coding is
chosen such that couplings occur berween distant genes? Of course, one-point crossover rends to disadvantage
long schemata (even if chey have low order) over shore ones.

Messy GAs try to overcome this difficulty by using a vartable-length, position-independent coding. The
key idea is to append an index to each gene which allows identifying its position. A gene, therefore, is no longer
represented as a single allele value and a fixed position, buc as a pair of an index and an allele. Figure 13-34(A)
shows how chis “messy” coding works for a string of length 6.

Since with the help of the index we can identify che genes uniquely, genes may be swapped arbitrarily
without changing the meaning of the string. With appropriate genetic operations, which also change the
order of the pairs, the GA could possibly group coupled genes together automatically.

(@)

Figure 15-34 (A) Messy coding and (B} positional preference: Genes with indices 1 and 6 occur rwice,
the first occurrences are used.

[
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Figure 15-35 The cur and splice operarion.

Owing 10 the free arrangemen of genes and the variable length of the encoding, we can, however, run into .
pro.blems. which do nor occur, in a simple GA. First of all, it can happen thac there are owo entries in a string,
:..vhlch con.-espo.nd to the same index bur have conflicting alleles. The most cbvious way to overcome this

over-specification” is positional preference  the first entry, which refers to a gene, is taken. Figure 15-34(B)
shows an example. The reader may have observed that the genes with indices 3 and 3 do nor oceur ar all in
The example in Figure 15-34(B). This problers of “under specification” is more complicared and its solurion
15 0t as obvious as for over-Specificarion. OF course, a lor of variancs are reasonable.

One approach could be to check al) possible combinarions and to take the best one (for 4 missing genes,
there ate 2% combinarions). Wich the objective 10 reduce this effort, Goldberg et al. have suggested to use
so-called comperitive templates for finding specificarions for & missing genes. It ts nothing else chan applying
alocal hill climbing method with random initial vatue o the 4 missing genes. P

. While messy GAs usually work with the same muration operator as simple GAs (every allele is altered
Wl(.h a low probabilicy pM), the crossover operator is replaced by 2 more general cut ana splice operaror
.whlch also allows to mate parents with different lengths. The basic idea is to choose cur sites for both parents
independently and 1o splice the four fragmens. Figure 15-35 shows an cxample.

I 15.14.2 Adaptive Genetic Algorithms

Adapri ion s1 i
\ ptive GAs are those whose parameters, such as the population size, the crossing over probability, or
€ mutation probabilicy, are varied while the GA is running. A simple varizne could be cthe following: The
mu i i i i i
fation rate is changed according to changes in the population - the longer the population does not improve,

the hj i i ; it i i
hlgl'fer the mutation rate is chosen. Vice versa, it is decreased again as soon as an improvement of the
population oceurs,

151427 Adaptive Probabilities of Crossover and Mutation

_I[ ‘;CSSCl'Itia.ll 1o have two characteristics in GAs for optimizing multimodal functions. The first characreristic
?_;Ees::gszlf:h;lcomrcr_gclro ;n optirr{um (local or global) after locaring che Tegion conltaining the optimum.
optimunn, o bajc::ll;:tlljc is the c]:paculy; ) exp']onl'e -new regions of_rhe solution space in search of the global
e ofcmmsonn e‘:lnvleel‘-l r ese ¢ .airnc‘rcl;snm of the GA is dictated b:v the values of p,,, and p,, z.md.thc
Modeme]y o {J yed. Increasing values of g,y and p, promote exploration ar the expense of exploitation.

ge values of p, (in the range 0.5-1.0) and small vafues of py, {in the range 0.001-0.05) are

co . . . . .
mmonly employed in GA practice. In this approach, we aim at achieving this tradeoff berween exploration
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and exploitation in 2 different manner, by varying p, and pm adaptively in response to the fimess values of
the solutions; p and p., are increased when the population tends to ger stuck ar a tocal optimum and are
decreased when the population is scattered in the solution space.

15.14.2.2 Design of Adaptive p, and p,,

To vary p. and py, adaprively for preventing premature convergence of the GA 1o a local optimum, it is
essential to identify whether the GA is converging to an optimum. One possible way of detecting is to observe
average fitness value £ of the population in relation to the maximum fitness value fx of the population. The
value fpx — £ is likely to be less for a population that has converged to an optimum solution than that for a
population scarered in the solution space. We have observed the above property in all our experiments with
GAs, and Figure 15-36 illustrates the propercy for a typical case. In Figure 15-36 we notice that frux — f
decreases when the GA converges to alocal optimum wich a fitness value of 0.5. (The globally optimal solution
has a fitness value of 1.0.) We use the difference in the average and maximum fitness value, fa, _}‘r, asa
yardstick for detecting the convergence of the GA. The values of p, and p, are varied depending on the value
of frmax —j_". Since p and py, have 1o be increased when the GA converges to a local optimum, i.¢., when
Srnax —f decreases, p, and pp will have o be varied inversely with fu. —j_". The expressions that we have
chosen for p. and p,, are of che form

Pe= r(’l’(fmu kf)

Pm=£?li(ﬁn1x_f)

Ir has to be observed in the above expressions that p, and py, do not depend on the fitness value of any
particular solution, and have the same values for all the solution of the population. Consequendy, selutions
with high fitness values as well as solurions wich low fitness values are subjected to the same levels of murarion
and crossover. When a population converges to a globally optimal solution {or even a locally optimal solution),
pe and py, increase and may cause the disruprion of the near-optimal solutions. The population may never

0.6
Best
05
0.4
<o ]
3 \
g :
2 03 .
v ', Pop. Max. - Avg.
&
0.2 \
0.1
1 ] T
20 25 30 35 40
Generation

Figure 15-36 Variation of frax —fandfbm {besr fitness).
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converge to the global optimum. Though we may prevent the GA from gerting stuck ac a local optimum, the
performance of the GA (in terms of the generations required for convergence) will certainly deteriorate.

To overcome the above-stated problem, we need to preserve “good” solutions of the population. This can
be achieved by having lower values of p, and p,, for high fitness solutions and higher values of p. and p,
for low fitness solutions. While the high fitness solurions aid in the convergence of the GA, the low fitness
solutions prevenct che GA from getting stuck at a local optimum, The value of py should depend not enly
on fre — f but also on the fitness value fof the solution. Similarly, p, should depend on the fitness values
of boch the pareat solutions. The doser £ is to fpa the smaller p,, should be, i.e., p» should vary directly
a5 fooax — f- Similarly, p, should vary directly as+fna — £/, where 7 is the larger of the fitness value of the

solutions ro be crossed. The expressions for p, and p,, now take the forms

Pe= bl = W fomx =} by < 10
2 =Rl frax — I fax —F s b2 < 1O

{Here #; and k3 have ro be less than 1.0 to constrain p. and y, to the range 0.0-1.0.)
Note chat p, and pyy are zeto for the solution with the maximum fitness. Also p, = £ for a solution with
£ =f,and pn = ks for a solution with f= f. For solution with subaverage fitness values, i.e., f< f, pand

Pr might assume values larger than 1.0. To prevent the overshooting of p and py, beyond 1.0, we also have
the following constrainrs;

p,=lz3,f'5j_r

Pm= 1741 fsf
where ks, &4 < 1.0

15.14.2.3 Practical Considerations and Choice of Values for ki1, ke, ka and ka

In the previous subsection, we saw thar for a solution with the maximum fitness value p, and p,, are both
zero. The best solucion in a population is transferred undisrupted into the next generarion. Together with
the selection mechanism, this may lead to an exponential growth of the solution in the population and may
cause premature convergence. To overcome the above-stated problem, we introduce a defaule mutarion race
(of 0.005) for every solution in the Adaptive Genecic Algorithm (AGA).

We now discuss the choice of values for 4y, £, 3 and k. For convenience. the expressions for g, and p,,
are piven as

Pe= bl o = ffrax =) f2 f
pe=1ts f<f
Pm= l"Z(fmax _f’)"'(fmu ‘f)rle_f
Pm = l"4, f{?
whete k1, by, k3, kg < 1.0.
It has been well established in GA literarure thar moderarely large values of p, (0.5 < p, < 1.0) and small
valyes of p,,, (0.001 << prm < 0.05) are essential for the successful working of GAs. The moderarely large values

of p promote the excensive recombination of schemara, while small values of prs are necessary to prevent the

distuption of the solutions. These guidelines, however, are useful and relevanc when the values of p, and p,,
do not vary.
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One of the goals of the approach is to prevent the GA from getting stuck at a local oprimum. To achieve
this goal, we employ solutions with sub,average firnesses to search the search space for the region containing
the global optimum. Such solutions need o be completely disrupred, and for chis purpose we use a value of

0.5 for k4. Since solutions with a finess value of £ should also be distupted completely, we assign a value of
0.5 to &2 as well.

Based on similar reasoning, we assign £)and 43 a value of 1.0. This ensures tha all solutions with a fitness
value less than or equal to f compulsorily undergo crossaver. The probability of crossover decreases as the

ficness value (maximum of the fitness values of the parent solutions) rends 10 fmax and is 0.0 for solucions wich
a firness value equal to fiu.

I1 5.14.3 Hybrid Genetic Algorithms

As they use the firness funcrion only in the selection step, GAs are blind oprimizers which do not use
any auxiliary information such as derivatives or other specific knowledge about the special structure of the
objective function. If there is such knowledge, however, it is unwise and inefficient not to make use of it.
Several investigations have shown that a lot of synergism lies in the combinarion of generic alzorithms and
conventional metheds.

The basic idea is to divide the optimization task into rwo complementary pares. The GA does the coarse,
global optimization while focal refinement is done by the conventional method {e.g. gradient-based, hill
climbing, greedy algorithm, simulated annealing, etc.). A number of variants are reasonable:

1. The GA performs coarse search first. After the GA is complered, local refinement is done.

2. The local method is integrated in the GA. For instance, every K generations, the pepulation is doped with
a locally oprimal individual.

3. Both methods run in parallel; All individuals are concinuously used as initial values for the local method.
The locally optimized individuals are re-implanted into the currenr generation.

In this secrion a novel oprimization approach is used that switches berween global and local search methods
based on the local topography of the design space. The global and local oprimizers work in concert to efficiently
locate quality design points betcer than either could alone. To determine when it is appropriate to execuce
a local search, some characreristics about the local area of the design space need to be determined. One
good source of information is contained in the population of designs in the GA. By calcularting the relative
homogeneity of the population we can ger a good idea of whether there are multiple local optima locaed
within this local region of the design space.

To quantify the relative homogeneity of the population in each subspace, the coefficient of variance of the
objective funcrion and design variables is calculated. The coefficient of variance is a normalized measure of
variation, and unlike the actual variance, is independent of the magnitude of the mean of the popularion.
A high coefficient of variance could be an indication thar there are mulsiple local optima present. Very low
values could indicate that the GA has converged to 2 smail area in the design space, warranting the use of a
local search algorithm ro find the best design within chis region.

By calculating the coefficient of variance of the bath the design variables and the objective function as the
optimization progresses, it can also be used as a criterion to switch from the global o the local optimizer.
As the variance of the objective values and design variables of the population increases, it may indicare that
the optimizer is exploring new areas of the design space or hill climbing. If the variance is decreasing, the
oprimizer may be converging toward local minima and the oprimizarion process could be made more efficient

by switching to a local search algorichm.

1
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The second method, regression analysis, used in this section helps us derermine when to switch berween
the global and local optimizer. The design dara present in the current population of the GA can be used o
provide information as to the local wpography of the design space by attempting o fir models of various
order to it

The use of regression analysis to augment optimization algorithms is not new. In problems in which the
abjective funcsion or constraints are compurationally expensive, approximations to the design space are creaved
by sampling the design space and then using regression or other methods to create a simple mathematical model
that closely approximates the actual design space, which may be highly nonlinear. The design space can then
be explored 1o find regions of good designs or oprimized o improve the performance of the system using the
predictive surropate approximation models instead of the compurationally expensive analysis code, resulting
in large computational savings. The most common regression models are linear and quadratic polynomials
created by performing ordinary least squares regression on a set of analysis data,

To make cfear the use of regression analysis in this way, consider Figure 15-37, which represents a complex
design space. Qur goal is to minimize this function, and as a first step the GA is run. Suppose thar after a
cerrain number of generations the population consists of the sampled points shown in the figure. Since the
population of the GA is spread througheut the design space, having yer 1o converge into one of the local
minima, it seems logical to continue the GA for addirional generarions. [deally, before the local oprimizer is
run it would be beneficial ro have some confidence that its starting poinc is somewhere within the mode that
conaains the oprimum. Fitting a second-order response surface to the dara and noting the large error (the R2
value is 0.13), there is a clear indication that the GA is currently exploring multiple modes in the design space.

In Figure 15-38, the same design space is shown bur after the GA has begun 1o converge into the part
of the design space containing rhe optimal design. Once again a second-order approximarion is fit to GA's
population. The dotted line connects the points predicted by the response surface. Note how much smaller
the error is in the approximarion (the R2 is 0.96), which is a good indication that the GA is currendy exploring
a single mode within the design space. At this point, the local optimizer can be made to quickly converge
1o the best sofution within this area of the design space, thereby avoiding the slow convergence properties
of .he GA.

After each generation of the global optimizer. the values of the cocfficient of determination and the
coefficient of variance of the enrire population are compared with the designer specified chreshold levels.

@ Sampled designs
— Second-order fit
- - - True design space

01 2 3 a 5 6 7 8 9 10

Figure 15-37 Approximating muliiple modes with a second-order model.
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¢ Sampled designs
— Second-order fit
- - Trus désign space

Figure 15-38 Approximating a single mode with a second-order model.

The first threshold simply staces that if coefficient of determination of the populacion exceeds a designer set
value when a second-order regression analysis is performed on the design dara in the current GA population,
then a local search is started frem the current ‘best design’ in the population. The second threshold is based
on the value of the coefficient of variance of the entire popularion. This threshold is also set by the designer
and can range upwards from 0%. If it increases at a rate greater than the threshold level then a local search is
executed from the best point in the population.

The flewchart in Figure 15-39 illustrates the stages in the algorithm. The algorithm can switch repeatediy
between the global search (Stage 1) and the local search (Stage 2) during execution. In Stage 1, the global
search is initialized and then monitored. This is also where the regression and statistical analysis occurs.

In Stage 2 the local search is executed when the thresheld levels are exceeded, and then this solurion is

passed back and integrated into the global search. The algorithm stops when convergence is achieved for the
global optimization algorithm,

l 15.14.4 Paralle] Genetic Algorithm

GAs are powerful scarch rechniques that are used successfully to solve problems in many different disciplines.
Parallel GAs (PGAs) are particularly easy to implement and promise substantial gains in performance. Assuch,
there has been extensive research in chis field. The section describes some of the most significant problems in
modeling and designing multi-population PGAs and presents some recent advancements.

One of the major aspects of GA is their abilicy to be parallefized. Indeed, because natural evolurion deals with
an entire population and not only with particular individuals, it is a remackably highly parallel process. Except
in the selection phase, during which there is competition berween individuals, the only intetactions berween
reembers of che population occur during the reproduction phase, and usually, ne more than wo individuals
are necessary to engender a new child. Otherwise, any other operations of the evolution, in particular the
evaluarion of each meémiber of the population, can be done separately. So, nearly all the operations in a generic
algorithm are implicitly parallel.

PGAs simply consist in distributing the task of a basic GA on different processors. As those tasks are
implicicly parallel, little time will be spent on communication; and thus, the algorithm is expected o run
much faster or to find more accurate results.

It has been eseablished thar GA's efficiency to find optimal solution is largely determined by the population
size. With a larger population size, the genetic diversity increases, and so the algorithm is more likely to find
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Figure 15-38 Sieps in two-stage hybrid oprimization approach.

a global oprimum! A large population requires more memory to be stored; it has also been proved that it
takes a longer rime to converge. 1f # is the population size, the convergence is expected after »#log(#) funcrion
evaluations.

The use of today’s new parallel computers nor only provides more storage space but also allows the use
of several processors vo produce and evaluate more solutions in a smaller amount of rime. By parallelizing
the algorithm, it is possible t3 increase population size, reduce the compurational cost, and se improve the
performance of che GA.

Probably the first actempt to map GAs 1o existing parallel computer architectures was made in 1981 by
John Grefenstetre. But obviously today, with the emergence of new high-performance computing (HPC),
PGA is really a flourishing area. Researchers try to improve performance of GAs. The stake is to show that
GAs are one of the best optimization methods to be used with HPC.

16.14.4.1 Global Paralfelization

The first atcempt 1o parallelize GAs simply consists of global parallelization. This approach tries ra explicitly
parallelize the implicit parallel tasks of the “sequential” GA. The narure of the problems remains unchanged.
The algorithm still manipulates a single population where each individual can mace with any other, but the
breeding of new children and/or their evaluation ate now made in parallel. The basic idea is thar different
Processors can create new individuals and compute their firness in paraliel almost wichout any communication
among each other. )

To start with, doing the evaluation of the population in paralle] is something really simple to implement.
Each Processor is assigned a subser of individuals to be evaluated. For example, on a shared memory compurer,

SR ST




434 Ganstic Algorithm

individuals could be stored in shared memory, so thar each processor can read the chromosomes assigned and
can wrire back the result of the fitness computation. This method only supposes that the GA works with a
generational update of the population. OF course, some synchronizarion is needed berween generations.

Generally, most of the compurational time in 2 GA is spent calling the evaluation function. The time
spent in manipulating the chromosomes during the selection or recombination phase is usually negligible.
By assigning to each pracessor a subser of individuals to evaluare, 2 speed-up proportional to the number of
processors can be expected if there is a good load balancing between them. However, load balancing should
not be a problem as generally the time spent for the evolution of an individual does not really depend on the
individual. A simple dynamic scheduling algorithm is usually enough to share the population between each
processor equally.

On 2 distributed memory compiter, we can store the population in one “master” processor responsible
for sending the individuals to the other processors, i.e., “slaves.” The master processor is also responsible
for collecting the resule of the evaluation, A drawback of this distribured memory implementation is that
a bordeneck may occur when slaves are idle while only the master is working, But a simple and good use
of the master processor can improve the load balancing by distribucing individuals dynamically to the slave
processors when they finish cheir jobs.

A further step could consist in applying the genetic operators in parallel. In fact, the interaction inside
the population only occurs during sefection. The breeding, involving only two individuals to generate the
offspring, could easily be done simultaneously over #/2 paits of individuals. Bur it is not that clear if it worth
doing so. Crossover is usually very simple and not so time-consuming; the point is not that too much rime will
be lost during the communicarion, bur that the rime gain in the algorichm will be almost nothing compared
to the effore produced to change the code.

This kind of global parallelization simply shows how easy it can be to transpose any GA onto a parallel
machine and how a speed-up sublinear to the number of processors may be expected.

15.14.4.2 Classification of Parallel GAs

The basic idea behind most parallel programs is to divide a task into chunks and te solve the chunks simultane-
ously using multiple processors. This divide-and-conquet appreach can be applied to GAs in many differenc
ways, and the literature contains many examples of successful parallel implementations. Some parallelizarion
methods use a single population, while others divide the population into several relarively isolated subpopu-
lations, Some mechods can exploit massively parallel computer architectures, while athers are betrer suited to
multicomputers with fewer and more powerful processing elements.

There are three main wypes of PGAs:

I. global single-population master-slave GAs,
2. single-population fine-grained,
3. multple-population coarse-grained GAs.

In 2 master-stave GA there is a single panmictic population (just as in a simple GA), but the evaluation
of fitness is discributed among several processors (see Figure 15-40). Since in this type of PGA, selection
and crossover consider the entire population it is also known as global PGA. Fine-grained PGAs are suited
for massively parallel computers and consist of one spatially structured population. Selection and maring are
restricted to a small neighborhood, bur neighborhoods overlap permitring some interaction among all the
individuals (see Figure 15-41 for a schematic of this class of GAs). The ideal case is to have only one individual
for every pracessing element available.

Multiple-population (or multiple-deme) GAs are more sophisticated, as they consist in several subpopu-
ladions which exchange individuals occasionally (Figure 15-42 has a schematic). This exchange of individuals
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Workers

Figure 15-40 A schematic of a master-slave PGA., The master stores the popularion, executes GA operations
and distributes individuals to the slaves. The slaves only evaluace the ficness of the individuals.

Figure 15-41 A schematic of a fine-grained PGA. This class of PGAs has one spaially distributed population,
and it can be implemented very efficiently on massively parallel compurers.

Figure 15-42 A schemaric of a multiple-population PGA. Each process is a simple GA, and there is
{infrequent) communicacion between the populations.

is called migration and, as we shall see in later secrions, it is controlled by several parameters. Multiple-deme
GAs are very popular, bur also are the dlass of PGAs which is most difficult o understand, because the effects
of migration are not fully understood. Mulriple-deme PGAs introduce fundamental changes in the operation
of the GA and have a different behavior than simple GAs.

Multiple-deme PGAs are known with different names. Somecimes they are known as "dis:ributed“l GAs,
because they are usually implemented on distributed memory MIMD computers. Since the computation 1o
communicarion ratio is usually high, they are occasionally called coarse-geained GAs. Finally, multiple-deme
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GAs resemble the “island model” in Popularion Genetics which considers relatively isolated demes, so the
PGAs are also known'as “island” PGAs. Since the size of the demes is smaller than the population used by a
serial GA, we would expect that the PGA converges faster. However, when we compare the performance of
the serial and the parallel algorithms, we must also consider the quality of the solurions found in each case.
Therefore, while it is true that smaller demes converge faster, it is also true that the quality of the solution
might be poorer.

It is important to emphasize that while the master-slave parallelization method does not affect the behavior
of the algorithm, the last two methods change the way the GA works. For example, in master-slave PGAs,
selection takes into account all the population, but in the other two PGAS, selecrion only considers a subset
of individuals. Also, in the master-slave any two individuals in the population can mate (i.e., there is random
mating), but in the other methods mating is restricted to a subser of individuals.

The final method to parallelize GAs combines multiple demes with master-slave or fine-grained GAs. We
call this class of algosicthms Aierarchical PGAs, because at a higher level they are multiple-deme algorichms with
single—population PGAs (either master-slave or fine-grained} ac the lower level. A hierarchical PGA combines
the benefits of its components, and it promises better performance than any of them alone.

Master-slave paraflelization: This section reviews the master-slave (or global) parallelization method. The
algorithm uses a single population and the evaluation of the individuals and/or the application of genetic
operators are done in parallel. As in the serial GA, each individual may compete and mate with any other (thus
selection and maring are global). Glabal PGAs are usually implemented as mascer-slave programs, where the
master stores the population and the slaves evaluare the fitness.

The most common operation thac is parallelized is the evaluation of the individuals, because the fitness of
an individual is independent from the rest of the population, and there is no need o communicare during
this phase. The evaluation of individuals is parallelized by assigning a fraction of the population to each
of the processors available. Communication occurs only as each slave receives its suhser of individuals 1o
evaluate and when the slaves return the ficness values. If the algorithm stops and waits o receive the fitness
values for all the population before proceeding into the next generarion, then the algorithm is synchronous.
A synchronous master-slave GA has exactly the same properties as a simple GA, with speed being che only
difference. However, ic is also possible to implement an asynchronous master-slave GA where the algorithm
does not stop to wait for any slow processars, bur it does not work exactly like a simple GA. Most global PGA
implementations are synchronous and che rest of the paper assumes thar global PGAs carry our exactly the
same search of simple GAs.

The global parallelization mode! does not assume anything abour the underlying computer archirecrure,
and it can be implemented efficiently on shared-memory and distributed-memory computers. On a shared-
memory multiprocessor, the population could be siored in shared memory and each processor can read the
individuals assigned to it and write the evaluation results back withour any conflicts.

Onadiscributed-memory computer, the population can be stored in one processor. This “master” processor
would be responsible for explicidy sending the individuals ro the other processors {the “slaves™) for evaluarion,
collecting che results and applying the generic operators 1o produce the next generation. The number of
individuals assigned to any processor may be constant, but in some cases (like in a multiuser environment
where the urilizarion of processors is variable) it may be necessary to balance the computational load among
the processors by using a dynamic scheduling algorithm (c.g., guided self-scheduling).

Muttiple-deme parallel GAs:  The importanc characteristics of multiple-deme PGAs are the use of a few
relarively large suhpopulations and migration. Multiple-deme GAs are the most popular parallel method, and
many papers have been written describing innumerable aspects and details of their implementation.
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Probably the first systematic scudy of PGAs with mulriple populations was Grosso's dissertation. His
objective was 1o simulate the interaction of several parallel subcomponents of an evolving population, Grosso
simulated diploid individuals (so there were two subcomponents for each “gene”), and the population was
divided into five demes. Each deme exchanged individuals with alf the others with a fixed migration rate.

With controlled experiments, Grosso found thar the improvement of the average population fitness was
faster in the smaller demes than in a single large panmictic population. This confirms a long-held principle in
Population Genetics: favorable traits spread faster when the demes are small than when the demes are ‘large.
However, he also observed thar when the demes were isolated, the rapid rise in fitness stopped at a lower fitness
value than with the large population. Tn other words, the qualicy of the solution found after convergence was
worse in the isolated case than in the single popularion.

With a low migration rate, the demes stifl behaved independently and explored different regions of the
search space. The migrants did not have a significant effect on the receiving deme and the quality of the
solutions was similar to the case where the demes were isolated. However, at intermediate migration rates the
divided population found solutions similar to those found in the panmictic population. These observations
indicate thar there is a critical migration rate below which the performance of the algorithm is obstructed by
the isolation of the demes, and above which the partitioned population finds solutions of the same quality as
the panmictic population.

It is interesting that such important observations were made so long ago, at the same time that other
systemaric scudies of PGAs were underway. For example, Tanese proposed a PGA with the demes connected
on 2 four-dimensional hypercube topology. In Tanese’s algorithm, migration occurred at fixed intervals berween
processars along one dimension of the hypercube. The migrants were chosen probabilistically from the best
individuals in the subpopulation, and they replaced the worst individuals in the recejving deme. Tanese carried
our three sets of experiments. In the first, the interval between migrations was set o five generations, and
the number of processors varied. In tests with two migration rates and varying the number of processors, the
PGA found results of the same quality as the serial GA. However, it is difficult ro see from the experimental
results if the PGA found the solutions socner than the serial GA, because the range of the times is roo large.
In the second set of experiments, Tanese varied the mutation and crossover rates in each deme, arrempting
to find parameter values to balance exploration and exploitation. The third set of experiments studied the
effect of the exchange frequency on the search, and the results showed that migrating too frequently or too
infrequently degraded the performance of the algorichm.

The mulsideme PGAs are popular due to the following several reasons:

1. Multiple-deme GAs seem like a simple extension of the serial GA. The recipe is simple: take a few
conventiona! (serial) GAs, run each of them on a node of a parallel computer, and at some predetermined
times exchange a few individuals.

2. There is relaively little extra ¢ffort needed to converr a serial GA into a multiple-deme GA. Most of the
program of the serial GA remains the same and only a few subroutines need to be added to implement
migration,

3. Coarse-grain parallel computers are easily available, and even when they are not, it is casy to simulate one
with 2 network of workstations or even on a singte processor using free software (like MPT or PVM).

There are a few imporrant issues noted from the above sections. For cxample, PGAs ate very promising in
terms of the gains in performance. Also, PGAs are more complex than their serial counterparts. In particular, the
migration of individuals from one deme to another is controlled by several paramerers like (a) the topology that
defines the connecrions berween the subpopulations, (b) a migration race cha controls how many individuals
migrate and (c) a migrarion interval that affeces the trequency of migrations, In the lace 1980 and carly 1990s.
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the research on PGAs began to explore alternatives o make PGAs faster and to understand better how they
worked. ’

Around this time che first theorerical studies on PGAs began to appear and the empirical research acrempred
to identify favorable paramerers. This section reviews some of that early theoretical work and experimental
studies on migration and topologies. Also in this period, more researchers began to use multiple-populasion
GAs to solve application problems, and this section ends with a brief review of cheir work.

One of the directions in which the field matured is that PGAs began to be tested with very large and
difficulr test functions.

Fine-grained PGAs: The development of massively parallel computers wriggers a new approach of PGAs.
To take advantage of new architecrures with even a greater number of processors and less communication
costs, fine-grained PGAs have been developed. The population is now partitioned into a lagze number of very
small subpopulaciens. The limit (and may be ideal) case is to have just one individual for every processing
element available,

Basically, the population is mapped onto a connected processor graph, usually, one individual on each
processor. (But it works also more than one individual on each processor. In this case, it is preferable ro choose
a multiple of the number of processors for the population size.) Mating is only possible between neighboring
individual, i.¢, individuals stored on neighboring processors. The selection is also done in a neighborhood of
each individual and so depends only on local information. A motivation behind local selection is biologieal.
In nature there is no global selection, instead narural selection is a2 local phenomenon, taking place in an
individual’s loca] environment.

If we want to compare this model to the istand model, cach neighborhood can be considered as a different
deme. But here, the demes overlap providing 2 way to disseminate good solutions across the entire papulasion.
Thus, the topology does not need o explicitly define migrarion roads and migrarion rare.

It is commeon to place the population on 2 two-dimensional or three-dimensional torus grid because in
many massively parallel computers the processing elements are connected using this ropology. Consequently
each individual has four neighbors. Experimentally, it seems that good results can be obtained using 2 ropol-
ogy with a medium diameter and neighborhoods nor too large. Like the coarse-grained models, it worth
trying to simulate this model even on a single processor to improve the results. Indeed, when the popula-
tion is stored in a grid Yike this, afer few generations, different optima could appear in different places on
the prid.

To sum up, with parallelization of GA, all the different models proposed and all the new models we can
imagine by mixing those ones, can demonstrate how well GA are adapred vo paralle] computation. In face, the
too many implementations reported in the literature may even be confusing. We really need to understand
what truly affects the performance of PGAs.

Fine-grained PGAs have only one populacion, but have a spatial structure chat limits the interactions
berween individuals. An individual can onfy compete and mate with its neighbors; butsinee the neighborhoods
overlap good solutions may disseminate across the entire population.

Robereson parallelized the GA. of a dlassifier system on a Connection Machine 1. He parallelized the
selection of parents, the selection of classifiers to replace, mating, and crossover. The execution time of his

implementation was independent of the number of classifiers (up to 16K, the number of processing elements
in the CM-1).

Hierarchical paraflel algorithms: A few researchers have tried to combine two of the methods to parallelize
Gas, producing hierarchical PGAs. Some of these new hybrid algorithms add a new degree of complexity o
the already complicated scene of PGASs, but other hybrids manage to keep the same complexity as one of their
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components, When two methads of parallelizing GAs are combined they form a hierarchy. At the upper level
most of the hybrid PGAs are multiple-population algorithms. .

Some hybrids have a fine-grained GA at the lower level (sce Figure 15-43). For cxample_ Gruau _mvented a
“mixed” PGA. In his algorithm, the population of each deme was placed ona two-dimensional grid, and the
demes themselves were connected as a two-dimensional torus. Migration berween demes occurre.d at regular
intervals, and good results were reported for a novel neural nerwork design and training applimnfon.

Another type of hierarchical PGA uses a master-slave on each of the demes cff a multll—populauc_m GA (see
Figure 15-44). Migration occurs between demes, and the evaluarion of the individuals is ha}ndled. in parallel
This approach does not introduce new analytic problems, and it can be useful wherf worllang v-.:uh c:larrllplex
applications with objective functions that need a considerable amount of computation time. Bianchini and

Figure 15-43 Hicrarchical GA combines a multiple-deme GA [ar the upper level) and a fine-grained GA
{ac the lower level).

Figure 15-44 A schemaric of a hierarchical PGA. At the upper level chis hybrid is a mulri-deme PGA where
each node is a master-slave GA.
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Figure 15-45 This hybrid uses multiple-deme GAs at both the upper and the lower levels. At the lower level

the migration rate is faster and the communicacions topology is much denser than at the
upper level.

Brown presented an example of this method of hybridizing PGAs, and showed thac it can find a solution of
the same quality as of a master-slave PGA or a multiple-deme GA in less time.

Interestingly, a very similar concept was invented by Goldberg in the context of an object-oriented imple-
mentation of 2 “community model” PGA. In each “community” there are multiple houses where parents
reproduce and the offsprings are evaluated. Also, there are multiple communiries and it is possible thar
individuals migrate to other places.

A third method of hybridizing PGAs is to use multiple-deme GAs at both the upper and the lower levels
{see Figure 15-45). The idea is to force panmictic mixing at the lower level by using a high migracion rare and
a dense 1opology, while a fow migration rate is used at the high level. The complexity of chis hybrid would
be equivalent to a multiple-populacion GA if we consider the groups of panmictic subpopulations as 2 single
deme. This method has not been implemented yet. Hierarchical implementations can reduce the execution
time more than any of their compenents alone.

15.14.4.3 Coarse-Grained PGAs — The Isfand Model

"The second class of PGA is once again inspired by nature. The population is now divided into a few subpopu-
lations or demes, and each of these relatively large demes evolves separately on different processors. Exchange
between subpopulations is possible via a migration operator. The term dslend model is easily understandable;
the GA behave as if the world was constituted of islands where populations evolve isolaced from each other.
On each island the population is free to converge toward different optima. The migrarion operator allows
“merissage” of the different subpopularions and s supposed to mix good features that emerge locally in the
different demes.

We can notice that this time the nature of the algorithm changes. An individual can no longer breed
with any other from the entire population, but only with individuals of the same island. Amazingly, even
if this algorithm has been developed to be used on several processors, it is worth simulating it sequentially
on one processor. It has been shown on a few problems thac berter results can be achieved using this model.
This algorithm is able o give different sub-optimal solutions, and in many problems, it is an advaneage if
we need to determine a kind of landscape in the search space to know where the good solutions are located.
Another grear advantage of the island model is that the population in each island can evolve with different

[ ————— O
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rules. That can be used for multicricerion oplimization. On each island, selection can be made according
to different firness functions, representing different criterions. For example ir can be useful to have as many
islands as criteria, plus another central island where selection is done with a multicriterion feness firnction.
The migration operaror allows individuals to move berween islands, and therefore, to mix criteria.

In liceracure this model is somerimes also referred as the coarse-grained PGA. (In parallelism, grain size
refers to the ratio of fime spent in computation and time spent in communication; when the ratio is high the
processing is called coarse-grained). Sometimes, we can also find the rerm “disuibuced” GA, since they are
usually implemented on distributed memory machines (MIMD Computers).

Technically there are three importane fearures in the coarse-grained PGA: the topology chat defines connec-
tions berween subpopulations, migration rate that controls how many individuals migrace, migeation intervals
thax affect how often the migration occurs. Even if a lot of work has been done to find optimal topology and
migration parameters, here, intuition is still used more often than analysis wich quite good results.

Many topologies can be defined to connect the demes, bur the most common models are the island model
and the stepping-stones model. In the basic island model, migration can occur between any subpopulations,
wherzas in the stepping stone demes are disposed on 2 ring and migration is restricted to neighbouring demes.
Works have shown that the topology of the space is not so important as long as it has high connectivity and
small diameter to ensure adequate mixing as time proceeds.

Choosing che right time for migration and which individuals should migrate appears to be more com-
plicated. Quice a lot of work is done on this subject, and problems come from the following dilemmas. We
can observe that species are converging quickly in small isolated populations. Nevertheless, migrations should
occur afier a time long enough for allowing the development of goods characreristics in each subpopulation,
It also appears thar, immigration is a trigger for evolutionary changes. If migration occurs after each new
genetasion, the algorithm is more or less equivalent to a sequential GA with a larger population. In pracrice,
migration occurs eicher after a fixed number of icerations in each deme or ac uniform periods of fime. Migrants
are usually selecied randomly from the best individuals in the population and they replace the worst in the
seceiving deme. In fact, intuition is seill mainly used to fix migration rate and migracion intervals; there is
absolutely nothing rigid, each personal cooking recipe may give good resulss.

p 5.145 Independent Sampling Genstic Algorithm (ISGA)

In the independent sampling phase, we design a core scheme, named the “Building Block Detecting Stracegy”
{BBDS), to excrace relevant building block information of a fitness landscape. In this way, an individual is able
to sequentially conscruct more highly fit partial solutions. For Royal Road R1, the global optimum can be
attained easily. For other more complicared fitness landscapes, we allow a number of individuals to adopr the
BBDS and independently evolve in parallel so that each schema region can be given samples independently.
During this phase, the popularion is expected to be seeded with promising genetic material. Then follows the
breeding phase, in which individuals are paired for breeding based on rwo mate-selection schemes (Huang,
2001): individuals being assigned mares by narural selection only and individuals being allowed to acrively
choose their mares. In the larter case, individuals are able o distinguish candidare mates thar have the same
fitness yer have different string structures, which may lead to quite different performance afer crossover.
This is not achievable by nawral selecrion alone since it assigns individuals of the same fness the same
probabilicy for being mates, withour explicidy taking into account string seructures. In short, in the breeding
phase individuals manage to canstruct even more promising schemara through the recombination of highly
fir building blocks found in che first phase. Owing to the characteristic of independent sampling of building
blocks thar distinguishes the proposed GAs from conventional GAs, we name this type of GA independent
sampling generic algorithms (ISGAs).
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15.14.5.1 Comparison of ISGA with PGA

Theindependent sampling phase of ISGAs issimilar to the fine-grained PGAs in the sense that each individual
evolves autonomously, although ISGAs do not adopt the population scruceure. An initial population is ran-
domly generated. Then in every cycle each individual does local hill climbing, and creates the next population
by mating with a partner in its neighborhood and replacing parents if offsprings are better. By contrast, ISGAs
partition the genetic processing into two phases: the independent sampling phase and the breeding phase as
described in the preceding section. Third, the approach employed by each individual for improvement in
I1SGAs is different from thar of the PGAs. During the independent sampling phase of ISGAs, in each cycle,
through the BBDS, each individual artempts to extract relevant information of potential building blocks
whenever its fitness increases. Then, based on the schema informarion accumulated, individuals continue to
construct more complicared building blocks. However, the individuals of fine-grained PGAs adopt a local hill
climbing algorichm that does not manage to extract relevant informarion of porential schemara.

The motivation of the two phased ISGAs was partially from the messy genetic algorithms (mGAs). The
two stages employed in the mGAs are “primordial phase” and “j uxtapositional phase,” in which the mGAs
first emphasize candidare building blocks based on the guess at the order £ of small schemata, then juxtaposing
them to build up glebal optima in the second phase by “cut” and “splice” operators. However, in the first phase,
the mGAs still adopr centralized selection to emphasize some candidate schemata; this in neen resules in the
loss of samples of other potentially promising schemata. By contrast, ISGAs manage to postpone the emphasis
of candidate building blocks to the lacter stage, and highlight the featuse of independent sampling of building
blocks to suppress hicchhiking in the firse phase. Asa result, population is more diverse and implicit paraflelism
can be fulfilled to a Jarger degrec. Thereafter, during the second phase, ISGAs implement population breeding
through two marte-selection schemes as discussed in the preceding section. In the following subsections, we
present the key components of ISGAs in detail and show the comparisons between the experimental resules
of the ISGAs and those of several other GAs on two benchmark test funcrions.

15.14.5.2 Components of ISGAs
ISGAs are divided into two phases: the independent sampling phase and the breeding phase. We describe

them as follows.

Independent sampling phase: To implement independent sampling of various building blocks, a number
of strings are allowed to evolve in parallel and each individual searches for a possible evolutionary path entirely
independent of others.

In this section, we develop a new scarching strategy, BBDS, for each individual to evolve based on the
accumulated knowledge for potentially useful building blocks. The idea is ro allow each individual o probe
valuable information conceming beneficial schemara through testing its fitness increase since each time a fitness
increase of a string could come from the presence of useful building blocks on it. In short, by systemarically
tescing each bit to examine whether this bit is associated with che fitness increase during each cycle, a cluster
of bits constituting potentially beneficial schemata will be uncovered. Iteraring chis process guarantees the
formarion of longer and longer candidare building blocks.

The operation of BBDS on a scring can be described as follows:

L. Genetate an empry set for collecting genes of candidate schemata and create an initial string with uniform
probability for each bit until its firness exceeds 0. (Record the current fitness as Fit.)

2. Excepr che genes of candidate schemata collected, from left to right, successively all che other birs, one at
a time, evaluate the resulting string. IF the resulting fitness is fess than Fi, record this bits position and
original value as a gene of candidate schemata.

121
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3. Except the genes recorded. Randomly generate all the other bits of the string until the resulting strings
fitness exceeds Fir, Replace Fit by the new fitness.

4. Go 10 steps 2 and 3 until some end criterion. The idea of this strategy is thar the cooperation of cercain
genes {bits) makes for good fimess.

Onee these genes come in sighc simulmneously, they contribure a fitness increase to the string conraining
them; thus any loss of one of these genes leads to the fitness decrease of the string. This is essentially what
step 2 does and after this step we should be able to collect a set of genes of candidate schemara. Then ar step 3,
we keep the collected genes of candidare schemata fixed and randomly generate other bits, awaiting other
building blocks to appear and bring forch another fimess in crease.

However, step 2 in this strategy only emphasizes the finess drop due to a parricular bit. It ignores the
possibilicy thar the same bit leads w0 2 new fimness rise because many loci could interact in an exuremely
nonlinear fashion. To take this into account, the second version of BBDS is introduced through che change
in step 2 as follows.

Step 2: Except the genes of candidare schemara collected, from left to right, successively all the other bits,
one at a time, evaluate the resulting string, If the resulting Aeness is less than Fir, record this bit's position and
original value as a gene of candidare schemata. If the resulting fitness exceeds Fit, substitute this bit's ‘new’
value for the old value, replace Fit by this new fitness, record this bit's positien and 'new’ value as a gene of
candidate schemata, and re-execute this step.

Because this version of BBDS takes into consideration the fitness increase resulted from thar particular bi,
it is expected to rake less ime for detecting. Other versions of BBDS are of course possible. For example, in
step 2, if the same bit results in a fitness increase, it can be recorded as a gene of candidare schemara, and the
pracedure continues to test the residual bits yer withour completely traveling back ro the first bit to reexamine
each bit. However, the empirical results obrained thus far indicare thar the performance of this alwernative is
quite similar to that of the second version. More experimental results ate needed ro distinguish the difference
berween them,

The overall implementation of the independent sampling phase of ISGAs is through the proposed BBDS

to get autonomous evolution of each sering until all individuals in the population have reached some end
criterion.

Breeding phase:  After the independent sampling phase, individuals independently build up their own

evolutionary avenues by various building blocks. Hence the population is expected to contain diverse beneficial
schemara and premature convergence is alleviated to some degree. However, factors such as deception and
incomparible schemara (j.c., two schemara have different bit values at common deftning positions) still could
lead individuals to arrive at suboptimal regions of a fitness landscape. Since building blocks for some strings
to leave suboptimal regions may be embedded in other strings, the search for proper maring pareners and then
exploiting the building blocks on them are critical for overwhelming the difficuley of strings being trapped in
undesired regions. In Huang (2001) the importance of mase selection has been investigated and the results
showed that the GAs is able to improve their performance when the individuals are allowed to select mares 1o
a larger degree.
~ In this section, we adopt two mate-selection schemes analyzed in Huang (2001) to breed che popularion:
individuals being assigned martes by natural selection only and individuals being allowed 1o actively choose
.rheir mares. Since natural selection assigns strings of the same fitness the same probabiliry for being parents,
individuals of idencical fitness yet distince string structures are treared equally. This may result in significant
loss of performance improvemenc after crossover.

We adopt the rournament selection scheme (Mitchell, 1996} as the role of natural selection and the
mechanism for choosing mates in the breeding phase is as follows:
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During each mating event, a binary tournament selection with probability 1.0 is performed to select the
first individual out of the two fittest randomly sampled individuals according to the following schemes:

1. Run the binary tournament selection again to choose the partner.

2. Run another two times of the binary tournament selection to choose rwo highly fir candidate partners;
then the one more dissirmilar to the first individual is selected for mating,

The implementation of the breeding phase is through iterating each breeding cycle which consists of
(a) two parents obtained on the basis of the mate-selection schemes abave. (b) Two-point crossover operator
{crossover rate 1.0) is applied to these parents. {c) Both parents are replaced with both offsprings if any of the
two offsprings is better than them. Then steps (a), (b) and (¢} are repeated until the population size is reached
and this is a breeding cycle.

l1 5.14.6 Real-Coded Genetic Algorithms

The variant of GAs for real-valued optimization that is closest to the original GA are so-called real-coded GAs.
Let us assume that we are dealing with a free N-dimensional real-valued optimization problem, which means
X = RV withour constraints, In a real-coded GA, an individual is then represented as an N-dimensional
vector of real numbers:

b=(xt,...,xN)

As selection does not involve the particular coding, no adapration needs to be made - all selection schemes
discussed so far are applicable withour any restriction. What has to be adapted 1o this special strucrure are the
genetic operations crossover and mutation.

15.14.6.1 Crossover Operators for Real-Coded GAs

So far, the following crossover schemes are most common for real-coded GAs:

Flat crossover: Given two parents ' = (x{, e ,x}v) and £ = (xlz, ... ,xﬁ.), a vector of random values from
the unic ineerval (Ay, ..., Ax) is chosen and the offspring & = (x;, .. +>Xp) is computed as a vector of linear
combinations in the following way {forall i = 1,..., N}

d=hix +(1=3;) -5k

BLX-0 crossover is an extension of flat crossover, which allows 2n offspring allele to be also locared outside
the incerval .
[min(x} s xl-z), max(x} , x,-z)]
In BLX-orcrossover, each offspring allele is chosen as a umformly disuributed random value froin the interval
[min(x},x,-z) —le, max(x} , x,-z) +la]
1,2

where / = max(x!,x?) — min(x!,x2). The parameter ¢ has (o be chosen in advance. For a = 0, BLX-¢
crossover becomes identical to flat crossover.

Simple crossover is nothing else but classical one-point crossover for real vectors, i.e., a crossover site
ke2{l,...,N— 1} is chosen and two offspring are created in the following way:

b= (xl,...,xi,xi}_l,.--,x%r)
bN=(xlz,...,xf,xl+].---,x,1',r)
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Discrete crossover is analogous to classical uniform crossover for real vecrors. An offspring & of the two parents
4" and #? is composed from alleles, which are randomly chosen either as x] or x?.

15.14.6.2 Mutation Operators for Real-Coded GAs

The following mutation operators are most common for real-coded GAs:

1. Random mutation: For a randomly chosen gene £ of an individual &= (x|,...,xx), the allele x; is replaced
by a randomly chosen value from a predefined inserval |a;, bil.

2. Nonuniform mutation: In nonuniform muration, the pessible impact of murarion decreases with the
number of generations. Assume that Zp.y is the predefined maximum number of generations. Then, with
the same serup as in random mutarion, the allele x; is replaced by one of the two values

=xi+A0b—x)
x:-’ =x;—-Alnx—a)
The choice as to which of the two is taken is determined by a random experiment with two outcomes that

have equal probabilities 1/2 and 1/2. The random variable A (4, x) determines a mutation step from the range
10, x| in the following way:

A (5) = (1Al Wmsl'y
In this formula, X is a uniformly distributed random value from the unic interval. The parameter r

determines the influence of the generation index ¢ on the distribution of mutation step sizes over the interval
|0, x|.

I15.1 5 Holland Ciassifier Systems

A Holland classifier system is a classifier system of the Michigan type which processes binary messages of a
fixed length through a rule base whose rules are adapted according to response of the environment.

l1 5.15.1 The Production System

First of all, the communication of the production system with the environment is done via an arbitrarily long
list of messages. The detecrors translate responses from the environment into binary messages and place them
on the message list which is then scanned 2nd changed by the rule base. Finally, the effectors eranslate outpur
messages into actions on the environment, such as forces or movements.

Messages are binary strings of the same length 4. Mare formally, a message belongs to {0, 1}%. The rule
base consists of a fixed number (m) of rules (classifiers) which consist of 2 fixed number () of conditions and
an action, where both conditions and actions are strings of length & over the alphaber {0, 1, *}. The asterisk
plays the role of 2 wildcard, a ‘don't care’ symbol.

A condirion is matched if and only if there is a message in the list which matches the condition in all
nonwildeard positions. Moreover, conditions, excepr the first one, may be negaced by adding a ‘= prefix. Such
aprefied condirion is satisfied if and only if there is no message in the list which matches the string associared
with the condition. Finally, a rule fires if and only if all the condirions are sadsfied, i.e., the conditions are
connecred with AND. Such ‘firing’ rules compete o pue their action messages on the message lis.

In the action parts, the wildcard symbols have a different meaning. They take the role of ‘pass through’
element. The outpur message of a firing rule, whose action parr contains a wildeard, is composed from the
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nonwildeard positions of the action and the message which sadsfies the fitsc condition of the classifier, This is
actually the reason why negations of the first conditions are not allowed. More formally, the outgoing message
m is defined as

_ Jalil ifali] x|

= {m[i] Fafl=n Tl

where  is the action part of the classifier and # is the. message which marches the firse condition, Farmally,
a classifier is a sering of the form

Cond,, |~'||Conds, ..., ‘' Cond,/Action

where the brackets should express the optionality of the “~” prefixes. Depending on the concrete needs of the
task to be solved, it may be desirable to allow messapes to be preserved for the nexr step. Mote specifically, if
a message is not interpreted and removed by the effectors interface, it can make another classifier fire in the
next step. In practical applications, this is usually accomplished by teserving a few bits of the messages for
identifying the origin of the messages (a kind of variable index called rag).

Tagging offers new opportunities to eransfer informarion abour the current step into the next step simply
by placing ragged messages on the list, which are not interprered, by the ourput interface. These messages,
which obviously contain information abour the previous step, can support the decisions in the next step.
Hence, appropriate use of tags permits rules ro be coupled ro act sequentially. In some sense, such messages
are the memory of the system.

A single execution cycle of the production system consists of che following steps:

Messages from the environmenc are appended to the message list.
All the condirions of all classifiers are checked against the message list vo obrain the set of firing rules.
The message list is erased.

1.
2
3.
4, The firing classifiers participate in a competition o place their messages on the list.
5. The winning classifiers place their actions on the list.

6.

The messages direceed o the effectors are executed.

This procedure is repeated iterarively. How step 6 is done, if these messages are deleted or net, and so on,
depends on the concrete implementation. It is, an the one hand, possible to choose a representation such that
the effecrors can interpret each outpur message. On the other hand, it is possible to direct messages explicitly
to the effectors with a special rag, If no messages are directed to the effectors, the system is in a thinking phase.

A classifier R1 is catled consumer of a classifier R2 if and only if there is a message m0 which fulfills ac
least one of R1’s conditions and has been placed on the list by R2. Conversely, R2 is cailed a supplier of R1.

l 15,15.2 The Bucket Brigade Algorithm

As already mencioned, in each time step #, we assign a strength value w;, to each classifier Rf. This strength
value represents the correctness and importance of a classifier. On the one hand, the strengch value influences
the chance of a classifier to place its action on the ourput list. On the other hand, the strength values are used
by the rule discovery system, which we will soon discuss.

In Holland classifier systeins, the adaptation of the strength values depending on the feedback {payoff)
from the environment is done by the so-called bucket brigade algorithm. It can be regarded as a simulared
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economic system in which various agents, here the classifiers, participate in an auction, where the chance w
buy the right to post the action depends on the strength of the agents.
The bid of classifier Rf at time ¢ is defined as

By = conjsi

where ¢f, € [0,1] is a learning parameter, similar to learning rates in artificial neural nets, and s is the
specificity, the number of nonwildeard symbols in the condition parr of the classifier. If ¢; is chasen small,
the syscem adapts slowly. If it is chosen too high, the strengths rend to oscillate chaotically. Then the rules
have 1o compete for the right for placing their ourpur messages an the list. In the simplest case, this can be
done by a random experiment like the selection in 2 genetic algorithm. For each bidding classifier it is decided
randemly if it wins or not, where the probability that it wins is praportional to its bid:

. Bi.«
PR wins] = -

Y B

JESay;

In this equation, Say, is the set of indices of all classifiers which are satisfied at time ¢, Classifiers which get
the right to post their output messages are called winning classifiers.

Obviously, in this approach more than one winning classifier is allowed. Cf course, other selection schemes
are reasonable, for instance, the highest bidding agent wins alone. This is necessary to avoid the conflict
berween two winning classifiers. Now let us discuss how payoff from the environment is diseributed and how
the screngths are adapred. For this purpase, let us denote the set of classifiers, which have supplied a winning

agent R;in step ¢ with S;,. Then the new strength of a winning agent is teduced by its bid and increased by
us portion of the payaff P, received from the environment:

I
Hipp) = Mg+ — — Bi.r
w,
where w; is the number of winning agents in the actual time step. A winning agent pays its bid o its suppliers
which share the bid among each other equally in the simplest case:

Wirr] = i T = forall R; € Sis
1S3l
IFHlWInning agent has also been active in the previous step and supplies another winning agent, the value
above is additionally increased by one portion of the bid the consumer offers. In the case thar rwo winning
ageats have supplied each other muwally, the portions of the bids are exchanged in the above manner. The

sirengths of all ocher classifiers Ry, which are neither winning agents nor suppliers of winning agents, are
reduced by a certain factor (they pay a 1ax):

Uy p41 = ”u,r(] - T)

Tis a_ small value lying in the interval [0, 1]. The intention of raxation is to punish classifiers which never
contsibute anything to the outpur of the system. With this concept, redundant classifiers, which never become
active, can be filtered out.

The idea behind credit assignment in general and bucker brigade in particular is to increase the strengths
of l:ﬂles. which have ser the stage for later successful actions, The problem of determining such classifters,
which were responsible for conditions under which it was later on possible o receive 2 high payoff, can be
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First execution

[e—— Payoff

Strengths 100 100 100 100 140

. 60 |«—— Payoll
Second execution

Strengths 100 100 100 108 172

Figure 15-46 The bucker brigade principle.

very difficult. Consider, for instance, the game of chess again, in which very early moves can be significant
for a late success or failure. In fact, the bucket brigade algorithm can solve this problem, although strength
is only transferred ro the suppliers, which were active in the previous step. Each time the same sequence is
activated, however, 2 little bit of the payofT is transferred one step back in the sequence. Ik is easy to see that
repeated successful execurion of 2 sequence increases the surengths of all involved classifiers.

Figure 15-46 shows a simple example of how the bucker brigade algorithm works. For simplicity, we
consider a sequence of five classifiers which always bid 20% of their strength. Only after the fifth step, after
the activation of the fifth classifier, a payoff of 60 is received. The further development of the strengths in chis
example is shown in the Table 15-7. It is easy to see from this example that the reinforcement of che strengths
is slow at the heginning, but it accelerates later. Exacdy this property conributes much to the robustmess
of classifier systems — they tend to be cautious at the beginning, trying net to rush conclusions, but, after a
certain number of similar sicuations, the system adoprs the rules more and more.

It mighe be clear that a Holland classifier system only works if successful sequences of classifier activations
are observed sufficiently often. Otherwise the bucker brigade algerithm does nor have a chance o reinforce
the strengths of the successful sequence properly.

I 15.15.3 Rule Generation

The purpose of the rule discovery system is to eliminate low-ficted rules and to replace them by hopefully
better ones. The firness of a rule is simply its strengrh. Since the classifiers of a Holland classifier system
themselves are strings, the application of 2 GA to the problem of rule induction s straightforward, chough
many variants are reasonable. Almost all variants have one thing in common: the GA is not invoked in each
time step, bur only every nth step, where u has to be set such that enough informartion about the performance
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Table 15-7  An example for repeared propagarion of payoffs

Strengeh after che

3d [00.00 * 100.00 101.60 120.80 172.00
4ch 100.00 10032 103.44 136.16 197.60
5th 100.06 10134 111.58 152.54 234.46
Gth 100.32 103.39 119.78 168.93 247.57
10th 106.56 124.17 16444 224.84 27852
25th 11586 253.20 280.36 294.52 299.24

execucton OF the sequence

of new classifiers can be obtained in the meantime. A. Geyer-Schulz, for instance, suggests the following
procedure, where the strength of new classifiers is initialized with the average strength of the current rule base:

L. Select a subpopulation of a certain size at random.

2. Compute a new set of rules by applying the genetic operations — selection, crossingover and murarion -
to this subpopulation.

3. Merge the new subpopularion wich the rule base omitting duplicaces and replace the worst classifiers.

This process of acquiring new rules has an interesting sideffect. It is more than just the exchange of pares of
conditions and actions. Since we have not stated restrictions for manipulating tags, the GA can recombine
parss of already existing tags to invent new rags. In the following, tags spawn relaced cags establishing new
couplings. These new tags survive if they conribure to useful interactions. In this sense, the GA addirionally
creates experience-based incernal structures autonomously.

I 15.16 Genetic Programming

G?nefic programming {GP) is alse part of the growing set of evolutionary algorithms thac apply the search
panciples of narural evoludion in a variety of differenc problem domains, notably paramerer optimization.
Evolutionary algorithms, and GP in particular, follow Danwin's principle of differential narural selection.

T!]\!s principle states char the following preconditions must be fulfilled for evolution 10 occur via {natura)
selection:

L. There are entities called individuals which form a population. These entities can reproduce or can be

reproduced.

+ There is heredity in reproduction, that is o say that individuals produce similar offspring.

+ In the course of reproduction, there is variery which affects the likelihood of survival and therefore of
reproducibility of individuals.
- There are finite resources which cause the individuals to compere. Owing ro aver reproduction of indi-

viduals not all can survive the struggle for existence. Differential natural selections will exert a continuous
pressure towards improved individuals.




450 Genatic Algonthm

In the long run, GP and other evolutionary computing technologies will revolutionize program devel-
opment. Present methods are not mature enough for deployment as automatic programming systems.
Nevertheless, GP has already made inroads into auromaric programming and will continue o do so in
the foresecable future. Likewise, the application of evolution in machine-learning problems is one of the
potentials we will exploit over the coming decade.

GP is part of a more general field known as evolutionary computation. Evalurionary computation is based
on the idea thar basic conceprs of biological reproducrion and evolution can serve as a metaphor on which
compurer-based, goal-directed problem solving can be based. The general idea is that a computer program can
maintain a population of artifacts represented using some suitable compurer-based dara strucrures. Elemens
of thar population can then marte, mutate, or otherwise reproduce and evolve, directed by a fitness measure
thar assesses the quality of the population with respecr to the goal of the cask ac hand.

GP is an automared method for creating a working computer program from a high-level problem statemens
of 2 problem. GP starts from a high-leve] statement of “whart needs to be done’ and automarically creates a
computer program to solve the problem.

One of the ceneral challenges of computer science is to get a compurer to do what needs o be done,
withour telling it how to do it, GP addresses this challenge by providing a mechod for automacically creating
a working computer program from a high-level problem starement of the problem. GP achieves this goal of
automaic progranmming (also sometimes called program synthesis or program induction) by genetically breeding a
population of computer programs using the principles of Darwinian nasural selection and biologically inspired
operarians. The operations include reproduction, crossover, mutation and architecrure-aftering operations
patterned after gene duplication and gene delecion in natre.

GP is a domain-independent method thar genetically breeds a population of compurer programs to solve
a problem. Specifically, GP iteratively transforms a popularion of computer programs into a new generation
of programs by applying analogs of naturally occurring genetic operations. The penetic operations include
crossover, mutation, reproduction, gene duplication and gene deletion. GP is an excellent problem solver,
a superb function approximaror and an effective tool for writing functions to solve specific rasks. However,
despire all these areas in which it excels, it stilf does nor replace programmers; rather, it helps them. A human
still must specify the ficness function and idenrify the problem 1 which GP should be applied.

FSJ 6.1 Working of Genetic Programming

GP typically starts with a population of randomly generated compurer programs composed of the avaitable
programmatic ingredients. GP iteratively transforms a population of computer programs into a new generation
of the poputation by applying analogs of naturally occurring genetic operaricons. These operations are applied
to individual(s} selected from the papulation. The individuals are probabilistically selected 1o participate in
the genetic operations based on their fitness (as measured by the fitness measure provided by the human user
in the third prepararory step). The iterative transformation of the population is executed inside che main
generational loop of the run of GP.
The executional steps of GP {i.¢., the flowchart of GP) aze as follows:

1. Randomly creace an inidial population (generation 0) of individual computer programs composed of the
available funcrions and terminals.

2. lreratively perform the following substeps (called a generation) on the population until the termination

criterion s satisfied:

» Execute each program in the population and ascercain its fitness (explicitly or implicitly) using the
problem’s fitness measure.
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» Selecr one or two individual program(s) from the population with a probability based on fitness (with
reselection allowed) to participace in the genetic operations in the next subseep.

* Create new individual program(s) for the populafion by applying the following generic operarions with
specified probabilicies:

(a) Reproduction: Copy the selected individuat proéram to the new population.

{b) Crossaver: Creare new offspring program(s) for the new population by recombining randomly
chosen parts from two selected programs.

(c) Mutation: Create one new offspring program for the new population by randomly murating a
randomly chosen part of one selected program.

{d) Architecture-altering operations: Choosean architecture-altering operation from the available reper-
toire of such operations and create one new offspring program for the new popularion by applying
the chosen archirecture-altering operation to one selected program.

3. Afrer the termination criterion is satisfied, rhe single best program in the population produced during the
run {the best-so-far individual) is harvested and designared as the result of the run. If the run is successful,
the result may be a solution (or approximate solution) to the problem.

GP is problem-independent in the sense that the flowchart specifying the basic sequence of executional steps
is not modified for each new run or each new problem. There is usually no discretionary human intervention
or interaction during a run of genetic programming (alchough a human user may exercise judgment as to
whether to terminate a run).

Figure 15-47 below is a flowchart showing the execusional skeps of a run of GP The flowchart shaws the
genetic eperations of crossover, reproduction and mutarion as well as the architecrure-altering operagions.
This flowchart shows a owo-offspring version of the crossover operation.

The flowchare of GP is explained as follows: GP starts with an initial population of compurer programs
composed of functions and rerminals appropriate to the problem. The individual programs in the initial
papulation are rypically generated by recursively generating a rooted point-labeled program tree composed of
random choices of the primitive funcrions and terminals {provided by the human user as part of the first and
second preparatory steps, a run of GP). The injtial individuals are usually generated subject to a pre-established
maximum size (specified by the user as a minor parameter as part of the fourth preparatory step}. kn general,
the prograrns in the population are of differens sizes (number of functions and serminals) and of different
shapes (the particular graphical arrangement of funcrions and terminals in the program tree).

_ Each individual program in the population is execured. Then, cach individual program in the population
is either measured or compared in terms of how well it performs the task ar hand {using the ficness measure
provided in the chird preparatory step). For many problems, this measurement yields a single explicit numerical
\.falur called fitmess. The fitness of a program may be measured in many different ways, including, for example,
In terms of the amount of error between its outpus and the desired output, the amount of time {fuel, meney,
¢ic.) required to bring a system to 2 desired target state, the accuracy of the program in recognizing parterns
or classifying objects into classes, the payoff that a game-playing program produces, or the compliance of a
complex structure (such as an antenna, circuit, or controtler) wirh user-specified design criceria. The execurion
of the program sometimes returns one or more explicit values. Alrernatively, the execution of a program may
consist only of side effects on the scate of a world (e.g., a robot’s aceions). Aleernatively, the execudon of a
Program may produce both return values and side effects.

The firness measure is, for many pracrical problems, multiobjective in the sense thar ir combines two or

more different elements. The different elements of the fitness measure are often in competition with one
another to some degres,
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Figure 15-47 Flowchart of genetic programming.

For many problems, each program in the population is execured over a representacive sample of different
fimmess cases. These fitness cases may represent different values of the program’s inpuc(s), different intial
conditions of a system, or different environments. Sometimes the fitness cases are constructed probabilisrically.

The creation of the inirial random population is, in effec, a blind random search of the search space of
the problem. It provides a baseline for judging future search efforts. Typically, the individual programs
in generation 0 all have exceedingly poor fitness. Nevertheless, some individuals in the population are
{usually} more fir than others. The differences in fitness are then exploited by GP. GP applies Darwinian
selection and the genetic operations to creare a new population of offspring programs from the current
popularion.

The genetic operarions include crossover, mutation, reproduction and the architecture-altering operarions.
These genetic operations are applied to individwal{s) that ace probabilistically selected from the popularion
based on fitness. In this probabilistic selection process, better individuals are favored over inferior individuals.
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However, the best individual in the population is not necessarily selected and the worst individual in the
population is not necessarily passed over.

Aftes the genetic operations are performed on the current population, the population of offspring (i.c.,
the new generarion) teplaces the current population (i.e., the now-old generation). This iterative process of
measuring fitness and performing the genetic operations is repeated over many generations.

The run of GP terminates when the terminacion criterion (as provided by the fifth preparatory step) is
satisfied. The outcome of the run is specified by the method of result designation. The best individual ever
encountered during the run (i.e., the best-so-far individual) is rypically designated as che result of the run.

All programs in the initial random population {generation 0) of a run of GP are syntactically valid,
executable programs. The genetic operations that are performed during the run (i.e., crossover. mutacion,
reproduction and the architecture-altering operations) are designed to preduce offspring that are syntactically
valid, executable programs. Thus, every individual created during a run of generie programming (including,
in parcicular, the best-of-run individual) is a syntactically valid, executable program.

I 156.16.2 Characteristics of Genetic Programming

GP now routinely delivers high-recurn human-competitive machine inelligence, the next four subsections
explain what we mean by the terms human-comperitive, high-return, routine and machine inteliigence.

15.16.2.1 Human-Competitive

In accemping to evaluate an automared preblem-solving method, the question arises as o whether there
is any real substance to the demonstrative problems chac are published in connection with the method.
Demonstrarive problems in the fields of artificial intelligence and machine learning are often contrived o
problems that circulare exclusively inside academic groups that study a particular methodology. These problems
typically have little relevance to any issues pursued by any scientist or engineer ourtside the fields of arrificial
inteltigence and machine learning.

In his 1983 alk encicled “Af: Where It Has Been and Where It Is Going,” machine learning pioneer Arthur
Samuet said:

Fhe aine is ... 10 get machines 1o exhibit befapior, which if dowe by hunians, would be nsnmed 1o involye the
wse of intelligence.

Samueds staement reflects the common goal articulated by the pioneers of the 19505 in the fields of artificial
intelligence and machine learning. Indeed, petting machines 1o produce human-like results is the reason for
the exisience of the fields of artificial intelligence and machine learning, To make this goal more concrere, we
say that a resule is “human-comperitve” if it satisfies one or more of the eight criteria in Table 15-8. These
eight criteria have the desirable attribute of heing ar arms-length from the fields of artificial intelligence,
machine learning and GP. That is, a result cannot acquire the rating of *human-competitive' merely because
iris endorsed by researchers iside the specialized fields char are acempting ro create machine intelligence.
Instead, a resule produced by an auromared method musr earn the rating of human-competitive independen
of the Fact thar it was generated by an automared methed.

15.16.2.2 High-Return

What is delivered by the actual auromated operarion of an artificial methed in comparison to the amount of
knowledge, information, analysis and intelligence that is pre-supplied by the human employing the method?

We define the Al ratiz (the ‘artificial-to-intelligence’ ratio) of a problem-solving metbod as the ratio of
.tha[ which is delivered by the automared operation of the arsificial method to the amounr of inzelligence that
15 supplied by the human applying the method to a particular problem.
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Table 15-8  Eighr criceria for saying that an automatically created result is human-competirive

Ciriterion

A The result was patented as an invention in the past, is an improvement over a patented invention, or would
qualiry today as a patentable new invention. ‘

B The result is equal to or better than a result thar was accepred as a new scientific result ar the time when it
was published in a peer-reviewed scientific journal.

C  The result is equal to or better than a result that was placed into a database or archive of resules maintained
by an internarionally recognized panel of scientific experts.

D The result is publishable in its own right as a new scientific resuli—independent of the fact that the resulr
was mechanically created.

E  The result is equal to or bewer than the most recent human-created sotution to a leng-standing problem for
which there has been a succession uf increasingly berer human-created solucions.

F

The result is equal to or better than a result that was considered an achievement in its field ar che time it was
first discovered.

G The result solves a problem of indispurable difficulty in its fictd.

The result holds its own or wins a regulated competition invelving human contestants (in the form of cither
live human players or human-writcen compurer programs).

The A ratio is especially pertinent ro methods for getting computers o automatically solve problems
because it measures the value added by the artificial problem-solving method. Manifestly, the aim of the felds
of artificial intelligence and machine learning is to generate human-compeditive results wich a high Al zatio.

Decp Blue: An Arnificial Intelligence Milestane (Newborn, 2002) describes the 1997 defear of the human
world chess champion Garry Kasparov by the Deep Blue compurer system. This ourstanding example of
machine intelligence is clearly a human-competitive resule (by virwe of sacisfying criterion H of Table 15-8).
Feng-Hsiung Hsu (the system architect and chip designer for the Deep Blue project) recouncs the intensive
work on the Deep Blue project at [BM’s T. |. Watsen Research Center between 1989 and 1997 {Hsu, 2002).
The team of scientists and engineers spent years developing the software and the specialized computer chips
wo efficiently evaluate large numbers of alternative moves as part of a massive parallel state-space search. In
short, the human developers invested an enormous amount of 1" in che projecr. In spite of the face chat Deep
Blue delivered a high (human-competitive) amount of “A,” the project has a low return when measured in
terms of che A-to-] ratio.

The aim of the fields of artificial intelligence and machine learning is to ger computers to automatically

generace human-competitive sesults with a high Al ratio — not to have humans generate human-competitive
results themselves.

15.16.2.8 Routine

Generality is 2 precondicion to what we mean when we say that an aucomarted problem-solving method is
“routine.” Once the generality of 2 methed is estblished, “routineness” means thar relatively litcle hurnan
effort is sequired to get the method to successfully handle new problems within a particular domain and to
successfully handle new problems from a different domain. The ease of making the transition to new problems
lies at the hearr of what we mean by roucine. A problem-solving methad cannat be considered routine i its

executional steps must be substantially augmented, deleted, rearranged, reworked or customized by the human
user for each new problem.

15.16.2.4 Machine Intelligence

We use the term machine intelligence to refer to the broad vision articulated in Alan Turing’s 1948 paper
entitled “Jurelligent Machinery” and his 1950 paper entitled “Computing Machinery and Intelligence.”
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In the 1950s, the terms machine intelligence, artificial intelligence and machine learning all referred to the
goal of getring “machines to exhibic behavior, which if done by humans, would be assumed to involve the use
of intelligence” (1o again quote Archur Samuel). _ .

However, in the intervening five decades, the terms “artificial intelligence” and “machine lcarr!mg pro-
gressively diverged from their original goal-oriented meaning, These rerms are now primari].y assaciated with
particular methodelogies for attempting to achieve the goal of getting compuuers 1o automarically solve prob-
Jems. Thus. the term “artificial intelligence” is today primarily associated with artempts o get computers
10 solve problems using methods that rely on knowledge. logic, and various analviical and mathematical
mechods, The term “machine learning” is today primarily associated with avempts to get computers to sollw:
problems thar use 4 particular small and somewhat arbirrarily chosen ser of methodologies (many of. \.vhach
are staristical in nature). The narrowing of these terms is in marked contrast to the broad field envisioned
by Samuel ar she time when he coined the term “machine learning” in the 1950s, the charter of the original
founders of the field of artificial intelligence, and the broad vision encompassed by Turing’s rerm “machine
intelligence.” OF course, the shift in Focus fram broad goals to narrow merhodologies is an all o common
sociological phenomenon in academic research, . .

Turing’s term “machine intelligence” did not undergo this arteriosclerosis because, by accident ofhfstm:y, it
was never appropriated or monopolized by any group of academic researchers whose primary dedicacion o
a particular methodelogical approach. Thus, Turing’s term remains catholic roday. We prefer to use Tunrlgs
term because it sall communicates the broad goal of gerting compurers 1o automatically solve problems in a
human-like way. . _

In his 1948 paper, Turing identified three broad approuches by which human comperitive machine lnrc!—
ligence mighr be achieved: The first approach was a logic-driven search. Turing’s incerest in this approac.h is
not surprising in kight of Turing’s own piancering work in the 19305 on the logical foundations ofc!?r.npun?g.
The second approach for achieving machine intelligence was what he called a “cultural search” in which
previously acquited knowledge is accumulated, stored in libraries and Brought to bear in salving a problem
— the approach taken by modern knowledge-based expert systems. Turing’s first vwo approaches have been
pursued over the past 50 years by the vast majority of researchers using the methodologies that are today
primarily associated with the rerm “arcificial inelligence.”

I 16.16.3 Data Representation

Without any doubt, programs can be considered as strings. There are, however, two important limitations
which make it impossible to use the representations and operarions from our simple GA:

1. It is mostly inappropriate o assume a fixed length of programs.

2. The probability to obrain synractically correct programs when applying our simple initialization, crossover
and muration procedures is hopelessly low.

It is, therefore, indispensable to modify the dara represencation and the operations such rl'tat syntactical
correctness is easier 1o guarantee. The common approach to represenc programs inGPisto copmder prograrns
as rrees. By doing so, initialization can be done recursively, crossover can be done by exchanging subtrees and
random replacement of subcrees can serve as muration operation. )

Since their only constrizct are neseed lists, programs in LISP-like languages already have a kind O.F tece-like
structure. Figure 15-48 shows an example how the function 3x -+ sin(x + 1) can be implemented in 2 LISP-
like language and how such an LISP-like funcrion can be split up intwo a rree. It can be nored [h;ft the tree
fepresentation corresponds to the nested lisis. The program consises of tomic cxpressions, like variables and
constants, which act as leave nodes while funciions acr as nonleave nodes,
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Figure 15-48 The uee representation of 3x + sin(x 4 1).

There is one importznr disadvantage of the L1SP approach — it is difficult to introduce type checking. In
case of a purely numeric function like in the above example, there is no problem ac all. However, it can be
desirable to process numeric dara, srrings and logical expressions simultaneously. This is difficult te handle if
we use a tree representation like chat in Figure 15-48,

A. Geyer-Schulz has proposed a very general approach, which overcomes this problem allowing maximum
flexibility. He supgested representing programs by their syntactical derivation trees with respect 1o a secursive
'definition of underlying language tn Backus-Naur form (BNF). This works for any context-free language. It
is far beyond the scope of this lecture to go into much derail about formal languages. We will explain the
basics with the help of a simple example. Consider the following language which is suitable for implementing
binary logical expressions:

S = <exp>
<exp> = {var} | “("<neg> <exp>")" | “("<exp> <bin> <exp=")";
<var> =0y

<neg> = "NOT”
<bin> :="AND" | "OR™

The BNF description consists of so-called syntaetical rules. Symbols in angular brackers < > are called
noncerminal symbols, i.e., symbals which have to be expanded. Symbols herween quoration marks are called
terminal symbols, i.e., they cannot be expanded any further. The first rule S:=<exp> defines the starting
symbol. A BNF rule of the general shape,

<nonterminal> = <deriv; » | <deriva> |...| <deriv,>;

defines how a non-terminal symbol inay be expanded, where the different variants are scparated by versical
bars.

In order to get a feeling of how o work with the BNF grammar description, we will now show step-by-step
how the expression (NOT {x OR 3)) can be derivated from the above language. For simpliciry, we omir
quortation marks for the terminal symbols:

1. We have to begin with the starr symbol: <exp>

2. We replace hexpi with the second possible derivarion;

<exp> —= (<neg> <exp>)
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3. The symbol <neg> may only he expanded with the rerminal symbol NOT:
{<neg> <exp>) — (NOT <exp>)
4. Next, we replace <exp> with the chird possible derivagion:
(NOT <exp>) — (NOT l<exp> «bin> <exp>})
5. We expand the second possible derivation for <hin>:
(NOT (<exp> <bin> <exp>)) = (NOT {<exp> OR <exp>))
6. The hist accurrence of <exps is expanded with the firse derivadion:
INOT(<exp> OR zexp>)) — (NOT (<var> OR <exp>))
The weond vueurrence of <exps is expanded with the firse derivation. wo:
INOT (<var> OR =zexp>h — (NOT (<vars> OR <var>))
8. Now we tephace the irst «vars with the corresponding firm alternacive:
INOF {<var> OR <z )) — (NOT v OR <var>))
9. Fmally. the fast non-terminal symbol is expanded with the second alernative;
INOT R —vars)) -~ (INOT v QR ph)

Such a recursive derivation has an inherent tree structure, For the above example, this derivation cree
has been visualized in Figure 15-49. The syntas of madern programming languages can be specified in
BNE Hence. vur data model would be applicable wo all af them. he question is whether this is useful.
Rozas hypathesis includes thar the programoing langoage has o be chosen such thar the given problem
is solvable. This does not necessanly imiply that we have o choose the language such that virtually any
solvable problem can be solved. 1t is obvious that the size of the search space grows with the complexity of
the Linguage. We know that the size of the search space influences the performance of a GA - the larger the
slower,

IUis. theretore, recommendable w restrice the language so necessary construcrs and o avoid superfluous
vomtrucrs, Assume, tor example, that we wanr o do symbolic regression. but we are only interested in
polynomials with teger coeflicients. For such an application. it would be an overkill w introduce radonal
constants or w include exponential functions in the language. A goad choice could be the following:

5 = <funcz:

~fune> = <var> | <cones | funes < bins <funes )™
wvar> =

<const> = <ine> | <const> <inge;

“inrx =07, 9

<hinz> = 47"

For representing rational funcrions with integer coefficients, it is sufficient to add the division symbol “/”
© the possible derivarions of the binary operator <bin>.

P

e e
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<exp>

2nd of 3 possible derivations

li[<neg> <exp> | " )
1st of 1 3rd of 3 possible derivations
“NOT" | | " |<exp>| «<tin> | <exp>| "ﬂ
1st of 3 2ndof 2\ Istof3
<var> l“_OHL\ <vars
1stof 2 2nd of 2

Ed §d

Figure 15-49 The derivation tree of (NOT (x OR y)).

Another example: The following language could be appropriate for discovering trigonometric identities:

§ = <func>;
<func> = <var> | <const> | <trig> “("<func>")" | “("<func> <bin> <finc>"Y"
<vare> =%}
<CU]‘]5[> = (‘0" | l‘ll) l “JT“;
s D s wm[um
<trig> = "sin”| “cos”;
<bin> = ll'+" I “_,“ I l(+ll;

There are basically two different variants of how to generate random programs with respect to a given BNF
grammar:

1. Beginning from the starting symbol, it is possible to expand noncerminal symbols recursively, where we
have to choose randomly if we have more than one alternative derivation. This approach is simple and
fast, bur has some disadvantages: First, it is almost imposstble o realize a uniform distribution. Second,
one has to implement some constraints with respect to the depch of the derivartion trees in order to avoid
excessive growth of the programs. Depending on the complexity of the underlying grammar, this can be
a tedious task.

2. Geyer-Schulz has supgested to prepare a list of all possible derivation trees up to a certain depth and
select from this list randomly applying a uniform distribution. Obviously, in this approach, the problems

in terms of depth and the resulting probability distribution are elegantly solved, but these advantages go
along with considerably long computation cimes,

15.16.3.1 Crossing Programs

It is trivial to see that primitive string-based crossover of programs almost never yields syntactically correct
programs. Instead, we should use the perfect syntax information a derivation tree provides. Already in the LISP
times of Gp, sometime before the BNF-based representation was known, crossover was usually implemented
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as the exchange of randomly sclecred subtrees. In case that the subtrees (subexpressions} may have different

types of rerurn values {e.g., logical and numerical), it is not guaranceed thac crossover preserves synractical
COTrectness.

The derivation tree-based representation overcomes this problem in a very eleganc way. Ifwe only exchange
suberees which start from the same noncerminal symbol, crossover can never violate syntactical correctness. In
this sense, the derivation tree model provides implicit type checking. In erder to demonstrate in more demil

how this crossover operation works, let us reconsider the example of binary logical expressions. As parents,
we take the following expressions:

'(NOT (xOR 7))
((NOT x) OR (x AND y))

Figure 15-50 shows graphically how the two children (NOT (x OR (x AND )}) ((NOT x) OR y) are obrained.

Parents

[<exp>' <exp>
[Clenees

@ldmn

Figure 15-50 An example for crossing two binary logical expressions.
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<exp» <BX§>

<neg>[<exp>["V]

['NOTY  [F[<exp=[<bin> B

[*NOT"] [(Tcexp>[<bin>

"OR" _— [oR)

Figure 15-51 An example for mutaring a derivation ree.

15.16.3.2 Mutating Programs

We have always considered muration as the random deformvacion of 1 small part of 3 chromosome. I i,
therefore, not surprising that che most common mutation in genetic programming is the random replacenent
ofa randomly selected subtree. The only modification i chat we do not necessarily st from the star sembol,
bur from the nonrerminal symbol a she root of the subtree we consider. Figure 15-31 shows an exanple where
in the logical expression {(NOT 1x OR p1. the variable ris replaced by INOT .

15.16.3.3 The Fitness Funclion

There is no common recipe for specifving an appropriate fimess funceion which strongly depends on the
given problem, It is, however. worth emphasizing cha it is necessary o provide enough informanon 1w guide
the GA to the selution. More specifically. i is not sufficien to define a fitness funesion which asagss 1w
a program which does not solve the problem and 1 to a program which solves the problem - sich 1 fines
funcrion would correspond to a needle-in-havstack prohlem. In thas wense. 4 proper fitness ineasure should
be a gradual concepr for judging the correctness af programs.

In many applications, the fieness funcrion is based an a4 compurison at desived and actwally obruned
aueput. Koza, for instance. uses che simple sum of quadratic errars for sembolic regression and the discoven
of trigonomerric identities:

\
(F = Z A A

=1

In cthis definition, Fis the marhemanca! funcrion which corresponds te the program under evaluacoon, §he

list {x;, pi)a 1 <7 = NV consists of reference pais — a desired ourpue y, is asmigned o vach inpur v Clearly the -

samples have o be chosen such that the considered input space is covered sufficiently well.

Numeric ¢rtor-based fieness functions usaally imply minimization problenis. Some other applicatens may
imply maximization tasks. There are hasically twa well-known transtormarions which allow w stndardize =
ficness funcrions such thar always minimization or maximization rasks are obtained. '

15.17 Advaniages and Limiations of Genetic Algorithm 461

Consider an achitrary “raw™ fitness function £ Assuming that the number of individuals in the population
i not fised Ur, atime ¢, the standardized fitness is compured as

LA

)%(bi,r) =f(l1,",) - [}‘1:]){ (bﬂ)

if /" has o be maximized and as

flbid) = (b3 — minf (6

if £ has to be minimized. One possible variant is to consider the besc individual of the last £ generations
instead of only considering the acrual generarion.

Obviously, standardized fitness transforms any optimization problem into a minimization rask. Rouleere
wheel selection relies on the fact that the objective is maximization of the fitness funcrion. Koza has suggested
a simple transformation such thac, in any case, a maximization problem is obtained.

With the assumptions of previous definition, the adjusted fitness is computed as

ikl = it fith) — fit)

Another variant of adjusted fitness is defined as

1

f;l(bl'..r) = 1+f:§(['j1)

For applying GP to a given problem, the following points have to be sarisfied.
L. An appropriate fitness function, which provides enough information to guide the GA 1o the solution
(mostly based on examples).

2. A syntactical description of a programming language, which contains as much elements as necessary for
solving the problem.

3. Aninterpreter for the programming language.

The main application areas of GP include: Compurer Science, Science. Engineering, Art and Enter-
tainment.

l 15.17 Advantages and Limitations of Genetic Algorithm

The advantages of GA are as follows:
L. Parallelism. '
2. Liability,

3. Solution space is wider.

4. The fitness landscape is complex.
5. Easy to discover global optimum.

6. The problem has multiobjective function.
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The limitations of GA are as follows:

The problem of idenrifying fifness function.
Definition of representation for the problem.

1.
2,
3. Premarure convefgence occurs.
4.

The problem of choosing various parameters such as the size of the population. mutarion rate, crossover
rate, the selection method and its strength.

I 15.18 Applications of Genetic Algorithm

An effective GA representation and meaningful fieness evaluarion are the keys of the success in GA applications.
The appeal of GAs comes from their simpliciry and elegance as robust search algorithms as well as from their
power to discover good solutions rapidly for difficule high-dimensional problems. GAs are useful and efficient
when

1. the search space is large, complex or poorly understood;

2. domain knowledge is scarce or expert knowledge is difficult to encode to narrow the search space; - '
3. no mathematical analysis is available;

4, rradicional search methods fail,

The advantage of the GA approach is the ease with which it can handle arbitrary kinds of constraints and
objectives; all such things can be handled as weighted components of the fitness function, making it easy to
adape the GA scheduler to the particular requirements of a very wide range of possible overall objectives.

GAs have been used for problem-solving and for modeling. GAsare applied to many scientific, engincering
problems, in business and enterminment, including:

L. Optimization: GAs have been used in a wide variery of optimization tasks, including numerical optimiza-

tion and combinatorial optimization problems such as traveling salesman problem (TSP), circuit design
{Louis, 1993), job shop scheduling (Goldstein, 1991) and video & sound quality optimization.

. Automasic programming.  GAs have been used to evolve computer programs for specific tasks and ro design
other computational structures, for example, cellular automara and sorting networks.

. Machine and robot learning. GAs have been used for many machine-learning applications, including
classificarions and predicrion, and protein structure prediction. GAs have also been used to design neural

networks, 1 evolye rules for learning classifier systems or symbolic production systems, and to design and
control robots.

. Economic models:  GAs have been used to model processes of innavation, the development of bidding
strategies and the emergence of economic markers.

5. Dmmune system models:  GAs have been used ro model various aspects of the natural immune system,

- . . - - T e - - - e .
including somaric mutation during an individual’s lifecime and the discovery of multi-gene families during
evolutionary time.

. Ecological models: GAs have been used to mode] ecological phenomena such as biological arms races,
host—parasite co-evolutions, symbiosis and resource flow in ecologies.

. Population genetics models: GAs have been used to study questions in population genetics, such as ‘under
what condidions will a gene for recombination be evolutionarily viable?’

8. Interactions besween evolution and learning:  GAs have been used to study how individual learning and
species evolution affect one another.
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9. Models of social systems.  GAs have been used to study evolutionary aspects of social systems, such as t.hB
evolution of cooperation {(Chughrai, 1995), the evolution of communication and teail-following behavior
in ants.

l 15.19 Summary

Generic algorithms are original systems based on the supposed functioning of the living, The method is very
different from classical optimization algorithms as it:

1. Uses the encoding of the parameters, not the parameters themselves.
2. Works on a population of points, not a unique one,
3. Uses the only values of the function ro optimize, not their derived funerion or other auxiliary knowledge.

4. Uses probabilistic transirion function and nor determinist ones.

It is important o understand thar the funcrioning of such an algorithm does mOC GUArANtee SUCCESS. The
problem is in a stochastic system and a genetic pool may be oo far from the solution, or for example, a 100
fast convergence may hale the process of evolution. These algorithms are, ncverthcles_s, extremely efficient,
and are used in ficlds as diverse as stock exchange, production scheduling or programming of assembly robots
in the automotive industry. o

GAs can even be faster in finding global maxima than conventional methods, ia par['u_:ular when derivatives
provide misleading information, It should be noted that in most cases vzj'here convenm':nail mc.thods can be
applied, GAs are much slower because they do not take auxiliary inForm;.mon such as denvatm.zs into account.
In chese optimizacion problems, there is no need to apply a GA, which gives les§ accurate solunonsl after nr'mch
longer computation time. The enormous potencial of GAslieselsewhere - in optimization of non-differentiable
ot even discontinuous functions, discrete optimization, and program induction.

It has been claimed thar via the operations of selection, crossover and mutation, the GA will convergg over
successive penerations towards the global {or near global) optimum, This simplle ope_ra:ic‘m should pmdu_ce
a fast, useful and robust sechnique largely because of the fact thar GAs combine direction a”fi chancc- in
the search in an effective and efficient manner. Since population implicitly contain much more mfo.rmanon
than simply the individual fitness scores, GAs combine the good informacio_n hidder} in I:lSOlLI:[i.Dn with good
information from another solution to produce new solutions with good information inherited from both
parents, inevitably (hopefully) leading towards optimaliy. '

In this chapter we have aiso discussed the various classifications of GAs. The class of parallc.l GAs is very
complex, and its behavior is affected by many parameters. It seems that the only way ro achieve a greaer
understanding of parallel GAs is to study individual facets independently, and we h_ave seen that some of Fhe
most influential publications in parallel GAs concentraze on only one aspect {migration rates, communication
topology or deme size) eicher ignoring or making simplifying assumpsions on .the others. Also t!’le hybrlcll GA,
adaptive GA, independent sampling GA and messy GA has been included wich the necessary mformanon..

Genetic programming has been used to model and conrrol a muiricude of processes and to govern their
behavior according to finess-based automarically generaced algorithms: Implementacion of generic program-
ming will benefit in the coming years from new approaches which mclusie research frlom developrflental
biotogy. Also, it will be necessary to learn to handle the redundancy forming pressures in the evolution of
code. Application of generic programming will continue to broaden. Many aplpllcauons.focus on cantrolling
behavior of real or vircual agents, In this role, genetic programming may contrlbutf: ConSLderal:')ly 10 tl_1e grow‘;
ing field of social and behavioral simularions. A brief discussion on Holtand classifier system is also include
in this chaprer.
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I 15.20 Review Questions

1.

State Charles Darwin’s theory of evolution.

2. What is meant by genetic algorichm?

3.

Compare and contrast traditional atgorithm and
p B
genetic algorithm.

- State the importance of genetic algorithm,

- Explain in derail abour the various operators
involved in genetic algorithm.

. What the various types of crossover and muta-
tion techniques?

- With a neat Howchart, explain the operarion of
a simple genetic algorithm.

8. State the general generic algorithm.

9. Discuss in derail about the various types of

10.

genetic algorithm in detail.

State schema theorem,

I_15.21 Exercise Problems

11. Wrire short note on Holland classifier systems.

12. Differentiate between messy GA and parallel

GA.

13. What is the importance of hybrid GAs?

14, Describe the concepts involved in real-coded-
genetic algorithm.

15. Whar i genesic programming?

16, Compare genetic algorithm and generic pro-
gramming,

17. List the characreristics of genetic programming,

18. With a neat flowchart, explain the operation of
genetic programming,

19. How are data represented in genetic program-
ming?

20

- Mention the appliczcions of genetic algorithm.

L

Determine the maximum of function x P x
(0.007x+2) using genetic algorichm by w iting a
program.

- Determine the maximum of funcrion exp(—3x) +

sin(G2T x) using genetic algorithm. Given range =
[0.004 0.7); bits = 6; population = 12; gen-
erations = 36; mutadon = 0.005: matenum =

0.3.

- Oprimize the logarithmic function using 2

generic aly orithm by writing 2 program.

4. Solve the logical AND function using genetic

5.

algorithm by writing a program.

Solve the XNOR problem using genetic algorithm
by writing a program.

. Determine the maximum of function exp(5x) +

sin{7m x) using genetic algorichm. Given range =
[0.002 0.6); bies = 3; popu ation = 14; gen-
erations = 36; mutation = 0.006; marenum =

0.3.

Hybrid Soft Gomputing Techniques

— Learning Objectives

Neuro-fuzzy hybrid systems. Properties of generic neuro hybrid systems.

Comparison of fuzzy systems with neural * Genetic algorithm based back-propagation
neoworks. nerwork (BPN).

Advantages of neuro-genetic hybrids.

Properties of neure-fuzzy hybrid systems.

Genetic fuzzy hybrid and fuzzy genetic hybrid
Systems.

Genetic fuzzy rule based systems (GFRBSs).
Advantages of genetic fuzzy hybrids.
Simplified fuzzy ARTMAT

Supervised ARTMAP system,

Characteristics of neuro-fuzzy hybrids.

Cooperartive neural fuzzy systems.

General neuro-fuzzy hybrid systems.

-
.

Adapuve Neuro-fuzzy Inference System

(ANFIS} in MATLAB,

Genetic neuro hybrid systems.

16.1 Introduction

In general, neural necworks, fuzzy systems and genetic algorithms are distinct soft computing techniques
evolved from the biological computational strategies and nacure’s way to solve p.rol?let.ns. 3

Neural netwarks are the simplified models of the human nervous systems mimicking our ability 1o adalpt
to certain siruarions and to learn from the past experiences. Chaprers 2-6 of the book dlscus:s the basics
of arificial neural necworks, supervised and unsupervised learning neural necworks, asslociatwe memory
nerworks, and few other special necworks. Fuzzy logic or fuzzy systems deal with uncertainty or vagueness
existing in a system and formulating fuzzy rules to find a solurion to problems. Fuzzy loglcldocs not operate
on accurate boundaries and it provides a transition berween membership and non-membership of the van:lables
for a particular problem. Chapiers 7-14 of the book discuss the basic concepts of .ﬁiuy ses, ﬁu_z): rlelatlons,
and methods for formutation of membership funcrions and for converting fuzzy entities to crisp entities, fuzzy
arithmeric, fuzzy rule base, and fuzzy conrrol system with ics applications. Generic algorichms 1nsp1rec? by the
nawiral evolution process are adaprive search and optimization algorithms. Chapn::r 15 of l:hlf: book d:s_cusses
on the fundamenral generic operators and general genetic algorithm used For_ﬂndmg an prtlmaJ solun_on.

All the above three echniques individually have provided efficient suluno:?s 1o a wide range of simple
and complex problems pertaining to different domains. As discussed in Secnor_l 1.5 of Chaprclr I, thc:c
three techniques can be combined together in whole or in part, and may be ajpphed to find SDlutlc?n.l'O the
problems, where che techniques do not work individually. The main aim of the concepr of hybridization
15 10 overcome the weakness in one technique while applying it and bringing out the strength of the other
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technique to find solurion by combining them. Every soft computing technique has particular compurational
paramerers {¢.g., ability to learn, decision making) which make them suived for a particular problem and not
for others. It has 1o be nored that neural nerworks are good at recognizing parterns but they are nor good ar
explaining how they reach their decisions. On the contrary, fuzzy logic is good at explaining the decisions
but cannot automatically acquire the rules used for making the decisions. Also, the tuning of membership
functions becomes an important issue in fuzzy modeling. Since this tuning can be viewed as an optimization
problem, either neural network (Hopfield neural nerwork gives solution to optimization problem) or generic
algorithms offer a possibility to solve this problem. These limitations act as a central driving force for the
creation of hybrid soft computing systems where two or more techniques are combined in 2 suitable manner
that overcomes the limitations of individual technigues.

The importance of hybrid system is based on the varied narure of the application domains. Many complex
domains have several different component problems each of which may require different cypes of processing,
When there is a complex application which has two distinct sub-problems, say for example, a signal processing
and serial shift reasoning, then a neural neework and fuzzy logic can be used for solving these individual
tasks, respecrively. The use of hybrid systems is growing rapidly with successful applicadons in areas such
as engineering design, stock market analysis and prediction, medical diagnosis, process conrrol, credic card
analysis, and few other cognitive simularions.

Thus, even though the hybrid soft computing syscems have a great potential to solve problems, if not
applied appropriately they may resule in adverse solutions. It is not necessary that when individual rechniques

give good solution, hybrid systems would give an even berer solution. The key driving force is to build highly

automared, intelligent machines for the future generarions using all these rechniques.

I 16.2 Neuro-Fuzzy Hybrid Systems

A nenro-fuzzy hybrid system (also called fuzzy nevral hybrid), proposed by J. . R. Jang, is a learning mechanism
thac utilizes che training and learning algorithms from neural nerworks to find paramerers of a fuzzy system
{i.e., fuzzy sets, fuzzy rules, fuzzy numbers, and so on). It can alse be defined as a fuzzy system that determines
its parameters by processing data samples by using a learning algorithm derived from or inspired by neural
nerwork theory. Alternately, i is a hybrid incelligent system thar fuses artificial neural necworks and fuzzy
logic by combining the learning and connectionist structure of neural networks with human-like reasoning
style of fuzzy systems.

Neuro-fuzzy hybridizarion is widely termed as Fuzzy Neural Network (FNN) or Neuro-Fuzzy System
(NFS). The human-like reasoning style of fuzzy systems is incorporated by NFS (the more popular term is
used henceforch) through the use of fuzzy sets and a linguistic model consisting of a set of TF-THEN fuzzy
rules. NFSs are universal approximators with the abiliry to solicic interpretable ITF-THEN rules; this is their
main strength. However, the strength of NFSs involves interpretability versus accuracy, requirements thar are
contradicrory in fuzzy modeling.

In the field of fuzzy modeling research, the neuro-fuzzy is divided into two areas:

1. Linpuistic fuzzy modeling focused on interpretability (mainly the Mamdani model).
2. Precise fuzzy modeling focused on accuracy [mainly the Takagi-Sugeno—Kang (TSK) model].

I 16.2.1 Comparison of Fuzzy Systems with Neural Networks

From ‘he existing licerature, it can be noted thar neural nerworks and fuzzy systems have some things in
common. If there does not exist any mathematical model of a given problem, then neural networks and fuzzy
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Table 16-1 Comparison of neural and fuzzy processing

Neural processing Fuzzy processing

Mathemarical model not necessary ~ Mathemarical model not necessary
Learning can be done from scratcch A priori knowledge is needed

There are several learning algorithms Learning is not' possible

Black-box behavior Simple interpretation and implemencation

systems can be used for solving that problem (e.g;, pattern recognition, regression, or density estimation).
This is the main reason for the growth of these itelligent compuring techniques. Besides having individual
advanrages, they do have certain disadvantages that are overcome by combining both concepts.

When neural networks are concerned, if one problem is expressed by sufficient number of observed
examples then only it can be used. These observations are used to train the black box. Though no prio_r
knowledge about the problem is needed extracting comprehensible rules from a neural nerworks structure is
very difficult.

A fuzzy system, on the other hand, does not need learning examples as prior knowledge; rather linguistic
rules are required. Moreover, linguistic description of the inpur and outpur variables should be given. If
the knowledge is incomplete, wrong or contradicrory, then the fuzzy system must be tuned. This is a time-
consuming process. Table 16,1 shows how combining both approaches brings out the advantages, leaving out
the disadvantages.

l 16.2.2 Characteristics of Neuro-Fuzzy Hybrids

The general architecrure of neuro-fuzzy hybrid system is as shown in Figure 16-1. A fuzzy system-based NFS
is rrained by means of a dara-driven learning method derived from neural network theory. This heuristic
causes local changes in the fundamental fuzzy system. At any stage of the learning process — before, during,
or after — it can be represented as a ser of fuzzy rules. For ensuring the semantic properties of the underlying
fuzzy system, the learning procedure is constrained.

An NES approximares an 7-dimensional unknown function, partly represented by training examples. Thus
fuzzy rules can be inrerprered as vague prototypes of the training data. As shown in Figure 16-1, an NF5 is

Inputs Outputs

Figure 16-1 Archicecrure of neuro-fuzzy hybrid system.
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given by a chree-layer feedforward neural nerwork model. It can also be observed thar the first layer corresponds
to the inpuc variables, and the second and chird layers correspond to the fuzzy rules and outpue variables,
respectively. The fuzzy sers are converted o {fuzzy) connection weights.

NFS can also be considered as a system of fuzzy rules wherein the system can be initialized in the form
of fuzzy rules based on the prior knowledge available. Some researchers use five layers — the fuzzy sets being
encoded in the units of the second and the fourth layer, respectively. It is, however, also possible for chese
models to be transformed into three-layer architecrure.

I 16.2,3 Classifications of Neurg-Fuzzy Hybrid Systems

NEFSs can be dassified into che following two systems:

1. Cooperative NFSs.
2. General neuro-fuzzy hybrid systems.

16.2.3.1 Cooperative Neural Fuzzy Systems

In this type of system, both artificial neural network (ANN) and fuzzy system work independently from each
other. The ANN attempts co learn the paramerers from the furzy system, Four differenc kinds of cooperacive
fuzzy neural networks are shown in Figure 16-2.

The FNN in Figure 16-2(A) learns fuzzy ser from the given waining data. This is done, usually, by fitting
membership functions with a neural network; the fuzzy sets then being determined offline. This is followed
by their utilization: to form the fuzzy system by fuzzy rules char are given, and not learned. The NFS in
Figure 16-2(B) determines, by a neural network, the fuzzy rules from che training data. Here again, the neural
networks fearn offline before the fuzzy system is initialized. The rule learning happens usually by clustering
on self-organizing feature maps. There is also the possibility of applying fuzzy clustering methods o obrain
rules,

For the neuro-fuzzy model shown in Figure 16-2(C), the parameters of membership funcrion are learnt
online, while the fuzzy syscem is applied. This means that, initially, fuzzy rules and membership functions must
be defined beforehand. Also, in order o improve and guide the learning step, the error has to be measured.
The model shown in Figure 16-2(D) determines the rule weights for all furzy rules by a neural nerwork. A

rule is determined by its rule weighe-interpreted as the influence of a rule. They are then multiplied with che
rule output.

16.2.3.2 General Neuro-Fuzzy Hybrid Systems (General NFHS)

General neuro-fuzzy hybrid systems (NFHS) resemble neural nerworks where a fuzzy system is interpreted as
a neural network of special kind. The archirecture of general NFHS gives it an advanrage because there is no
communication between fuzzy system and neural nerwork. Figure 16-3 illustrates an NFHS. In this figure the
rule base of a fuzzy system is assumed to be a neural network; the fuzzy sets are regarded as weighes and the
rules and che input and output variables as neurons. The choice fo include or discard neurons can be made
in the learning step. Also, the fuzzy knowledge base is represented by the neurons of the neural network; this
overcomes the major drawbacks of both underlying systems.

Membership functions expressing the linguistic terms of the inference rules should be formulated for
building a huzzy controller. However, in fuzzy systems, no formal approach exists ro define these funcrions.
Any shape, such as Gaussian or triangular or bell shaped or trapezoidal, can be considered as a membership
function with an arbitraty set of paramerers. Thus for fuzzy systems, the oprimizarion of these Runctions
in terms of generalizing the daa is very imporrans this problem can be solved by using neural nerworks.
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Figure 16-2 Cooperative neural fuzzy sysems.

tk must optimize the parameters by fixing a distince shape of the

Using learning rules, the neural necwo shape of the membership funcrions,

membegship funcrions; for example, rriangular, But regerdless of the

training data should also be available. . o
mf{‘_’}i‘f ne;:ns ﬁ(.)lzzy h;'l;rid systems <an also be modeled in an another methed. Ia this case, the training

dara is grouped inco several clusters and each cluster is designed to representa particular ¢ ”!C‘ E.hcse ;u.l;.]si a:::
defined by the crisp data points and are not defined linguistically. Hence a neural necwork, in chis case, mig
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Figure 16-3 A general neuro-fuzzy hybrid syscem,

be applied to train the defined clusters. The testing can be carried out by presenting a random testing sample

to the trained neural neswork. Each and every output unit will rerurn a degree which extends to fit to the
anrecedenr of rule.

I 16.2.4 Adaptive Neuro—Fuzzy Inference System (ANFIS) in MATLAB

The basic idea behind this neuro-adaptive learning technique is very simple. This rechnique provides a method
for the fuzzy modeling procedure to learn information about a daa set, in order to compute the membership
funcrion paramerers that best allow the associated fuzzy inference system to track the given inputfoutpur data.
This learning method works similarly to that of neural necworks.

ANEIS Toolbex in MATLAB environment performs the membership function parameter adjustments.
The funcrion name used o activate this wolbox in anfis. ANFIS toolbox can be opened in MATLAB
either at command line prompr or at Graphical User Interface. Based on the given input—output dara ser,
ANFIS wolbox builds a Fuzzy Inference Sysem whose membership funcrions are adjusted either using back
propagation nerwork training algorithm or Adaline nerwork algorichm, which uses least mean square learning
rule. This makes the furzy system to learn from the dara they model.

The Fuzzy Logic Toolbox function that accomplishes this membership funcrion parameter adjustment
is called anfis. The acronym ANFIS derives its name from adaptive neuro-fuzzy inference systen. The
anfis function can be accessed either from the command line or through the ANFIS Editor GUL Using
a given inputfourpur data set, the toolbox function anfis constructs a furzy inference system (F1S) whose
membership function parameters are adjusted wsing either a back-propagation algorithm alone or in com-

bination with a least squares type of method. This enables fuzzy systems to learn from the dara they are
modeling.

16.2.4.1 FIS Siructure and Parameter Adjustment

A nerwork-type structure similar to tha of a neural nerwork can be used to interpret the input/outpur. This
structure maps inputs through input membership functions and associated parameters, and then through
outpuc membership functions and associated paramerets o outpurs. During the learning process, the param-
eters associated with the membership functions will change. A gradient vector faciliraces the compuration

i
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{or adjustment) of these parameters, providing a measure c?t' .how well rht‘a fuzzy inference szSte::al m;d:i:ll;sl ud:i
inputfoutput data for a given set of parameters. After obtaining the. gradient vector, any 0 sc(:; ﬁnedpusua.ll
don routines could be applied:to adjust the paramerers for redu_cmg S0mE error rge.aasureak e o ehhe);
by the sum of the squared différence bevween the actual and desu_ed outpuss). an }Jl..S x;; E?OT of cidher
back-propagation or a combination of adaline and back-propagation, for membership function p
estimiation.

16.2.4.2 Constraints of ANFIS . A
When compared to the general fuzzy inference systems anfis is more complex. Itis not avaj]:[ll:o efotilr _ ;J
the fuzzy inference system options and only supports Sugeno-fype systems. Such systems have the following
properties:

1. They should be the first- or zeroth-order Sugeno-type systems.

2. They should have a single output thar is obtained using weighlted average defuzzification. All output
membership functions must be the same type and can be either linear or conseant.

3. They do not share rules. The number of output membership functions must be equal 1o the number of
rules.

4. They must have unity weight for cach rule. |

IEFIS structure does not comply with these constraints then an error woulld occur. Also, all the cusromt':mt;:)_n

options that basic fuzzy inference allows cannor be accepted by anfis. In simpler words, membership

i 1 i rovided
funcions and defuzzification Functions cannot be made according to one’s choice, rather those p
should be used.

16.2.4.3 The ANFIS Editor GUI

To gec started wich the ANFIS Editor GUL wype anf isedit arthe MATLAB command prompt. The GUI
as in Figure 16-4 will appear on your screen.
From this GUI one can:

1. Load dara (training, testing and checking) by selecting appropriate radio buctons in El:le Load Daza portion
of the GUI and then dlicking Load Dara. The loaded dara is plotred on the plot region.

2. Generate an initial FIS mode! or load an initial FIS model using the options in the Generate FIS portion
of the GUL

3. View the FIS model structure once an initial FES has been generaed or loaded by clicking the Structure
batton.

4. Choose the FIS madel paramerer optimization method: back-propagation ora mixture of back-propagation
and least squares (hybrid method).

5. Choose the number of training epochs and the training error tolerance. - '

6. Train the FIS moded by clicking the Train Now button. This trajning_ adjusts the n-!embcrshlp Function
parameters and plots the training (and/ot checking data} ertor plot(s) in che plot regllon.. .

7. View the FIS model output versus the training, checking, or tf:sti.ng data ourpu_t by clicking the Test Now
burcon. This funcrion plots the test dara against the FIS cutput in the plor region.

One can also usc the ANFIS Ediror GUI menu bar to load an FIS training initiali_zation, save golur trained
FIS, open a new Sugeno system, or open any of the other GUIs to interprer the trained FIS model.
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Figure 16-4 ANFIS Editor in MATLAB.

16.2.4.4 Dala Formalities and the ANFIS Editor GU

To start craining an FIS using cither anfis or the ANFIS Ediror GUY, one needs o havea training data set
thar conwains desired input/output data pairs of the target system to be modeled. In certain cases, optional
resting dara ser may be available that can check the generalization capability of the resulting fuzzy inference
system, and/ot a checking data set thar helps with model overfitting during the rraining, One can account
for oveifitting by resting the FIS trained on the training dara against the checking data and choosing the
membarship function parameters 1o be those associated with the minimum checking error, if these errors
indicate model overfitsing. To derermine chis, their training ecror plots have o be examined fairly closely.

Usually, these training and checking dara sets are stored in separate files after being collecred based on
observanons of the target system.

16.2.4.5 More on ANFIS Editor GUI

A minimum of two and maximum six arguments can be taken up by the command anfis whose general
formac is .
[fismakl, trnError, ss, fismat2,chkError]=. ..
anfis(trnData, fismat, trnOpt,dispOpt, chkData, method} ;

Here trnOpt (training options), dispUpt (display oprions), chkData (checking daca), and method
(eraining method) are oprional. All of the ourpur arguments are also optional. In this seccion we will discuss
the arguments and range components of the command line fanction anfis as well as the analogous func-
tionality of the ANFIS Editor GUI. Only the training data ser muse exist before implementing anf is when

the ANFIS Editor GUI is invoked using anfisedit. The step-size will be fixed when the adaptive NFS is
trained using this GUI tool.
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Training Data

Both anfis and ANFIS Editor GUI reguire the training data, trnData, as an argument. For the targer
system to be modeled each row of trndata is a desired inputfoutpur pair; a row starts with an input vector
and is followed by an outpur vatue. So, the number of rowsof txndata is equal 1o the number of training
dara pairs. Also, because there is only one output, the aumber of columns of trndata is one more than the
number of inputs.

Input FIS Structure )
The input FIS Structure, £1smat, can be obtained from any of the following fuzzy editors:

1. The FIS Editor.
2. The Membership Funcrion Editor.

3. The Rule Editor from the ANFIS Editor GUI {which allows a FIS structure to be loaded from a file or
the MATLAB workspace).

4. The cormmand line function, genfisl {for which one needs to give only numbers and cypes of
membership furcrions),

The FIS structure contains both the model structure (specifying, e.g., number of rules in the FIS, the number
of membership functions for each input, etc.) and the parameters (which specify the shapes of the membership
Functions).

For updarting membership function parameters, anfis learning employs two methods:

1. Back-propagation for all paramerers (a steepest descent method).

2. A hybrid merhod involving back-propagation for the parameters associated wich the input membership
functionsand least-squares estimation for the parameters associated with the output membership functions.

This means thar throughour the learning process, at least lacally, the rraining error decreases. So, as the initial
mermbesship functions increasingly resemble the optimal ones, it becomes easiex for the model paramerer
training to converge. In the setting up of chese initial membership function parameters in the FIS structure,
it may be helpful to have human expertise abour the wrget system to be modeled.

Based on a fixed number of membership functions, the genfisl function produces a FIS scructure.
This structure invokes the so-called eurse of dimensionalisy and causes excessive propagation of the number
of rules when the number of inputs is moderately large (more than four or five). To enable some dimension
reduction in the fuzzy inference system, the Fuzzy Logic Toolbox software provides a method —a FIS structure
can be generated using the clustering algorithm discussed in Subtractive Clustering. To use this clustering
algorithm, selecr the Sub. Clustering option in the Generate FIS portion of the ANFIS Editor GUI, before
the FIS is penerated. The data is partitioned by the subtractive clustering method into groups called clusters
and penerates a FIS with the minimum nurber of rules required to distinguish the fuzzy qualities associated
with each of the clusters.

Training Options

One can choose a desired error tolerance and number of training epochs in the ANFIS Ediror GUI tool.
For the command line anf is, training oprion trnOpt is a vector specifying the stopping criteria and the
step-size adapration stracegy:

L. trnOpt (1): number of training epochs; defaule = 10

TS
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2. trnOpt (2): error tolerance; defaulc = §

3, trnOpt (3): inital step-size; defaulr = 0,01

4, trnopt (4): step-size decrease rate; defaule = 0.9

5. trnoOpt (5): step-size increase rate; defaul = 1.1

The default value is taken if any element of trnOpt is missing or is an Nal. The training process stops if
the designared cpoch number is reached or the error goal is achieved, whichever comes first.

The step-size profile is usually a curve that increases initially, reaches a maximum, and then decreases for
the remainder of the training. This ideal step-size profile can be achieved by adjusting the inirial step-size and
the increase and decrease rates (txrnOpt (3) - trnopt (5)). The defaule values are set up to cover a
wide range of learning tasks. These step-size options may have to be modified, for any specific application, in
order to oprimize the training, There are, however, no user-specified step-size options for training the adaptive
neuro-fuzzy inference system generated using the ANFIS Editor GUL

Display Optiens

They apply only to the command line function anfis. The display options argument, di8pOpt, is a vector
of either s or Os that specifies the information to be displayed {print in the MATLAB command window)
before, during, and after che training process. To denote print this gption, 1 is used and to denote do mot print
this gption, 0 is used.

1. dispOpt {1): display ANFIS informarion; default = 1
2. dispOpt(2); display ervor {each epoch); defaulc = 1

3. dispOpt (3): display step-size (each epoch); default = 1
4. AispOpt [4): display final resules; defaulc = 1

Al available information is displayed in the default mode. If any element of dispOpt is missing or is NaN,
the default value is used.

Method

To estimate membership function paramesers, both the command line anfis and the ANFIS Editor GUI
apply either 2 back-propagation form of the steepest descent method, or a combination of back-propagarion
and rhe least-squares method. The choices for this argument are hybrid or backpropagation. In the
command line funcrion, anfis, these method choices are designated by 1 and 0, respectively.

Ourput FIS Structure for Training Data

The output FIS structure corresponding to a minimal craining error is £1 smat1. This is the FIS scrucrure
one uses 1o represent the fuzzy system when there is no checking dara used for model cross-validarion. Also,
when the checking dara option is not used, this data represents the FIS structure thar is saved by the ANFIS
Editor GUL. When one uses the checking data option, the output saved is that associated with the minimum
checking error.

Training Error

This is che difference becween the training data ourput value and the outpur of the fuzzy inference system
corresponding to the same wraining data input value (the one associared with thar rraining dara ourput value.)

"
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The root mean squared error (RMSE) of the training data set at each epoch is recorded by the craining
ertor txnError; and £ismatl is the snapshot of the FIS scructure when the training error measure is

at its minimum. As the system is trained, the ANFIS Editor GUI plots the training error versus epochs
curve.

Step-Size

With the ANFIS Editor GUI, one cannot contrel the scep-size options, The step-size array ss records the
step-size during the waining, using the command line anfis. If one plots ss, one gets the step-size profile
which serves as a reference for adjusting the initial step-size, and the corresponding decrease and increase rates,
The guidelines followed for updaring the step-size (ss) for the command line function anfis are:

1. If the error undergoes four consecutive reducrions, increase the step-size by multiplying it by a constant
(ssinc) greater than one.

2. If the error undergoes two consecutive combinations of one increase and one reduction, decrease the
step-size by muldiplying it by a constant (ssdec) less than one.

For the initial step-size, the default value is 0.01; for ssinc and ssdec, they are 1.1 and 0.9, respectively.
All the default values can be changed via the training option for the command line anfis.

Checking Data

For testing the generalization capability of che fuzzy inference system at each epoch, the checking dara,
chkData, is used. The checking data and the craining data have the same format and elements of the former
are generally distincr from those of the latter.

For learning rasks for which the input number is large and/or the dara itself is noisy, the checking data is
important. A fuzzy inference system needs to track a given inpur/output data set well. The model scrucnsre
used for anfis is fixed, which means thac théce is a tendency for the model to overfir the dara on which
it is trained, especially for a large number of training epachs. In case overfitting occurs, the fuzzy inference
system may not respond well to other independent data sets, especially if they are corrupred by noise. In these
situations, a validarion or checking dara ser can be useful. To cross-validate the fuzzy inference model, this
data set is used; cross-validation requires applying the checking data to the model and then secing how well
the model responds to chis data.

The checking data is applied to the model at each training epoch, when the checking dara option is used
with anfis either via the command line or using the ANFIS Editor GUL Once the command line anfis
is invoked, the model parameters thar correspond to the minimum checking error are returned via the output
argument £ismat2. The FIS membership function parameters computed using the ANFIS Editor GUI
when both training and checking data are Joaded, are associated with the training epoch that has 2 minimum
checking errar.

Theassumptions made when using the minimum checking data error epach to ser the membership function
Paramerers are:

1. The similarity becween checking dara and the training dara means thar the checking dasa error decreases
as the training begins.

2. The checking data increases ar some point in che training afeer the data overfitting occurs.

The resulting FIS may or may not be the one which s required to be used, depending on the behavior of the
Chcckjng dara error.
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Ourpur FIS Structure for Checking Data

The output FIS structure with the minimum checking error is the outpuc of the command line anfis,
fismat2. If checking dara is used for cross-validation, this FIS structure is the one that should be used for
further calculacion.

Checking Exror

This is the difference berween the checking data output value and the output of the fuzzy inference system
corresponding to the same checking data input value, which is the one associated with that checking data
output value. The Root Mean Square Error (RMSE) is recorded for the checking dara at each epoch, by the
checking error ¢chkError. The snapshor of the FIS scrucrure when the checking error has its minimum
vatue is £1 sma t 2. The checking error versus epochs curve is plocted by the ANFIS Editor GUI, as the system
is trained,

I 16.3 Genetic Neuro-Hybrid Systems

A neuro-genetic hybrid or a genetic—neuro-hybrid system is ene in which a neural nerwork employs a genetic
algorithm to optimize its strucrural parameters that define its architecture. In general, neural nerworks and
genetic algorithm refers to two distinct methodologies. Neural nerworks learn and execute different rasks
using several examples, classify phenomena, and model nonlinear reladonships; that is neural networks solve
problems by self-learning and self-organizing. On the ocher hand, genetic algorithms present themselves as a
potential solution for the optimization of paramerers of neural necworks.

I 16.3.1 Properties of Genetic Neuro-Hybrid Systems

Certain properties of genetic neuro-hybrid systems are as follows:

1. The parameters of neural nerworks are encoded by genetic algorithms as a string of properties of the
nerwork, that is, chromosomes. A large population of chromosomes is generated, which represent che
many possible parameter sets for the given neural network.

2. Genetic Algorithm — Neural Network, or GANN, has the abilicy to locate the neighborhood of the oprimal
solution quickly, compared to other convencional search seracegies.

Figure 16-5 shows the block diagram for the genetic-neuro-hybrid systems. Their drawbacks are: the large
amount of memory required for handling and manipulation of chramosomes for a given nerwork; and also
the question of scalabilicy of this problem as the size of the networks become large.

I 16.3.2 Genetic Algorithm Based Back-Propagation Network (BPN)

BPN is a mechod of ceaching multi-layer neural necworks how to perform a given task. Here learning occurs
during this training phase. The basic algorithm with archisecrure is discussed in Chapter 3 (Section 3.5) of
this book in derail. The limirations of BPN are as follows:

1. BPN do not have the ability to recognize new patterns; they can recognize parterns similar to those they .

have [earnt.

2, They must be sufficiently trained so that enough general features applicable o both seen and unsecn
instances can be extracted; there may be undesirable effects due to over training the network.

&
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Figure 16-5 Block diagram of genetic—neuro hybrids.

Also, it may be noted thar the BPN determines its weight based on gradient search technique and henee it
may encounter a local minima problem. Though generic algorithms do not guarantee to find global optimum
solution, they are good in quickly finding good acceprable solutions. Thus, hybridizarion of BPN with generic
algorithm is expected to provide many advantages compared to wha they alone can. The basic concepts and
working of generic algorithm are discussed in Chapter 15. However, before a generic algorithm is executed,

1. A suitable coding for the problem has to be devised.
2. A fitness function has to be formulazed.

3. Parents have to be selected for reproduction and then crossed over to generate offspring,

16.3.2.1 Coding

Assume a BPN configuration n-l-m where 2 is the number of nevrons in the inpur layer, / is the number

of neurons in the hidden layer and 1 is the number of output layer neurons. The number of weights to be
determined is given by

(a4 m){

Eaclr} weighr (which isa gene here) is a reat number. Let 7 be the number of digics (gene lengeh) in weight. Then
astring § of decimal values having string lengeh (2 + m)ld is randomly generated. It is a string char represents
weight matrices of inpur-hidden and the hidden-output lzyers in a linear form arranged as row-major or

column-major depending upon the style selected. Thereafter 2 population of p (which is che population size)
chromesomes is randomly generated.

16.3.2.2 Weight Extraction

In order to determine the fitness values, weights are extracred from each chromosome. Letmy, a3, .- ., 8y .+ . 42
Ti - .
€present a chromosome and let Apdt1y Apdy s - -+ Bipy1)d Tepresent pth gene (p > 0) in the chromosomes.

ToeT
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The actual weight w, is given by

4unal0 4 a3 10970 4 gy

1 i1 1f0 Eﬂpd+]<5
W =
? 24210772 + ap1y51073 4
+2 Apdt3 Foobaprnd
4o Pdwd—z eti) if5 2 a5y <9

16.3.2.3 Finess Function

A Fieness has to be formulated for each and every problem to be solved. Consider the matrix given by

(11, 21 %5150+, X1)
(x12, %22, %32, -+, X2)
{x13,223, 233, ...

1220380 pm)
2322332 Jn2)
)xrrB) (7131_723:]331 e x)'nB)

(xlm: X2ms X3m - - - :xnm) ()’Im:)’Zm:)’Sm: e :)’nm)

where X and ¥ are the inputs and rargets, respecrively. Compute initial population fp of size . Ler
Oy 020, ..., Op represent §j* chromosomes of the inirial population fg. Let the weights extracted for each
of the chromosomes upto jth chromosome be w1, w1, W3, - .., wp. For n number of inputs and 7 number
of ourputs, let the calculared output of the considered BPN be

(cl]lc‘llxc_’ala- ‘s sfnl)
(e12, €22, 632, 0L 62
(c13>5231 €33« 5 In3)

(cl'ﬂ’ Q"‘l’ f}"l‘l L Ermr)
As a result, the error here is calcutaced by

ER=(n—a +0m -l + gm — )2+ + O ~ em)?
ERy = (2 — a2l + (o — e + sz — ez + -+ + (2 — e2)?

ERpy = (}'lm - "-'lm)z + (}Qm e Qm)z + ()‘jm - 53»1)2 +---+ (}’nm - fnm)z

The fieness funcrion is furcher derived from chis root mean square crror given by

1
FFy= —
Evomse

The process has to be carried out for all the toral number of chromosomes.
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16.3.2.4 Reproduction of Offspring

In this process, before the parents produce the offspring with better fitness, the mating pool has to be
formulated. This is accomplished by neglecting the chromosome with minimum fitness and replacing it with
a chromosome having maximum firness, In ather words, the fictest individuals among the chromasomes will
be given more chances to participate in the generations and the worst individuals will be eliminated. Once
the mating pool is formulared, parent pairs are selecred randomly and the chromosomes of respective pairs are
combined using crossover technique to reproduce offspring. The selection operator is suitably used to select
the bese parent to participate in the reproduction process.

16.3.2.5 Convergence

The convergence for genetic algorithm is the number of generations with which the fitness value increases
towards the global optimum. Convergence is the progression towards increasing uniformity. When about 95%
of the individuals in the population share the same firness value then we say that a population has converged.

l16.3.3 Advantages of Neuro-Genetic Hybrids

The various advantages of neuro-genetic hybrid are as follows:

* GA performs optimization of neural nerwork paramerers with simplicity, ease of operation, minimal
requirements and global perspective.

* GA helps 0 find out complex structure of ANN for given inpur and the outpur dara set by using its
learning rule as 2 ficness function.

* Hybrid approach ensembles a powerful model thar could significantly improve the predictability of the
system under construction.

The hybrid approach can be applied o several applications, which include: load forecasting, stack forecassing,

cost oprimization in rextile industries, medical diagnosis, face recognition, multi-processor scheduling, job
shop scheduling, and so on,

I 16.4 Genetic Fuzzy Hybrid and Fuzzy Genetic Hybrid Systems

Currently, several researches has been pecformed combining fuzzy logic and genetic algorithms (GAs), and
there is an increasing interest in the integration of these two topics. The integration can be performed in the
fullowing two ways:

1. By the use of fuzzy togic based techniques for improving generic algorithm behavior and modeling GA
components. This is called firzay genetic algorithms (FGAs).

2. By the application of genetic algorichms in various optimization and search probtems involving fuzzy
systems.

An FGA is considered as 2 generic algorithm that uses rechniques or tools based on fuzzy logic to improve
the GA behavior modeling, It may also be defined as an ordering sequence of instrucrions in which some
of the instructions or algorithm components may be designed with tools based on fuzzy logic. For example,
fuzzy operators and fuzzy connectives for designing genetic operarors with different properties, fuzzy logic
conerol systerns for controlling the GA parameters according ro some performance measures, stop criteria,
fepresenation tasks, erc.
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GAs are urilized for solving different fuzzy optimization problems. For example, furzy flowshop scheduling
problems, vehicle routing problems wich fuzzy due-time, fuzzy oprimal reliability design problems, fuzzy mixed
integer programming applied to resource distribution, job-shop scheduling problem with fuzzy processing
time, interactive fuzzy satisfying method for multi-objeccive (-1, fuzzy optimizarion of distributicn networks,
etc.

h6.4.1 Genstic Fuzzy Rule Based Systems (GFRBSs)

For modeling complex systems in which classical tools are unsuccessful, due to them being complex or
imprecise, an important ool in the form of fuzzy rule based systems has been idendified. In this regard, for
mechanizing the definition of the knowledge base of a fuzzy controller GAs have proven to be a powerful tol,
since adaptive control, learning, and self-organizarion may be considered in a lot of cases as oprimization or
search processes. Over the last few years their advantages have extended the use of GAs in the development
of a wide range of approaches for designing fuzzy controllers. In particular, the application to the design,
learning and tuning of knowledge bases has produced quite good results. In genetal these approaches can be
termed as Genetic Fuzey Systems (GFSs}. Figure 16-6 shows a system where genetic design and fuzzy processing
are the two fundamental constituents. Inside GFRBSs, it is possible to distinguish berween ¢ither paramerer
optimization or rule generation processes, that is, adaptation and learning,
The main objectives of optimization in fuzzy rule based system are as follows:

1. The task of finding an appropriate knowledge base (KB) for a particular problem. This is equivalent 1o
parameterizing the fuzzy KB (rules and membership functions).
2. To find those parameter values that are optimal with respect to the design criteria.

Considering a GFRBS, ane has o decide which parts of che knowledge base (KB) are subjecr to optimization
by the GA. The KB of a fuzzy system is the union of qualicarively different components and nota homogeneous
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Figure 16-6 Block diagram of genetic fuzzy system.
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Table 16-2 ‘luning versus learning problems

Tuning Learning Problems

It is concerned with optimization of an existing FRBS, Tt constirutes an automaced design methad For fuziy
rule sers char st from seracch.

Tuning processes assume a predefined RB and have the  Learning processes perform a more claborased search

abjective to find a s of optimal parameters for che mem-  in the space aof possible RBs or whole KB and do nat

bership and/for che scaling funcrions, DB paramesers.  depend on a predefined set of rules.

structure. As an example, the KB of a descriprive Marhdani-type fuzzy system has two components: a rule base
(RB} conraining the collection of fuzzy rules and a dara base (DB} :-sncaining che definitions of the scaling
factors and the meinbership functions of the fuzzy sets associated with the linguistic labels.

In this phase. it is important o distinguish between tuning (alternacively. adaptation) and learning
problems, See Table 16-2 for the differences.

16.4.1.1 Genetic Tuning Process

The task of tuning the scaling functions and fuzzy membership functions is important in FRBS design.
The adoption of parameterized scaling functions and membership functions by the GA is hased on the
finess function thar specifies the design criteria quantitatively. The responsibility of finding a sct of optinml
parameters for the membership and/for the scaling functions rests with the wning processes which assume a
predefined rule base. The tuning process can be performed « priori also. This can be done if a subsequent
process derives the RB once the DB has been obtained, that is. @ priors genesic DB learning. Figure 16-7
illustrates the process of geneiic tuning,

Tuming Scaling Functions

"The universes of discourse where fuzzy membership functions are defined are normalized by scaling functions
applied to the iput and outpur variables of FRBSs. In case of linear scaling. the scaling functions are
parameterized by a single scaling factor or cicher by specifying a lower and upper bound. On the octher hand,
in case of non-linear scaling, the scaling functions are parameterized by one or several conraction/dilacion
Parameters. These parameters are adapted such chat the scaled universe of discourse marches the underlying
variable range.

Ideally, in these kinds of processes the approach is to adapt one o four paramerers per vartable: one when
using a scaling factor. two for linear scaling, and three or four Jor non-linear scaling. This approach leads to

2 fixed length code as the number of variables is predefined as is the number of parameters required to code
each scaling function.

Predefined Genelic
rulebase {uning process

Dalabase
computing module

Database

Figure 16-7 Trocess of wning the DB.
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Tuning Membership Functions

It can be noted thar during the tuning of membership Functions, an individual represents the entire DB. This
is because its chromosome encodes the parameterized membership functions associated to the linguistic terms
in every Fuzzy partition considered by the fuzzy rule based system. Triangular {either isosceles or asymmetric),
trapezoidal, or Gaussian funcrions are the most common shapes for the membership functions (in GFRBSs}.
The number of paramerers per membership function can vary from one to four and each parameter can be
eicher binary or real coded.

For FRBSs of the descriptive {using linguistic variables) or the approximate (using fuzzy variables} type, the
structure of the chromosome is different. In the process of tuning the membership functions in 2 linguistic
model, the entire fuzzy partitions are encoded into the chromosome and in order 1o mainrain the global
semantic in the RB, it is globally adapted. These approaches usually consider a predefined number of linguistic
terms for each variable - with no requirement to be the same for each of them — which leads ro a code of fixed
length in what concerns membership functions. Despite this, it is possible to evolve the number of linguistic
rerms associated to a variable; simply define a maximum number (for the lengrh of the code) and ler seme
of the membership functions be located out of the range of the linguistic variable (which reduces the actual
number of linguistic terms).

Descriptive fuzzy systems wotking with strong fuzzy partitions, is a patticular case where the number of
parameters to be coded is reduced. Here, the number of parameters to code is reduced to the ones defining the
core regions of che fuzzy sets: the modal point for triangles and the exweme points of the core for rrapezoidal
shapes.

Tuning the membership functions of a model working with fuzzy variables (scatcer parsitions), on the other
hand, is a particular instance of knowledge base learning. This is because, instead of referring to linguistic
terms in the DB, the rules are defined completely by their own membership funcrions.

16.4.1.2 Genetic Learning of Rule Bases

As shown in Figure 16-8, genetic learning of rule bases assumes a predefined set of fuzzy membership funcrions
in the DB to which the rules refer, by means of linguistic labels. As in the approximate approach adapting
rules, it only applies to descriptive FRBSs, which s equivalent 1o modifying the membership functions. VWhen
considering a rule based system and focusing on learning rules, there are three main approaches that have
been applied in the literature:

1. Pirsburgh approach.
2. Michigan appraach.

3. Iterative rule learning approach.

Predefined set of fuzzy Genetic teaming
membership funclions process
(Database)
Rule base
computing module
I_Flule base

Figure 16-8 Genetic learning of rule base.
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Figure 16+9 Genetic learning of the knowledge base.

Th? Pirsburgh approach is characrerized by representing an entire rule sec as a genetic code (chromosome),
maintaining a population of candidate rule sets and using selection and genertic operators to produce new
generations of rule sets. The Michigan approach considers a different model where the members of the
population are individual rules and a rule set is represented by the entire population. In the third approach,
the'iterative one, chromosomes code individual rules, and a new rule is adapred and added o the rule set, in
an iteracive fashion, in every run of the genetic algorithm.

16.4.1.3 Genetic Learning of Knowledge Base

Generic learning of a KB includes different generic representations such as variable length chromosomes,
multi-chromosome genomes and chromosomes encoding single rules instead of a whole KB as it deals with
heterogeneous search spaces. As the complexity of the search space increases, the computational cost of the
generic search also grows. To combat this issue an oprion is to maintain 2 GFRBS that encodes individual
rules rather than entire KB. In this manner one can maintain a flexible, complex rule space in which the search
for a solution remains feasible and efficient. The three Jearning approaches as used in case of rule base can

also bf: considered here: Michigan, Pitcsburgh, and ierarive rule learning 2pproach. Figure 16-9 illustrares the
genetic learning of KB.

IJB.4.2 Advantages of Genetic Fuzzy Hybrids

The hybridization becween fuzzy systems and GAs in GFSs became an important research area during the
last decade. GAs allow us to represen different kinds of structures, such as weights, features togecher with
ﬂl_le parameters, etc., allowing us o code multiple models of knowledge representation. This pravides a
wide vatiery of approaches where it is necessacy to design specific generic components for evolving a specific
tepresentation. Nowadays, it is a growing research area, where researchers need o reflect in order to advance
towards strengths and distincrive features of the GESs, providing useful advances in the firzzy systems theory.
Generic algorithm efficiently optimizes the rules, membership functions, DB and KB of fuzzy systems. The
mechodology adopted is simple and the Artest individual is identified during the process.

I 16.5 Simplified Fuzzy ARTMAP

The basic conceprs of Adaprive Resonance Theory Neural Neoworks are discussed in Chapter 5. Both the
types of ART Nerworks, ART-1 and ART-2, are discussed in derail in Secrion 5.6.
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Apart from these two ART nerworks, the other two maps are ARTMAD and Fuzzy ARTMAR ARTMADP
is also known as Predicrive ART. It combines two slightly madified ART-1 or ART-2 units inco a supervised
learning structure. Here. the first unit takes the inpurt data and the second unit takes the correct outpur dara.
Then minimum possible adjustmenr of the vigilance patameter in the first unit is made using the correct
outpur daea so thar correcr classification can be made.

The Fuezy ARTMAP model has fuzzy-logic-based compurarions incorparated in the ARTMAP madel.
Fuzzy ARTMAP is neural network architecture for conducting supervised learning in a multidimensional
secting, When Fuzzy ARTMAP is used on learning problem, it is crained till it correctly classifies all wraining
dara. This feature causes Fuzzy ARTMAP tw “overfit” some data sets, especially those in which the undeslying
pattern has o overlap. To avoid the problem of “averfitting” ane must allow for error in the training
pTOCESS.

l>1 6.5.1 Supervised ARTMAP System

Figure 16-10 shows the supervised ARTMAP system. Hete, two ART modules are linked by an inter-ART
module called the Map Field. The Map Field forms predictive associations berween categories of the ART
modules and realizes a match tracking rule. If ARTa and ARTb are disconnected. then each module would be
of self-organize cavegory, grouping their respective input sets. In supervised mode, the mappings are learned
berween inpur vectors 4 and &.

l 16.5.2 Comparison of ARTMAP with BPN

1. ARTMAP nerworks are self-stabilizing, while in BPNs the new information gradually washes away old
information. A consequence of this is that a BPN has separate sraining and performance phases while
ARTMAP systems perform and learn at the same time.

b
Training
Arl b
i : Map field
i oo Map fed ( orientaling
: subsyslem
Match
tracking
Art a2
a

Figure 16-10 Supervised ARTMAP system.
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(]

. ARTMAP nerworks are designed ro waork in real-time. while BPNs are typically designed o work off-line,
ar least during their raining phase.

3. ARTMAY systems can learn both in a fast as well as inslow match configuration, while, che BPN can only

learn in slow mismarch configuracion. This means that an ARTMAP system learns, or adaprs i weighs,

only when the inpur macches an established caregory, while BPNs learn when the inpuz does not macch
an established caregory.

4. In BPNs chere is alwavs a chunce of the system getting rrapped ina local minimum while this is impossible
for ART svstems,

However, the systems based on ART maodules learning may depend upon the ordering of the inpur
pagterns.

I 16.6 Summary

In this chapter. the various hybrids of individual neural nevworks, fuzzy logic and genetic algorichm have been
discussed in deil. The advantages of vach of these techniques are combined wogerher wo give & hener solution
to dhe problem under consideradion. Each of these sysiems possesses cereain limitations when they operare
individually and these limitations are met by bringing ou the advantages of combining these sysiems. The
hybrid systems are found w provide better solution for complex problems and the adsent of hvbrid svstems
makes it applicible 10 be applicd in various application domains. .
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Lo Wrice o MATL AR program w adapr the given inpur w sine wave form using adaprive nenro-fuzay hybrid
technicque.

Source code
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- epochs=570;

%creating fuzzy inference engine
fis=genfisl(trndata,mfs};
plotfis{fis);

figure

r=showrule(fis);

%creating adaptive neurc fuzzy inference engine
nfis=anfis(trndata, fis, epochs];
rl=showrule(nfis);

$evaluating anfis with given input
y=evalfis{x,nfis);

disp(’'The output data from anfis - 1
8ispiy);:

%calculating error rate
e=y-t;

plotle);

title{'Error rate‘)
figure

%¥ploting given training data and anfis oulput
plot(x,t,’0",x,y,'*");

title{'Training data vs Output data’);
legend('Training data’,’ ANFIS Output');

Output

The input data given x is:
Q
.3000
.6000
.9000
L2000
.5000
.B0OOO
.1000
L4000
L7000
.0000
.3000
L6000
.9000
L2000
L5000
L8000
.1040
.4000
.7000

MU AR WWRWNNRE =P Ooo o
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W W W W m o0 s~ )0 O

[ B T
- e T e e T e B R S S e e e el el
\:;gwgdq-Jmmmwmuwm.ﬁ.p.-n-wwuwmmmw—-l—-wooo

.0009
.3000
.6C00
.9000
L2000
-5000
.B000
.1000
.4000
. 7000
.0000
L3000
.6000
.9000
.2000
.5000
.B000
.1000
.4000
L7000
.0000
.3000
L6000
-9000
.2000
.5000
.8000
L1000
-4000
. 7000
-000e¢
.3000
.6000
.9000
.2000
.53000
.dooc
-1000
4000
.7000
.Q000
L3000
L6000
L9000
.2000
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19,5000 . 0.9437
L3ORLOL : - 0.9993
0.9657
- rarget data givern - 0.8457
u.zasz 3-3223
J.5646
fia 0.1078
520 -0.1909
U.997% ~0.4724 )
LLu i -0.7118
LAk, ~0.8876
IR ~0.9841
N T -0.9927
s -0.9126
"_ ) -0.7510
T -0.5223
T -0.2470
L 0.0504
e 0.3433
- 0.6055
. 0.8137
LUy, ANFIS info:
ey Number of nodes: 32
" Number of linear parameters: 14
o Number of nonlinear parameters: 21
. Total number of parameters: 35
sy Number of training data pairs: 67
EIES Fumber of checking data pairs: 0

Number of fuzzy rules: 7

. Start training ANFIS ...
PR 1 0.0517485

2 0.0513228

: 3 0.0508992

o 4 0.0%04776

g 5 0.0500581
LR e Step size increases to 0.011000 after epoch 5.

Ty, 6 0.0495406

oo 7 0.04918137

y 8  0.0487291

0.8038 568 0.00105594
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Step size increases to 0.000450 after epoch 568.
0.3277
569 C.0010555 0.5908
570 0.00105516 0.8024
; . 0.9442
Designated epoch number reached --> ANFIS training completed at epoch 570. 1.0014
The output data from anfis: 0.9667
0.8443
-0.0014
: 0.6484
0.29881
0.3969
0.5647
0.1093
0.7817
-0.15%00
0.9314
-0.4731
0.9984
-0.7130
0.9747
-0.8879
C.B8629
-0.9833
0.6746
-0.5915
0.4271
-0.9125
0.14216
-0.7521
-0.1571
~0.5232
-0.4425
-0.2457
-0.6884
0.0526
~0.8720
0.3426
-0.9772
0.6015
70-9955 0.8163
-0.9260 '
-0.7735 <end of N
-0.5509 of program
-0.2788 .
0.0174 Figure 16-11 itlustrates the ANFIS system module; figure 16-12 the error rave; and Figure 16-13 the perfor-
0.3112 mance of training data and output data. Thus it can be noted from Figure 16-13, that anfis has adapted
6.5777 the given inpur to sine wave form.
0.7835
0.9387
0.9991
0.9697
0.8540
0.6627
0.4122
0.1247
-0.1741 anfis
~0.4574
-0.7000 (sugeno} flu)
=-0.8801
-0.9812 7 rules
-0.9941
-0.9189
-0.7623 input1 (7} output (7)
-0.5371
-0.2629 Systernanfis: 1 inputs, 1 outputs, 7 rules
0.0346 ' Figure 16-11 ANFIS system module.
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Figure 16-13 Performance of training data and outpur data.
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2. Writea MATLAB program to recognize the given input of alphabets to its respective outputs using adaptive

neuro-fuzzy hybrid technique.

Source code

$program to recognize the given input of alphabets to its respective
gfoutputs using adaptive neuro fuzzy hybrid technigue.

clc;
clear all;
close all;

%input data

x=[0,1,0,0;1,0,1,1;1,2,1,2;1,0,1,3;1,0,1.4;
1,1,0,5;1,0,1,6;1,1,0,7;2.,0,1,8;1,1,0,9;
0.1,1,10;1,0,0,11;1.0,0,12:1,0,0,13;0,1,1,14;
1,1,90,15;1,0,1,16;1,90,1,17;1,0,1,18;1,1,0,19;
1,1,1,20;1,0,0,21;1,l,0,22;1,0,0,23;1,1,1,24:]
ktarget data
t={0;0;0;9;0;
1;1:1;1:1;
2;2;2:2;2;
3:3:3;3:3;
4;4;4:4;4;]

¥training data
trndata=[x,t];
mEs=3;
epochs=400;

%$creating fuzzy inference engine
fis=genfisl (trndata, mfs);
plotmf{fis, "input’,1);
r=showrule(fis);

$creating adaptive neuro fuzzy inference engine
nfis = anfis(trndata, fis,epochs);
surfview(nfis);

figure

rl=showrule{nfis);

%evaluating anfis with given input
y=evalfis{x,nfis);

disp('The output data from anfis:'):
disp(y):

¥calculating error rate
esy-t;

plot(e);

title(‘Error rate’);
Eigure

N I
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%ploting given training data and anfis sutput ,
Plot{x.t, ‘ro',x,v, 'kx*); 2
title(’Training data vs Output data’); :
legend(‘Training data’, 'ANFIS Output’, rlocation’, 'North'); 3
Output .
4
X = :
0 1 0 0 .
1 ¢ 1 1 :
1 1 1 2
) 0 ) . ANFIS info:
) A ; ; Number of neodes: 193
) 0 ; : Kumber of linear parameters: 405
: ! 0 : Number of nonlinear parameters: 36
) d ) : Total number of parameters: 441
: " ” ; Number of training data pairs: 25
0 ! ) : Number of checking data pairs: 0
! 0 . n Number of fuzzy rules: 81
1 0 0 11
g 1 ; " 5 Start training AWFIS
:f : ' ) 13 1 0.08918
~ : X 0 s 2 0.0889038
- 1 0 5 e 3 0.0886229
1 0 ) 0 4 0.0883371
: ; ) e 5 0.0880464
1 0 1 18
) | ) 20 Step size increases to 0.011000 after epoch 5.
) 0 0 o [ 0.0877506
X ) 0 - ; 7 0.0874193
1 1 0 22 |
1 0 0 23 |
1 1 1 24
. 398 0.00102161
° 349 0.00102102
: 400 0.0010191
0
0 Step size increases Lo 0.003347 after epoch 400.
0
: Designated epoch number reached -~» ANFIS training completed at epoch 400,
1
) The output data from anfis:
) -0.0000
; 0.0009
; 0.0000
3 -0.0031
2 0.0024
2 1.0000
3

0.95997
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L0000
-0002
.0o01
.0000
.0001
.9998
.oool
-0000
.9999
.9982
.0022
.9994
.0001
.0000
.Q000
.9999
.0000
.0000

W W R R WO R R R B R R e e

<end of program>

e A BN LGHDT 1 i e S ot e

Figure 16-14 shows the degree of membership. Figure 16-15 illustrates the surface view of che given

system; Figare 16-16 the error rate; and Figure 16-17 the performance of training dara with ourpur
dara.

T
inmf1 inTmf2 inffmf3

— e
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#
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E
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" o 5 10 15 20 25

L L L 1 1 1 1 1l ;

0 01 02 03 04 05 06 07 08 0.9 1
inpult

Figure 16-14 Degree of membership.

Figure 16-16 Error rate.
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Figure 16-17 Performance of training daca with output dara,

3. Write 2 MATLAB program to train the given truth rble using adaptive neuro-fuzzy hybrid echnique.

Source code

%Program to train the given truth t i i
able using adapti
$hybrid technique. s prive neuro fuzzy

clc;
clear all;
close all;

%input data
%x=[0,0,0;0,0,1;0,1,0;0,1,1;1,0,0;1,0,1;1,1,0;1,1,3;]

%target data
£=(0;0;0;1;0;2;1;1;}

training data
trndata=[x,t];
mfs=3;

miType = 'gbellmf’;
epochs=49;

$creating fuzzy inference engine
fis=genfisl (trndata,mfs, mfType};
plotfis(fis);

titie('The created fuzzy legic’);

16.7 Solved Problems using MATLAB 499

figure

plotmf(fis,'input‘.l);

title(’'The membership function of the fuzzy')i
surfview(fis);

figure

ruleview(fis):

r=showrule(fis);

$creating adaptive neurc fuzzy inference engine
nfis = anfis (trndata, fis,epochs);
plotfis{nfis);

title('The created anfis‘);

figure

plotmf (nfis, 'input’,1);

title{’The membership function of the anfis’};
surfview(nfis);

figure

ruleview({nfis);

rl=showrule(nfis);

%evaluating anfis with given input
y=evalfis{x.nfis);

disp{'The output data from anfis:'};
dispiy}:

%calculating error rate
e=y-L;

plot (e} ;

title{'Error rate’);:
figure

iploting given training data and anfis output
plot(x,t, o', x,¥,"*'];

title(’'Training data vs Output data’);
legend (* Training data’, *ANFIS output’);

Qutpur
x =
0 1 0
0 0 1
0 1 0
0 1 1
1 0 o
1 0 1
1 i 0
1 1 1
L =
1]
0
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R, RO~ O

ANFIS info:
Number of nodes: 78
Nurber of linear parameters: 108
Number of nonlinear parameters: 27
Total number of parameters: 135
Number of training data pairs: 8
Number of checking data pairs: 0
Number of fuzzy rules: 27

Start training ANFIS ...
1 3.13863e-007

2 3.0492e-007

3 2.97841e-007
4 2.90245e-007
5 2.84305e-007

Step size increases to 0.011000 after epoch §
6 2.78077e-007

47 2.22756e-007
418 2.22468e-007
49 2.22431e-007

Step size increases to 0.015627 after epoch 49,

Designated epoch number reached --» ANFIS training completed at epoch 49.

The cutput data from anfis:
-0.0000
0.0000

L0000

.0000

0000

.0000

.0000

.0000

H e~ oFRoOo

<end of program>

Figure 16-18 shows the ANFIS module for the
the rule viewer for the ANFIS module.
of Training data and outpuc data.

given system with specified inpus. Figure 16-19 illustraces
Figure 16-20 gives the error rate, Figure 16-21 shows the performance

16.7 Solved Problems using MATLAB
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The created fuzzy logic

inputl (3)

"anfis

{sugenc) flu)
input2 {3}

27 rules

output (27)

input3 {3)

System anfis: 3 inputs, 1 outputs, 27 rules

Figure 16-18 ANFIS module for the given system with specified inpurs.
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Figure 16-19 Rule viewer for the ANFIS module.
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x 107 Error rate

T T T ™ T

Figure 16-20 Ercor rate.

Training dala vs oulput data

1.2 v

O Training data
i -3 ANFIS output

08

06 |

047

0.2

-0.2

i 1 1 1 1 1 1 1 -}
O 01 02 03 04 05 06 07 08 08 1

Figure 1621 Performance of rraining data and ourpur dara.
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4, Write 2 MATLAB program to oprimize the neural network parameters for the given cruth eable using

genetic algorichm.

Source code

$Program to optimize the neural network parameters from given truth table

%using genetic algorithm

cle;
clear all;
close all;

$input data
p=(0G011;0101);

%target data
£t =[-11-11];

$creating a feedforeward

neural network

net=newff (minmax(p),[2,1]);

%creating two layer net with two neurons in hidden (1)

net.inputs{l}.size = 2;
net .numLayers = 2;

%initializing network
net = init(net};

net.initFen = ‘initlay’:

$initializing weights and bias

net.layers{l}.initFcn =
net.layers{2}.initFen =

‘initwb’;
rinitwb';

%Assigning weights and bias Ffrom functien 'gawbinit’
net .inputWeights{l,1}.initFen = 'rgawbinit’;
net.layerWeights{2,1}.initFen = ‘gawbinit’:
net.biases{1}.initFcn='gawbinit’;
net.biases{2).initFcn="gawbinit’;

%configuring training parameters

net.trainParam.lr = 0.05;
net.trainParam.min_grad=

net.trainParam.epochs =
$Training neural net
net=train(net,p,t);

%learning rate
0e-10; %min. gradient
60; %No. of iterations

$=simulating the net with given input

Y = sim(net,p);

disp{'The output of the net is :"};

disp(y};

sploting given training
plot(p,t,.’ 0", p,y, " *'};
title({'Training data vs

data and anfis output

output data'l:

layer
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%calculating error rate

e= gsubtract(t,y); % e=t-~y

disp{‘The error(t-y) of the net is Ty
disple};

%program to calculate weights and bias of kthe net

function outl = gawbinit(inl, in2,in3, in4, in5, )

$Implementing genetic algorithm

fconfiguring ga arguments
A= {]; b= 1[];

Aeq = []; beq = [];

ib = [-2 -2 -2 -2 -2 -21;
ub = [2 2 22 2 2);

%linear constraints
%linear inequalities
$lower bound

%upper bound

%ploting ga parameters
options = gaoptimset(‘Plothns',{@gaplotscorediversity,@gaplotbestf));

¥creating a multi objective genetic algorithm

$number of variables , for 2 layer 1 output 5 neuron net there are
%6 weights and 3 biases {6+3=9)

nvars=%;
[X,fval,exitFlag,Uutput]=gamultiobj{@fitnesfun.nvars,A,b,Aeq,beq,lb,

ub, options);
figure

%displaying the ga ocutput parameters
disp{X};

fprintf{‘'The number of generations was %d\n’, Output.generations):
fprintf{’'The number of function evaluations was ¥d\n’, Output.funccount};
fprintf {‘The best Ffunction value found was %g\n’, fval);

%Assigning the values of weights and bias respectively

%getting information of the net
persistent INFO;
if isempty(INFO), INFO = nnfcnWeightInit {mfilename, ’ Random Symmetric’,
7.0,... true, true, trye, true, true, true, true, true); end
if ischar(inl)
switch lower({inl}
case ‘info’, outl = INFO;

$configuring Eunction
case 'configure’
oukl = sktructk;
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case ‘initialize’

%selecting input weights , layer weights and bias separately

switch{upper (in3)} ' |

case [*IW’'} %$for input weights- 1

if INFO.initInputWeight .

if in2.inputConnect(ind, in5) '
x=X; $%Assigning ga output ‘X' to input weights

$Taking first 4 ga outputs to create input weight matrix ‘wi’ .
wi{l,1}=x{1,1);
wi{l,2)=x{1,2);
wi(2,1)=x(1,3};
wi{2,2)=x(1,4);

disp(wil; ]
outl = wi;%Returning input layer maktrix
else
outl = [];
end
else o ) . ,
nerr.throw({upper {mfilename) ' does not initialize input weights.’]}:
end '
case {‘LW’} $for layer weights

if INFO.initLayerWeight
if in2.layerConnect(in4, in5)
x=X; $%Assigning ga ocutput ‘X’ tc layer weights

%Taking 7th and 8th ga outpuls to create layer weight matrix ‘wl’
wl{l,1)=x{1,7);
wlil,2)=x(1,8);

disp(wl); )
outl = wl;%Returning layer weight matrix
else
cutl = [];
end
else .
nnerr . throw( [upper (mfilename) * does not initialize input weights.'}1);

end
case {('B’} %for bias
if INFO.initBias
if in2.biasConnect {in4)
x=X; %Assigning ga output ‘X’ to bias

$Taking 5th,6th and 9th ga outputs to create bias matrix *bl’

bl(1l)=x({1,5);

bl(2)=x(1,6}:

bl(3)=x(1,9);

disp(bl);

outl = bl;
else
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outl = [];%Returning bias matrix
end '
else

nnerr . throw{ [upper (mfilename) ‘' does not initialize biases.']}:
end
otherwise,

nnerx.throw(’Unrecognized value type.'};
end

end
end
end

%Creating fitness function for genetic algorithm
function z = fitnesfun(e)

%The error(t-y) for all 4 i/o pairs are summed to get overall error

%For 4 input target pairs the overall error is divided by 4 to get average

%error value (1/4=0.25)
z=0.25*sum(abs{e));
end

Output

Optimization terminated: average change in the spread of Pareto solutions
less than options.TolFun.
Columns 1 through 7
0.0280 0.0041
Columns 8 through 9
0.0018 0.0003
The number of generations was : 102
The number of function evaluations was : 13906
The best function value found was : 0.0177734
Optimization terminated: average change in the spread of Pareto solutions
less than options.TolFun.
Coclumns 1 through 7

0.0112 0.0069 0.0050 0.0062 0.0075

0.0012 0.0020 0.0096 0.0014 0.0018 0.0044 0.0084
Columns 8 through 9
0.0084 0.0025
The numpber of generations was : 102
The nuvber of function evaluations was 13906
The best function value found was 0.00988699

The output of the net is

-1.0000 1.0000 -1.0000 1.0000
The error{t-y) of the net is :

1.0e-011 *

-0.3097 0.2645 -0.2735 0.3006

Figure 16-22 shows the plot of the generations versus firness value and histogram. Figure 16-23 illustrates che
Neural Nerwork Training Tool for the given input and output pairs. Figure 16-24 shows the neural nenwork
training performance. Neural nerwork training state is shown in Figure 16-25. Figure 16-26 displays the
performance of training data versus outpur data,

i
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Figure 16-22 Ploc of the generations versus finess value and histogram.
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Figure 16-23 Neural Network Training Tool for the given inpur and output pairs.
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Figure 16-25 Neural nerwork training state.
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Figure 16-26 Performance of training darta versus output data.

1. Stare thelimitations of neural networks and fuzzy
systerns when operated individually.

2. Lisc the various types of hybrid systems.

3. Meution the characreristics and properties of
reuro-fuzzy hybrid systems.

4 Whar are the classifications of neuro-fuzzy

hybrid systems? Explain in deail any one of the

neuro-fuzzy hybrid systems.

5. Give derails on the various applications of neuro-
fuzzy hybrid syscems.

Ilﬁ.s Exercise Problems

How are genetic algorithms utilized for optimiz-
ing the weights in neural nerwork archirecrure?

. Explain in detail the concepts of fuzzy genetic
hybrid systems.

. Differentiate: ARTMAP and Fuzzy ARTMAP,
Fuzzy ARTMAP and back-propagation neural
nerworks.

9. White notes on the supervised fuzzy ARTMADPs,

. Give description on the operation of ANFIS

Edirtor in MATLAB.

L. Write a MATLAB program ro train NAND gare
with binary inputs and rargets (two input—one
output) using adaptive neurc-fuzzy hybrid tech-
nique,

2. Consider some alphabets of your own and recog-

nize the assumed characeers using ANFIS Editor
module in MATLAB,
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3. Perform Problem 2 for any assumed numeral an OR gate with 2 bipolar inputs and 1 bipolar
characters. targets.

4. Design a genetic algorithm to optimize the 5. Witea MATLAB M-file program for t!'u: worl.dng
weights of a neural network model while training of washing machine using fuzzy genetic hybrids.

Applications of Soft Computing

— Learning Objectives
» Deals with the various applications of soft * Provides knowledge to develop hybrid fuzzy

computing in decail. controllers using soft compuring rechniques
* Discuss how SAR image are solved using * Derails how pocket engine control is acheived
neural network approach. using various soft computing methods.

Gives a methology for solving traveling sales-
man problem and Internet-based search using
genetic algorithms.

l 171 Introduction

In this chaprer we are going to discuss few applicarions of neural nerworks, fuzzy logic, generic algorithm and
hybrid systems. As we already know soft computing has a wide range of applicarions. Here a few topics of its
applications are being covered, We believe that the chapter would give the reader a brief idea of how the soft
computing can be applied to any practical problem.

17.2 A Fusion Approach of Multispectral Images with SAR (Synthetic
Aperture Radar) Image for Flood Area Analysis

There have been several efforts to monitor and assess the arez destroyed by floods, especially, the monsoon
regions that were suddenly inundared by slash flood caused by the storm and other natural hazards, such as
El Nino, LA Nina [, etc. Floods cause much damage to the environment, people’s live and properties. Several
wechniques have been applied to estimate the flood area, important ones being the NDVI {normalized differ-
ence vegertation index) derived from multispectral dara and 3-second grid DEMs (digiral elevarion models) to
investigate and identify the damaged area depending on elevation intervals. However, the SAR images have
been known to efficiently detect floods, because of the object absorption property depending on the moisture
of the backscattering wave in radar image. As the multispectral images provide necessary informarion for land
cover interpretation, the fusion of multisensor images achieves the complementary narure of these different
data types. Therefore, the fusion techniques have been adopted to perform the flood area classification. To
assess the flood areas, JERS-1 SAR data acquired on June 3, 1997 and August 30, 1997 (Figures 17-1 and
17-2) were taken before and during the flood hazard from the cropical storm Zita in Surat Thani province.
The cloud penesration capability is shown in Figures 17-1 and 17-2, respectively. Fusion of these images with
JERS-1 OPS dara acquired on March 14, 1997 (Figure 17-3) was performed to distinguish flood area.
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Figure 17-1 SAR image acquired on June 3, 1997, Surat Thani Province.

Figure 17-3 JERS-1 OPS dara acquired on March 14, 1997.

17.2 A Fusion Approach of Multispectral Images 513

To study the flood assessment, the image classification is performed using a revolutionaty computing
methodology known as the artificial newral network (ANN) computing. This method presents how the
neuron in the human brain processes the data to identify the complex and noisy patterns of information. An
ertor back-propagation ANN structure is used in this section.

I 17.2.1 Image Fusion

Image fusion integrates both spatial and spectral data 1o hold the superior characteristics of multisensor
images and improve the knowledge of scene. Therefore, the fused images could improve the accuracy image
classification and help the feature extraction and recognition. The image fusion can be divided into two
classes: spatial domain method and spectral domain method. The second method is used in most applications
including color space transformation. In this section, the Intensicy-Hue-Saturation (IHS) model will be used
as a color space and the image fusion is done as follows.

1. The RGB color space of OPS images is transformed to the IHS model:

,=w (7.1)

=1- ﬁ[mmw, G, B)] (17.2)
1

o ler-6+@-By

= {(R—G)2+(R—B)(G—B)2 07

2. The different gray value of pixel in the black-white of two SAR images {g] and g2) is added into OPS
images intensicy:

=1+l - {174)

The last term of the above equarion is the difference of the images before and during flood. The flood area
will be emphasized and nonflood arca will be depressed. Adding this term to intensity component in IHS
mode means transferring of flood area dara to OPS image.

3. The IHS model is inversely transformed to the RGB space and is ready for further classification using
neural neeworks.

l1 7.2.2 Neural Network Classification

In this section, the multilayer perceptron (MLP) neural nerwork based on back propagation (BP) algorichm
is used as a classifier, which consists of ser of nodes arranged in multiple layers with connection only between
nodes in adjacent layer by weights. The input information is presented ar inpur layer as the input vecror,
and the outpur vector is the processed information that was retrieved at the ourpur layér. A schematic of a
three-layer MLP model is shown in Figure 17-4.

The input and output of the node I in hidden layer of MLP neural network, according 1o BP algorithm, are:

Inpuc X; = Y " WA0;+ 4 (17.5)
j
Outpur: 0; = f(X))
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Figure 17-4 The three-layer MLP model of neural network.

where Wj; is che weight of connecrion from node £ to node f; B; the numerical value called bias; fthe activation

function. In this work, the nonlinear function — sigmoid function given in Eq. (17.6) — is used to determine
the ourpur stare:

1
14+

The BP learning algorichm is designed ro reduce an error berween actual outpur and desired outpuc in a
gradient descent manner. The summed squared error (SSE) is defined as:

1
SSE= ; Z (0si = 1) (17.7)

where O,; and ; are the actual and desired outputs of node 7 when applying the input vector p into the
nerwork.

fla) =

(17.6)

I 17.2.3 Methodology and Resulis
172.3.1 Method

1. The SAR data obuain 16 bits and then are reduced to 8 bits by using linear scaling in order w0 obrain
256 values of intensity. From waveler decomposition, the low waveler coefficient of SAR images will be

used for rwo reasons ~ to remove the speckie noise and to concinue the proper data for applying o neural
nerwork training algorichm.

2. The 12.5 m x 12.5 m resolution of SAR data was reduced to 25 m x 25 m in the same order of OPS
resolution. All images should be registered and geomerrically corrected.

3. Data fusion technique as mentioned in Section 17.2.1, is used and is shawn Figure 17-5.

4. Afver preprocessing, satellice image is prepared and then applied to neural neowork dlassification. Moreover,
all dara will be classified withoue fusing and the results will be compared against the fusion dara.

17.2.3.2 Results

The results of flood assessment by neural nerwork classification with dara fusion and without data fuston are
given in Tables 17-1 and 17-2, respectively.
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Figure 17-5 Fused image for flocd area assessment.

Table 17-1  The result of flood assessment by neural network classificacion with dara fssion
Urban Vegetation Bare soil
Classification Water Cloud Flood Nonflood Flood Nonflood Flood Nonflood

Result/testing (pixel) 447/500 47/50  41/50 42150 44/50 90/100 41/50 87/100
Correction (%) 89.4 94.0 82.0 84.0 88.00 90.0 82.0 87.0
Table 17-2  The resulc of flood assessment by neural nerwork classification withour dara fusion

Urhan Vegeration Bage soil

Classification Water Cloud Flood Nonflood Flood Nonflood Flood Nonflood

Result/resting (pixel) 457/500  45/50  38/50 40750 41150 92/100 37150 89/100
Correction (%5} 91.4 90.0 76.0 80.4 82.0 92.0 78.0 89.0

The scudy results show chac multitemporal SAR dara are very useful for flood assessment and monitaring.
On the other hand, the OPS dara provide the necessary informartion for land cover interpretation, The fusion

of these data is very helpful for flood assessment chassification, because it enhances the flood area and gives a
highly reliable result.

17.3 Optimization of Traveling Salesman Problem using Genetic
Algorithm Approach

The traveling salesman problem (TSP is conceptually simple. The problem is ro design a tour of a set of
a cities in which the traveler visits each city exacely once and then rerurns to the starring point. One has
to minimize the distance traveled. Solving this combinatorial problem is NP {nondeterministic polynomial
time) difficuic as the search space is » factorial. Examining all possible Hamiltonian circuits of » vertices by
calculating edge weights is cervain to reveal the optimum solution, but cannot guarantee to do so in a tractable
time for all 7.

Pechaps first considered by Euler as the knights' rour problem in 1759, and popularized by the RAND
Cotporation in the 1950s, TSP has many applications that involve large numbers of vertices. These include
VLSI - for which size can exceed one million — circuit board drilling, X-ray cryscallography and many
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Figure 17-6 Poincs placed in a unit square representing a landscape of 14 ciries.

scheduling problems. Therefore it is important to find algorithms that lower the time costs by providing
reasonably good solurions.

Thissection explotes applicarion of GAs to TSP by examining combinations of different algorichms for the
binary and unary operarors used to generate better solutions and minimize the search space. Three binary and
two unary operations were tested. These were compared to a base-line developed from a brute force algorithm
for a tractable 14-city problem and to random rour generation, which provides mean and standard deviation
statistics very close to brute force methods as the distribution of solutions is normal. For a 14-city problem,
Figure 17-6 shows the points placed in a unit square representing a landscape of 14 cities.

The binary methods examined include uniform order-based crossover {OCX), heuristic order-based
crossover (HCX) and edge recombination (ER). Unary operators were reciprocal exchange and inversion.

I 17.3.1 Genetic Algorithms

Genetic algorithms are modeled on biclogical processes in which parents pass character traits o their offspring.
The next generation concains data inherited from its predecessors and in each generation the fittest members
have the greatest potential o survive and send genetic material to the progeny of their popularian. As children
are developed from the best parents, they are likely to introduce an improvement in fitness of the group.

Genetic algotithms mimic this survival of the firtest by randomly generating a population of solutions and
then selecting members, with greater possibility of selection given to the firtest, from which o build the next
generation. This section used populations of 100 subjects and evolved each trial for 1000 generations. The
abjective function used in this section was the length of the parhs. Shorter circuits were given best fitness
considerarion by inverting their tour lengths through suburaction from the ceiling of the population’s longest
tour. The roulette wheel method was employed to choose parent solutions.

Successors wete developed by binary operations called crossovers that create child solutions using informa-

tion inherent in the rwo chosen parents. The cype of information passed is problem dependent and affects the-

fitness of the resultant population. These experiments rested three crossover operators and in all cases alllowed
cloning of chosen solutions to occur at a rare of 0.30.
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Unary operators mutate individual solutions and are applied at a low rate. In this case two mutation
methods were employed at a rate of 0.01. Their purpose is to allow solutions to exceed local maximums buc
they are usually descructive to the murared offspring. -

l1 7.3.2 Schemata

The solurions created by genetic algorithms are instances of schema. They belong to a set of other solutions
that share commeon traits. A solution {0 1 0 0] is an instance of the schema [0 * * 0], where the asterisks may
tepresent either bit value, The solution [0 1 1 0] would also be an instance of this schema of arder two, which
could be thought of as a regular expression representing all strings of length four over the alphaber {0, 1}
beginning and ending with zeros. The fitness of a schema is the average of the fitness's of its instances.

The probability that a schema S found in one generation will occur in the next is given by,

PEX =1 = Pex{LgiL — 1))

where 1 — Pcy is the rate ac which cloning occurs and Ly is the defining tength of the schema, or the
number of bits between the outermost set bits, and L is the total lengrh of the solution. For our purpases
PEX =1 —0.70(Ly/13).

The probability of remaining in the population after the mutation cycle is given by

P = (1 Py

where | — £ is the probability that a bit wilt not undergo murtation and n is the order of the schema, ar the
number of ser bits. [n chese experiments P = 0.99”.

The success of generic algorichms lies in che propagation of the fittest schemara,

! 17.3.3 Problem Representation

All reproduction and muration operarors tested employed a path representation of the problem. This implies
thar a list of cities (1 2 3 4) would represent the circuit 1-2-3-4-1, This representation was chosen over others
such as adjacency, ordinal or marrix, because it is 2 very narural representation and accommedares many
crossaver funcrions that result in valid offspring. Hence it eliminates the need for repatr algorichms or penalty
funcrions.

Two of the binary operators tested augment this representation with additional infermation. The heuristic
order-based crassover includes a list of the distances between each leg of the tour. The edge recombination
crossover method utilizes edge lists for each city that are complied from the parent information.

I 17.3.4 Reproductive Algorithms

The firse binary operator tested was the uniform-order-based crossover, which is useful when order is significant
to a problem, and preserves the legality of solutions. This method first creates a random binary siring which
is of che same length as the parent tours. The child receives information from parent one in all positions
carresponding ro 1 in the binary string. On average 50% of the dara then comes from parent one and reftects
the positions of cities in this path. The rest of the tour is filled in from parent two using those cities nor already
in the child and having the order found in parent rwo. For example, if parent one is {1 2 3 4), parent two is
(4321) and the binary string is (1 0 1 0, then the child becomes (1 4 3 2).

The next crossover method employed was modeled on heuristic crossovers developed for adjacency rep-
tesentarions, which favor edges with more desirable firness values. This operator employed a list of distances
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berween edges of the wurs such that 2 path (1 2 3) with a distance map of {0.2, 0.8, 0.3) would correspond
to edge (1 2) having distance 0.2, edge (2 3) having distance 0.8 and edge (3 1} having distance 0.3. The
offspring created receive edge and not position information for an average of 50% of their dara. A rouletre
wheel function gives greater probability for selection to more fit edges. The rest of the information is filled by
using the cities not already passed to the child in the order found in the remaining parent. Here shorrer legs of
a tour are treated like dominant genetic traits. They are features that are more likely to be passed to the child.

The final binary operator tested focused on passing as much edge information as possible to the child. Edge
recombination (ER) uses no heuristic rules or fitness informacion, but insures that each offspring receives
95% of their edge informarion from the parents. ER uses edge maps such that if parent one is (1 23 4 5) and
parent two is {5 2 3 4 1), then mapping is performed as given below:

{254)
((135)
(24
1 (351)
:(412)

LR

An initial city is chosen randomly between the first cities of the parents and placed in the offspring as the
current ciry. The next city chosen is taken from the edge list of the current city giving priority to cities with
shorter edge lists, the largest list possible being of length four. Ties are broken randomly and used cities are

removed from choice available. In the event of edge failure, defined as a currenc city of edge list length zero,
the next point is chosen randomly from the cities not yer visieed.

l 17.3.5 Mutation Methods

The first unary operator tested was reciprocal exchange, which simply swaps two randomly chosen elements
in the solution. [nversion was the other method applied. Here all values between two elements in a Jisc are

reversed. A solution (1 2|34 5 6 | 7), where che bars represent random break points with a window size of
four, would produce the murant (1265 4 3 7).

I 1736 Results

Examining measures of center for the data distributions, OCX was the overall best binary operation performer
with inversion mutation method. HCX also performed well with the inversion operator. All genetic method
distributions were skewed toward che shorer tour lengths with QCX showing the lowest modes.

The ER crossover posted the lowest standard deviations of the GAs coming very close to baseline.

All methods produced excellent shortest path means with many trials finding the optimum solution. OCX
and ER, both using reciprocal exchange, found the oprimum tour length with greatest frequency.

All generic operators produced good shortest path means in less than 37 5. The generational time to best
solution was 186 generations using the ER binary operator with reciprocal exchange mutation. Since all
merhads find good solutions quickly, che smallest number of generations necessary to produce near optimum
results is an important criterion. ER was consistenty the best number of generations to solution performer. ©

While ER descended to best tour times the fastest, OCX performed better finding the optimum solution
and produced betcer results for all generations. HCX, which favored shorter edge lengehs in child construction,

did noz perform as well as expected. Table 17-3 shows the scores obtained for various algorithms on an average
of 20 trials.
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Yable 17-3  Averages of 20 trials where Z scores represent the number of standard deviations from the
exhaustive search baseline

Standard

Algorithms Mean Mode deviation Shortestpath Longest path Zscore Time (ms)
HCX/Inversion 494 438 107 378 10.29 —409 8389
HCX/Reciprocal exchange  5.05  4.50 1.08 3.83 10.58 -395° 7954
OCX/Inversion 478 388 1.04 3.87 10.36 —-4.29 6796
OCX/Reciprocal exchange 502  3.88 1.07 377 10.61 -3.99 6821
ER/Inversion 500 4.62 0.81 3.81 10.21 —4.01 36280
ER/Reciprocal exchange 511 412 0.87 3.77 10.26 —3.88 36310
Random tours 821 838 0.81 4.23 10.99 0 G440
Exhaustive search* 8.21  8.38 0.80 3.76 11.08 0 36L£6
*Only one trial.

An examinarion of the schemara of some final populations reveals that HCX produced the most homoge-
nous solutions. Total population schemata of order seven, 50% of the total wour length of 14, were not
uncommon. HCX schemata had much in common with greedy algorithm solutions. The effect of this oper-
ator was to favor a more narrow set of fit schemata rather than to produce shorter solutions more quickly.
ER produced the most divetse final populations, with most final population schemata at order zero. While
edge information is significant in TSP solurions, the relative positions of points within the solution also play
a strong role in finding optimum values. The success of the OCX crossover, which passes relative position
information to the offspring, is an evidence of this.

The inversion muration operaror performed well in center for dara distribution, but the reciprocal exchange
method performed well in optimum solucions. This operacor actually introduces more variery to a population
than inversion in TSP because the direction of a path does not change its length. Only the values at the o

edges distupred are changed when inversion is applied. Reciprocal exchange changes ac minimum rwo and
maximum four edge values.

l 174 Genetic Algorithm-Based Internet Search Technique

Among the huge number of documents and servers on Internet, it is hard 1o quickly locate documents thar
contain potentially useful information. Therefore, the key factor in software developmenrt nowadays should be
the design of applications that efficiently locace and retrieve Interner documents thac best meer user's requests.
The accent is on intelligent content examination and selection of documents thar are most similar to those
submitted by the user as input.

One approach to this problem is indexing all accessible web pages and storing this informarion into
the database. When the application is started, it extracts keywords from the user-supplied documents and
cansults the database to find documents in which given keywords appear with the greatest frequency. This
approach, besides the need to maintain a huge database, suffers from the poor performance - it gives numerous
documents totally unconnected to the user's ropic of interest.

The second approach is to follow links from a number of documents submitted by the user and to find
the most similar ones, performing a genetic search on the Interner. Namely, application starts from a ser of
input documents, and by following their links, it finds documents thar are most similar ro chem. This search
and evaluarion is performed using GAs as a heuristic search method. If only links from inpuc documents
are followed, it is the Best First Search or genetic search withour mutasion. If, besides che links of the inpur
documencs, some other links are also examined, it is genetic search with muration,
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The second approach was realized and tested at the University of Hong Kong, and the resules were presented
at the 30th Annual Hawaii International Conference of System Sciences. The Best First Search was compated
10 genetic search where musarion was performed by picking a URL from a subset of URLs covering the
selected topic. Thar subset is obrained from a compile-time generated darabase. It was shown that search
using GAs gives better results than the Best First Search for a small ser of inpur documents, because it is able
to step outside the local domain and examine a larger search space.

There is an ongoing research ax the University of Belgrade concerning mutation exploiting spatial and
temporal localides. The idea of sparial locality exploitation is to examine documents in the neighborhood of
the best-ranked documents so far, i.e., the same server o local network. Temporal locality concerns maintaining
information about previous search results and performing mutation by picking URLs from that set.

I either of above described merthods is performed, 2 lot of time is spent for transferring documents from
the Internet onto the local disk, because content examination and evaluation must be performed off-line.
Thus, a huge amounc of data is wransferred through the nerwork in vain, because only a small percenr of
transferred documents will rurn our o be useful. The logical improvement is construcrion of mobite agents
that would browse through the necwork and perform the search locally, on the remote servers, transferring
only the needed documents and dara.

The first step of a genetic algorithm is to define a search space and describe a complete solution ofa problem
in the form of a dara structure that can be processed by a compurer. Strings and trees are generally used, bus
any other representation could be equally eligible, provided char the following steps can be accomplished, too.
This solution is referred ro as gengme or individual,

The second step is to define a convenient evaluation funcrion (fimess fiunction) whose task is to determine
what solutions are becter than others. One approach, when meeting diverse requests, is to add a certain value
for every request met and substract another value for every rule violated. For instance, in a class-scheduling
problem, genetic algorithm can add $ points for every solution that has Mr. Jones lecturing only in the
afrernoon and substracr 10 for any one that has two lecturers teaching in the same classroom at the same time.
Of course, many problems require a specific definition of the firness function which works besc in thar case.

The chird step in the creation of a GA is to define reproduction, crossover and mutation operators that
should transform the current generation into the nexe one. Reproduction can be generalized, namely, for every
problem one can pick our individuals for mating randomly or according to their fitness function {only few of
the besr are allowed to mate). The harder part is to define crossover and mutation operators.

These operators depend strongly on the problem representation and require chorough invesrigarion, plus
alot of experimenting to become truly efficient. Crossover generates a new offspring by combining generic
marerial from owo parents. [t incarnates the assumption that the solurion which has a high fimess value owes
it to a combination of its genes. Combining good genetic material from two individuals, beteer solutions can
be obrtained. Muration introduces some randomness into population. Using only a crossover operator is a
highty unwise approach, because it might lead ro a situation when one individual (in most cases only slighty
beteer than others) dominares the population and the algorithm “gets stuck” with an averagely good solution,
and no way to improve it by examining other alternatives. Mutation randomly changes some genes in an
individual, introducing diversity into population and exploring a larger search space. Neverthless, a high rate
of mutation can bring oscillations in the search, causing the algorithm to drift away from good solutions and
to examine worsc ones, thus converging more slowly and unpredicrably.

The fourth step is to define stopping criteria. Algorithm can either stop after it has produced a definite
number of generations or when the improvement in average fitness over wo generarions is below a threshold.
The second approach is berter, yet the goal might be hard 1o reach, so the first one is more resonable.

Having done all this, one can write a code for 2 program performing the search (which is fairly simple at this
poin).
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The GA strength comes from the implicitly parallel search of the solution space that it performs via a
population of candidate solutions and chis population is manipulared in the simulation.

A fitness funcrion is used to evaluate individuals, and reproductive success varies with fitness. An effective
GA representation {i.e., converting a problem domain into genes) and meaningful fitness evaluation are the
keys of the success in GA applicacions. ’

Although this mechanism seems “roo good to be true™ ic gives exceltent results, when compared 1o other
approaches, regarding the time spent in search and qualicy of the solutions found.

l 1741 Genetic Algorithms and Intemnet

Basic idea in customizing Internet search is construction of an intelligent agent — a program chac accepts a

number of user-supplied documents and finds documents most similar to them on Interner. GA imposes

itself as “a right tool for the job” since it can process many decuments in parallel, evaluare them according to

their sirilarity to che supplied ones, and generate a result in the form of a group of documents found.
Intelligent agent for the Internec search performs -he following steps:

1. Processes a set of URLs given to ic by a user and excracts keywords, if necessary, for evaluation.

2. Seleccs all links from the input set and fetches the corresponding www presenations; the resulting set
represents the first generation.

3. Evaluates the fitness funcrions for all elements of the sex.
. Repeatedly performs reproduction, crossover and muration, and thus transforms the current generation

into the nexr one,

There are several issues of importance that have to be considered when designing a genetic algorithm for
intelligent Interner search. These are:

. representation of genomes;
. definition of the crossover operator;

. selection of the degree of crossover;

1
2
3
4. definition of the mutation eperaror;
5. definition of the fitness funcrion;

6

. generation of the output ser.

Each of the issues given above is described next, in the form of a classificarion of possible ways to implement
the issue. For each of the issues, two picwures are presented: a classification of possible approaches regarding
that issue and the most frequently used implementarion.

l 17.4.2 First Issue: Representation of Genomes

First issue to be discussed is how one can encode possibie solutions, In this case, one solution is URL, the address
of an Interner document. The aim is to creare a resule in the form of a list or an array of those documents, and
thac average ficness of chis set be the highest possible. Figure 17-7 gives the possible representation approaches.

174.2.1 String Representation

String representation seems to be a narural choice since URL s already sring-encoded. However, in this case,
thereis only one gene in a genome, and classical crossover and muration cannot be performed. Therefore, a new

PR N e L T

—— AL e e

Y AA e e



AT

TR

522 Applications-of Soft Computing

Representation
of ganomes

l Anayor!strings ] ]Numaricall

| String I

Bit-string

Integer
9 encoded

Flgure 17-7 A raxonomy of representation of penomes.

definition of the crossover and mutation operators is needed that would be applicable in this envirenment.
Nevertheless, redefinition of genetic operators seems to be the only reasonable thing to do, since classical
crossover and mutation can transform GA’s search into a “random walk” through the search space.

174.2.2 Array of String Represenratr:on

Each URL contains several fields that have different meanings, so it is convenient to represent it as an array or
list of these fields thar are string-encoded. Figure 17-8 shows the string representation of a URL rerminated
by a End-of-String character.

First, there is a name of the Internet protocol either Arp or fip. Only the URLs starting wich “heep” are
of interest 1o us. Therefore, the agent should take into consideration only the documents thar these URLs
point to.

Second, there is a server address consisting also of several fields: ner name {wwu; usenes, exc.), server name,
and addirional information concerning the type of organizarion that the server belongs to (com for commercial
organizations, org for noncommercial ones, ed for universities and schools, and so on). In some cases, this
field can concain specification of the city and country the server is located in.

The third is the string that gives the path from the server root to a particular document,

All these fields must be variable in length so thar the solution can be represented in the form of an array
of variable-length strings. Mutation and crossover operarors can be implemented more easily in this case than

it was possible with the string represencation, because there are several genes in a genome that can be crossed
or mutated. Either classical or user-defined crossover and muration can be performed.

17.4.2.3 Numerical Representation

Since every Internet address up to the document path is number-encoded, genetic algerithm can use this
representation in order to perform classical crossover and muration. However, this is nor a promising approach
since documents similar to one another seldom reside on adresses that have much in commeon. Therefore
genetic algorithm would acrually perform a random search. Moreover, many of the addresses generated may

not exist at all, which places more overhead than can be-tolerated. Numerical representation can be either lef¢
integer-encoded or transformed into a biz-string representation. -

‘ hitp:/Awww.altavista.com l EOS |

| hitp-/galab.eff.bg.ac.yu/~vmitutorial him | EOS ]

Figure 17-8 The most frequent approach regarding the representation of genomes: Suing representation. URL
is represented as a string, terminated by an End-Of-String character.
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Figure 17-9 A waxonomy of the crossover operator.

l1 74.3 Second lssue: Definition of the Crossover Operator

Crossover operator is used to produce a new offspring by combining penetic material from two parents, aﬁh
one chaacrerized with a high fitness function. The idea is to force our the domination of good penes in the
furure populations. Figure 17-9 gives the possible definitions of the crossover operator.

174.3.1 Classical Crossover

Classical crossover can be performed only if URLs are encoded as array of strings or numerically, since it
requires that individual conrains more than one gene. . ' .

It is performed by combining different ficlds of an address. This approncl'lj would, in most cases, produce
URLs that do not exist on Internec. For example, combining wae:msic.edy with wuwnw novagenetica.com coulfi
vesult in www msw.com or in www novagenetica.edu. Neither of thesc is a valid Incernec address. Though this
technique is slightly becter than a random search, but is not a wise choice.

17.4.3.2 Parent Crossover

Parenc crassover is performed by picking out parents from the maring pool and. choosing a constant numhe:r
of their links as offspring, withour any evaluation of those links. This approach is casy [0 conduct; however, it
could result in many nonrelevant documents being picked our for the next generation, because one document
can contain links ro many sites that are not relaced to the user’s subject of interest.

174.3.8 Link Crossover

Link crossover can, if carefully performed, produce more meaningful results chan classical crossover. The idea
is 10 examine links from the documents in the mating pool and pick those thar are rhe.beﬂ for the next
generation. This evaluation of the links could be done in two ways: overlapping links and link pre-evaluation.

17.4.3.4 Overlapping Links

The links of the parent documents are being compared to the links of the input documents, zmdlor_xly those
thar they have in common are selected as offspring. This echnique might ot bcl the bﬁlt one (it is always
possible that the fittest document contains links that have nothing to do with the links of input do_cun'wnts),
but can be easily conduceed. Moreover, it is 2 common practice on Internes thar decuments consain links
related sites, so this approach could score high in mast cases.
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Figure 17-10 The most frequent appma.c.h regarding the crossaver operator: Link pre-evatuation, Numbers
next 1 the nodes represent normalized values of their fitness fanczions. Offspring with the
greatest values are selected for the next generacion.

17.4.3.5 Link Pre-Evaluation

Computation of the Atness funcrion can be performed on the documents that parent links refer to, and the
besr ones can be picked out for the nexr generation. Since this computation must be done sooner or larer, it
places a small overhead on the program (because of the evaluation of the documents that will not be picked
out for the next generation), bu ir gives good results. However, this approach could be time-consuming
in the case when the documents in the maring pool contain many links, since generic algorithm must wair
for all documents that those links refer to, 1o be fetched and evaluated in order 1o proceed with its work,
Figure 17-10 shows the approach of link pre-evaluation operaror,

I 174.4 Third Issue: Selection of the Degree of Crossover

There are two different approaches regirding crossover and insertion of offspring into the next generation.
Figure 17-11 gives possible approaches cancerning the degree of crossover.

17.4.4.1 Limited Crossover

Only a fixed number of offsprings can be produced from each couple. This could result in rejection of

documents that have higher fitness values than offsprings of other nodes bur are ranked less than second
among offspring documents of their parenr node.

17.4.4.2 Unlimited Crossover

Genetic algorithm can rank the documents from the mating pool and all documents thar parent links refer
together according to the values of their ficness function. Then, it can pick from this set those individuals chat

can be forwarded to the next generation. Overall fitness would be berter and there is no risk of losing some
good solutions.

Degree of crossover

Unlimited

Limited

* Figure 17-13 A taxonomy of the degree of crassover,
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Figure 17-12 Unlimited crossover.

The most frequent approach regarding the selection of the de-egrce of crossover is the Unlimited crossover.
In this case parents and all offspring are ranked according to their fitness Fun.mcnun values and che best among
them are selected. Thus, instead of picking out nodes with che fitness function values of 0.4}., 0,5,_0,8, 0,9, as
would be done using limited crossover, only the best solutions are chosen for the next generation. Figure 17-12
shows the operarion of unlimited crossover,

I 174.5 Fourth Issue: Definition of the Mutation Operator

Mutation is used to introduce some randomness in the population and thus slow down_the convergence and
cover more of the search space. Figure 17-13 gives the possible definitions of the muration operator.

Mutation
oparator
Generational Selective
DB-based Semantic
/ » Spatial Type
Unsorted Indexe locality locality
Topic Temp9m|
sor?ed locality

Figure 17-13 A waxenomy of the mutation operator.
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17.4.5.1 Generational Mutation

Generational muration is performed by generating 2 URL randomly. It is easily conducred, bur has no
significance since high percent of URLs generated in this way would not exist ac all. So, conclusion is thar
URLs for mutation must be picked our from some ser of existant addresses, such as database.

17.4.5.2 Selective Mutation

Selective mutation is perforrﬁed by selecting URLs from a set of existing URLs. It can be either DB-based or
semantic.

DB-based: DB-based murarion is based on the existence of a database that contains URLs that are somehow
sorted. Few of them are picked our and inserted into the population. The URLs can be the following.
1.

Unsorted ~ genetic algorithm picks any one of them. ‘This approach usually does not promise good
performance.

. Topic sorred — there is a field that says to which topic URL belongs, i.e., entertainment, politics, business.
GA chooses only from the set of URLs thar belong to the same topic as the input URLs. This approach
is a bir limited since one document can cover several topics but should produce reasonably good scores.
Figure 17-14 depicts topic-serted DB-based muration,

3. Indexed ~ there is a dacabase chat contains all words thar appear in documents wich a cercain frequency

and also links te documents in which they appear. GA writes a query to a database with keywords from
inpur documents and picks our URLs for mutadon from the resulting set. This requites some effort for

implementation and updation of the database bur promises good scoring. All one has o worry abour is
finding a compromise berween database size and quality of search results,

Semantic:  Semantic techniques use some logical reasoning in order 10 produce URLs for murarion.

1. Spatial locality mutation: I GA finds a document of a high fitness value on a particular site, there is a

stong; possibilicy thar ic can find similar documents somewhere on the same server or on the same local
network. This is because many people that have accounts on the same server or nerwork usually have
sirilar interests (which is most likely for academic nerworks). This approach is a bit hard to conducr since
GA has to either examing all sites on a server/net (which is time-consuming) or randomly pick a subset of
them.

. Temporal locality mutarion: A darabase is maincained of a huge number of documents that were in the
result set, for every search made. GA keeps scoring them on how frequendy they appear in thar set. Those
with high frequency promise ro give good performance in the future too0, so GA inserts them in the

htip/Awww.santafe.edu
htip:ifwww.etf.bg.ac.yu Oftspring
hitp/Awww.cmu.
P crmu.du Lhﬂpu’lwww.eﬁ.bg.ac.yu I

Figure 17-14 The most frequent approach regarding the definition of the muarion operator: Topic-sorted

~ DB-based mutacion. Offspring are sefected from the set of the documents in a database thac
are related 1o a cernain topic.

i 827
174 Genetic Algorithm-Based Intemel Search Technique

population, thus performing the mutation. This will yield good resules for usual queries {from the ficld
that many users are interested in) but will do poor for less popular ons. l ;
i ! i ion i 3 f the site the input documents are located on.
 Tipe locality mutation: This muation is based on a ype 0 nput ¢ d ¢
? [g}i):is sayqan edu site then there is a strong probabilicy _qhat some other sites with same suﬁ.x hat\;le s:m.ﬂ:-
documents. A database is maintained containing rypes of sites and a set of URLs referencing those sit
d GA chooses the candidates for mutatian from this set. . ‘ . '
an!’\lthcnisr_;h last two rypes of musations deal with databases, they involve log.lcal reasoning ar:id sernantics
consideration in picking our URLs for muration, and therefore are not classified as DB-based.

1746 Fifth issue: Definition of the Fitness Function

To cvaluare firness of 2 document, GA must go through irand examine its contents. Figure 17-15 gives several
possible definitions of the fitness funcrion.

174.6.1 Simple Keyword Evaluation

Once the occurences of keywords (selected ar the beginning from input files) in the :Ocumi{m are ;:‘?zt:]t
the GA can simply add those numbers and add a cerrain valuc_whcn wo or morcd elywor :1 :Egdd ine
document {so it ranks it higher than those documents thﬂ.( contain only one keywor ), It czmd addavine
for occurences of keywords in a title or hypetlinks. This method, though rough, can produc Y g
results with minimum time spent for evaluation.

17.4.6.2 Jaccard's Score
Jaccard's score is compured based on links and indexing of pages as follows:

. _ ] g
Jaccard’s score from links:  Given two homepages x and y ““fi their links, X H x[-,,\g,...,x,,, an
¥=y1,p1 .. Jn the Jaccard’s score becween x and y based on links is compured as follows:

_ o
IS]inks = #(XU ¥

Jaccard's score from indexing:  Given a set of homepages, the terms in these homepagesfarc idennf[}efl
(keywords). The term frequency and the homepages' frequencies are then computed. Term rcqt‘lzr;cz';.lb,z;
represents the number of occurencesof term 7 in homepage x. Homepage frequency, df, representst

Fitness function

Simle
keyword
evalualion

Figure 17-15 A wxonomy of the fitness funcrion.
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of homepages in 2 collection of N home

pages in which term f occurs, The combined weight of f i
homepage x, 4y, is compured as follows: ’ weght oftem jin

=1 "on (4 )

J and N represents the roral number of homepages. The
n indexing is chen computed as follows:

L
2_dsd
ISindeing ) = ———L!

L
D4 Yy
= I =

where L is the total number of terms, Fitness function for homepage 4; is then computed as follows:

where 125 represents the number of words in term
.
Jaccard’s score becween homepages x and ybased o

N
1
JStnkst) = 523 IStnislinpur; 4)

=
1 N

Jsindtxing(bi) = N,-.Z]:JSindcxing(inPu'j; hi)
_|'=

Fitness function is defined as

1
Jsth) = 5” Stinks (4:) + JSindexing(43))

Although computation of this fitness function can be time-

excellent resules concerning quality of homepages rewrieved. Figu
an evlavation function.

consuming for a big population, it gives
re 17-16 shows the use of Jaccard’s score as

@ Input docurments

@ Potential offsprings

.3
. Output documents

0-1 Jaccard's score

0.3 & tteration number

Figure 17-16 The most frequent approach regarding the fitness funcion: Jaccard’s score. The figure illustrates
Best First Search performed using Jaccard’s score 25 the evaluarion function,
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Figure 17-17 The most frequent approach regarding the generation of the output set: Interactive generation.
Best individuals from each generation ace selecred for the ourput ser.

17.4.6.3 Link Evaluation

Documents can be evaluared according w the number of links thac belong to the ser of links of input
documents. This narrows che search space but can produce good results in most cases and is easily implemented.

l1 7.4.7 Sixth lssue: Generation of the Output Set

Resulting output set can be either interactively generated or postgenerated.

17.4.7.1 Interactive Generation

Fron: each generation of individuals one or few of chem that have highest firness values are picked our and
inserted into the resule set. Thus, solutions from eatlier generations that are inserced in the output ser disqualify
later ones that are just below the line for insertion. An advantage is that the user is not required to wait for
the end of the search, but can view documents found so far, while the search is performed. Sometimes it is
possible even to modify some parameters during the search, i.e., add new input documents or new keywords.
Figure 17-17 shows the process of an interactive generation.

17.4.72 Post-Generation

The final population is the one that represents the last generation and is declared to be the result ser. The
quality of the documencs found is definitely beter, and overall ficness is higher than for interactive generation,
but user cannor view documents and make madifications until the end of the search.

Because of the fast growth of the quantity and variery of lnterner sites, finding the information needed
a5 quickly and thoroughly as possible becomes an important issue for research. There are two approaches to
Incerner search: indexed search and design of incelligent agents. GA is a search merhod that can he used in the
design of intelligent agenrs. However, incorporating the knowledge abour sparial and temporal localities, and
making these agents mobile, can imprave the performance of the applicacion and reduce the network traffic.

I 175 Soft Computing Based Hybrid Fuzzy Controllers

Tiaditional mechods, which address robotics conurol issues, rely upon strong mathematical modeling and
analysis. The various approaches proposed till date are suirable for control of industrial robots and auromaric
guided vehicles, which operate in varipus environments and perform simple repetitive rasks that require end
effectors positioning or motion along fixed paths. However, operations in unstructured environments require
Tobats to perform more complex wasks for which analytical models for control is very difficult ro determine.

In cases where models are available, ic is questionable whether or not uncertainty and imprecision are
sufficiently accounted for. Under such conditions fuzzy logic control is an areractive alcernative thar can be

i
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successfully implemented on real-time complex systems. Fuzzy controllers and their hybridization with other
paradigms are robust in the presence of perturbations, easy to design and implement, and efficient for systems
that deal with continuous variables. The control schemes described in this section are examples of approaches
that augment fuzzy logic wich other soft compuring techniques to achieve the level of intelligence required of
complex robotic systems. 1

Three soft computing hybrid fuzzy paradigms for automared learning in robotic syscems are briefly
described. The first scheme concentrates on a methodology that uses neural networks (NNs) to adapt 2
fuzzy logic controller (FLC) in manipulacor control tasks, The second paradigm develops a two-leve] hierar-
chical fuzzy control structure for flexible manipularors. It incorporates GAS in a leaming scheme ro adapt to

various environmental conditions. The third paradigin employs GP to evolve rules for fuzzy behaviors to be
used in mobile robor control.

I 175.1 Neuro-Fuzzy System

Neural nerworks exhibit the ability to learn patterns of seatic or dynamieal systems. In the following neuro-
fuzzy approach, the leaming and pattern recognition of NN are exploited in two stages: first, to learn static
response curves of 2 given system and second, to learn the real-time dynamical changes in a system to serve as
a reference model. The neuro-fuzzy conttol architecrure uses owo neural nerworks o modify the parameters of
an adaprive FLC. The adaptive capability of the fuzzy conroller is manifested in a rule generation mechanism
and automatic adjustment of scaling factors or shapes of membership funcrions. The NN functions as a
classifier of the system’s temporal responses.

A multilayer perceprron NN is used to classify the wemporal response of the system into different pat-
terns. Depending on the type of patcern such as “response with overshoot,” “damped response,” “oscillating
response,” etc. the scaling factor of the inpur and outpur membership funcrions is adjusted to make the system
respond in a desired manner. The rule generation mechanism also urilizes the temporal response of the system
to evaluate new fuzzy rules. The nonredundant rules are appended to the existing rule base during the wning
cycles. This controller architecrure is used in real-time to concrol a direct drive moror.

EJ 75.2 Real-Time Adaptive Control of a Direct Drive Motor

In order to perform real-time conorol, it is necessary for the controller to stand alone with the sale task of
calculating the outpur needed to conrrol the object system. This means the task of communicating data for
storing as well as acquiring controller parameters (if the conrroller is adaprive) should be performed by external
processors. In this way a real-time control can be achieved with required sampling rate for high bandwidth
operation,

The FLC algorithm requires processing of several functionalities such as fizzificacion, inferencing and
defuzzification.

This means the computation time taken by the FLC itself does not leave any room for an adaprive algerithm
such as rule generation, calculating the scale factor of the membership function, or NN algorithms. In order
to implement all these functicnalities, a multiprocessing architecture is needed. This can be achieved by
combining a sufficiently fast processor specifically designed for real-time processing, such as a TM5320C30
digiral signal processor {DSP) combined with a PC Intel processor (Pentium or 486).

I 175.3 GA-Fuzzy Systems for Control of Flexible Robots

In this section, GAsare applied to fuzzy conmol of asingle link Aexible arm. GAs are guided probabilistic search
routines modeled after the mechanics of Darwinian theory of natural evolution. GAs have demonstrared the
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coding abilicy to represent parameters of fuzzy knowledge domains such as fuzzy rute sas and membership
funcrions in a genetic structure, and hence are applicable to optimization of fuzzy rule sers. .

Several issues should be addressed when designing a GA for optimizing fuzzy controllers: the design of
2 transformation {interpretation) function, the method of incorporating inicial expert knowledge and the
choice of an appropriate fitness function. Each of the above issues significantly influences r.he success of GA
in finding improved solurions. These issues are briefly discussed below as they apply to design of 2 GA-fuzzy
controller for a Aexible link.

175.3.1 Application to Flexible Robot Control

The applicacion of GA-fuzzy systems applied to flexible roboc is discussec! here. The GA—l?arning hiemr.chical
fuzzy control archirecture is shown in Figure 17-18. Within the hierarchical conerol a.rchlrecmlrc, the ljugher—
level madule serves as a fuzzy classifier by determining spavial fearures of the arm such as straight, oscillatory,
curved. This information is supplied t the lower level of hierarchy where it is processed among other sensory
informaion such as errors in posicion and velocity for the purpose of determining desimb_le control input
{torque). In this, control system is simulated using only a priori expert knowledge. In the given structure, a
GA fine-tunes parameters of membership functions. . _ _
The following fitness function was used to evaluate individuals wichin 2 population of potential solutions:

i
1
i = | ———dt
Ficness f Zryiel

]

where e represents che error in angular position and y represents overshoot. Consequ_en:l?', a firrer individual
is an individual with a lower avershoot and a lower overall ersor (shorcer rise cime} in its time response. Hc_rc,
resubts from previous simulations of the architecture are applied experimentally. The merhod of gred-parenting
was used to create the inirial population.
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Figure 17-18 GA-based learning hierarchical control architecture.
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Figure 17-19 GA simulation: (A) Comparison of simulation responses; (B) plot of average fitness;
{C) initial experimental results.

Membf:rs of I:ht.: i!'ni.tia.l population are made up of muration of the knowledgeable grandparent (sb). As a
re_sult. a higher fit initial populadon results in a faster rate of convergence as is exhibited in Figute 17-19(A).
F:gulre 17-19(A) shows the time response of the GA-optimized controller when compared 1o previously
obtained resules through the non-GA fuzzy controller.

l1 7.5.4 GP-Fuzzy Hierarchical Behavior Cantrol

The cobor control benefits to be gained from soft computing-based hybrid FLCs is not limited to rigid
and flexible mani_pulators. Similar benefits can be gained in applications to control of mabile robot behavior,
Auronorf'lou_.m navigation behavior in mobile robots can be decomposed into a finite number of special-purpose
task-achieving behaviors. An effective arrangement of behaviors as a hierarchical nerwork of diseribured fuzzy
rule bases was recently proposed for autonomous navigation in unstructured environmens. The proposed
approach represents a hybrid control scheme incorporating fuzzy logic theory into the framework of behavior-
based control.

1‘\ behavior .hiera:chy that encompasses some necessary capabilities for autonomous navigation in indoor
environments is shown in Figure 17-20. It implies that goal-directed navigarion can be decomposed as a
behavioral function of goal-seeking and route-following, These behaviors can be further decomposed into the
lower-level behaviors shown, with dependencies indicaced by the adjoining lines. Each block in Figure 17-20
is a ser of fuzzy logic rules. ’

The circles in the figure represent dynamically adjustable weights in the unit interval, which specify the
degree to which low-level behaviors can influence control of the robor’s actuators. Higher-level behaviors

Goal-directed
navigation

Goal-seek Route-follow

Primitive level

Go-to-xy Avoid-collision

Wall-follow Doorway

Figure 17-20 Hierarchical decomposition of mobile robot behavior.

L
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consist of fuzzy decision rules, which specify these weights according to goal and sensory informarion, Each
low-level behavior consises of fuzzy conwrol rules, which prescribe motor control inputs that serve to achieve
the behavior's designated task.

The functionality of this hierarchical fuzzy-behavior control apptoach depends on a combined effect of
the behavioral functionality of each low-level behavior and the competence of the higher-level behaviots that
coordinate them. Perhaps the most difficule aspect of applying the approach is the formulation of fuzzy rules
for the higher-level behaviors. This is not entirely incuitive, and expert knowledge on concutrent coordination
of fuzzy-behaviors is not readily available. This issue is addressed using GP to computationally evolve rules for
composite behaviors, The forthcoming section describes the genetic programming approach to fuzzy rule-base
leatning.

I 175.5 GP-Fuzzy Approach

The GP paradigm computationally simulates the Darwinian evolution process by applying fitness-based
selection and genetic operators to a population of individuals. Each individual represents a computer program
of a given programming language and is a candidare solution to a particular problem. The programs are

structured as hierarchical compositions of functions (in a set F) and terminals (function arguments in a ser .

T). The population of programs evolves over time in response selective pressure induced by the relative
fitness's of the programs for solving the problem.

For the purpose of evolving fuzzy rule bases, the search space is contained in the set of all possible rule-
bases that can be composed recursively from Fand T. The sec F consists of components of the generic if-ther
rule and common fuzzy logic connectives, i.c., functions for antecedents, consequents, fuzzy intersection,
rule inference and fuzzy union. The sex T is made up of the input and ourput linguistic variables and the
corresponding membership functions associated with che problem. A rule base that could potentially evolve
from Fand T can be expressed as a cree dara strucrure with symbolic elements of F occupying internal nodes
and symbolic elements of T as leaf nodes of the tree. This tree structure of symbelic elements is the main
feature, which distinguishes GP from GAs, which use the numerical string representarion.

Alf rule bases in the initial population are randomly created, bur descendant popularions are created primar-
ily by reproduction and crossover operations on rule-base tree structures. For the reproduction operation several
rule-bases selected on the basis of superior fitness are copied from the current population into the nexg, i.e., the
new generation. The crossover operacion starts with two parental rule bases and praduces cwo offsprings thacare
2dded to the new generarion. The operation begins by independendly selecting one random node (vsing uni-
form probability distribution) from each parent as the respective crossover poine. The subcrees subtending from
crossover nodes are then swapped benween the parents 1o preduce the two offsprings. GP cycles through the
cureent population perform firness evaluation and apply genetic operarors to createa new population. The cycle
repeats on a generation-by-generation basis unuil satisfaction of termination criteria (e.g. lack of improvement,
maximum generation reached, ec.). The GP result is the best-fir rule base chat appeared in any generation.

In the GP approach to evolution of fuzzy sule bases, the same fuzzy linguistic terms and operators that
comprise the genes and chromosome persist in the phenotype. Thus, the use of GP allows direct manipulation
of the acrual linguistic rule representarion of fuzzy rule-based sysrems. Furchermore, the dynamic variabiliry
of the representation allows for rule bases of various sizes and different numbers of rules. This enhances
population diversicy, which is important for the success of the GP system, and any evolutionary algorichm
for that matter. The dynamic variabiliry also increases the potential for discovering rule bases of smaller sizes
than necessary for completeness, buc sufficient for reafizing desired behavior.

In this section, che soft computing approaches in handling complex models and unscructured environments
are studied. Neuro-fuzzy, GA-fazzy and GP-fuzzy hybrid paradigms can he successfully implemented to solve
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the prominent robot cantrol issues, namely, control of direct drive robot motors, control of flexible links and

mtelhgenf navigation of mobile robots. This in near future allows us to combine soft computing paradigms
for more intelligent and robust control.

I 17.6 Soft Computing Based Rocket Engine Control

Many of the rocket engine programs initiated by NASA’s Marshall Space Flight Center (MSFC) in Huntsville

Alabama, have been successful as evident by success of the Space Shuttle Main Engine, ground testing of tht:.
former X-33 engine and Fastrac X-34 engine for the reusable launch vehicle program. A,s aresult,a darfba.se of
test cases and lessons learned has been created from which improvements to engine control for’future engine
programs can be made. Such cases include premature engine shurdowns, propeliant leaks, and numerous cga.scs
o.f anomalous sensors and data. Such cases are not only costly to the American taxpayer, but also present a
risk in social acceprance of current and future space programs. l ’

The Space Transportation Directorate at MSFC has continually expressed an interest in improving engine
control and many cfforts in various ateas for control and anomaly detection and mitigation hagve bgeen
undertaken. Some successful atrempts have included nozzle plume analysis and engine vibration analysis
OIE]'ICI‘ efforts, although suecessful in theory and simulation, have been partially successful in actuat en ine);es;
ﬁru?gs. It is the harsh engine environment of cryogenics, vibeations, real-time control demands and gifferent
engine configurations from test to test that continually encourage researchers to determine aiternacive solutions
or improvements to approaches for engine control and anomaly derection and mitigadon.

CLErrem conrtrol technologies depend on proven, sometimes archaic, hardware and logical programmin,
rechniques which are costly to implement and maintain, and do not account for unforeseen conditiogns leacling
to the kinds of problems referenced eatlier. The principle goal is to provide another avenue to address MSFCE
Space Transportarion Directorate’s interest in impraving overall engine control. An approach for investigatin
fmd de.monstrating how the application of soft compuring technologies can further address presented cETmogl
issues in rocket engine control is presented in this section as a case study. The testbed engine is shown in

Figure §17-21.

;
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In this particular work, automation and control of a small-scale trbajet engine is described and some
preliminary data obtained using 2 PID controller has been provided. Turbine technologies turbojet engine
is equipped with inscrumentation for monicoring the operating conditions of the engine. Some preliminary
data obtained to demonstrace the safety of the engine under expected hazardous operating conditions and
to demonstrate the applicability of one-dimensional propulsion equations to calculate the thrust induced by
the cngine ate shown. Additional dara obeained to deétermine the system cransfer function so design a PID
controller are also shown. The PID control algorithm design has been outlined,

The instrumentation includes several thermocouples and pressure transducers and a load cell 1o measure
the thrust generated by theengine. A valve controls the fuel-flow race. In the present work two separate control
approaches were used. First the difference between the desired thruse from the engine and the thrust measured
using the load cell was used as the feedback signal 1o control the fuel-flow rate o the engine. In the second
approach the emperature and pressure sensor daca were used to calculare the thrust produced by the engine
using the aero-thermodynamic equations applying to rbojet engine operations, and the difference berween
the calculaced thrust and the desired thrust was used as the feedback signal. In the present approach, wrbojet
engine’s operation will beaucomated and several control logics will be trimmed to show their capabilicies. In chis
hardware-in-the-loop control demonstration effort, firsta simple PID control algorithm is demonstrated. The
testbed development and some preliminary resules obrained are presented using the experimental apparatus.

Simply stated, the term “soft computing” here refers to compurarional mechanisms thar can determine
suicable relationships (in a system data set) to assess and determine a quantitative opinion(s) based on future
conditions. Wishin MSFC, such computational mechanisms are viewed as a collection of algorithms that
can achieve optimal or near-optimal results in the presence of imprecise data, uncertainty, unknown physics
and probabilistic outcomes. Such algorithms include auromared reasoning, nondeterministic or probabilistic
methods. Examples of the latter include Bayesian nerworks, statistical resampling cechniques, chaos theory and
parts of learning theory. Other well-known soft compuring technologies include fuzzy logic, neural nerworks
and generic algorithms. The rerm soft compucing is used metaphorically fo contrast with hard computing,

Hard computing systems are based on these traditional approaches used commonly in most event-driven
systems. Such approaches are often viewed as crisp or binacy. For example, ina propulsion system for engine
start preparations, if liquid oxygen tank temperature A < xand liquid oxygen boctom rank pressureA > y, then
open liquid oxygen cngine supply valve can be opened. For this example, soft computing would accommodare
a region of acceprable temperature and pressure valves as well as observe other conditions such as liquid level
and so on. A mechanism (e.g. NNs) for determining when to open the liquid oxygen engine supply valve
would be used.

The approach wouid differ in chac it would be tolerant of any imprecision and uncertainty. In essence,
one could view soft computing as being similar to the way the human brain works. Humans tend to use
heuristic (abjective) and subjective knowledge before making decisions based on current states of events. The
key Features in soft computing stems from addressing any inherent imprecision, uncertainty, partial truths
and overall system knowledge. The central goal in soft computing is to astain more robust response. For this
effor, the primary technologies to be used are Bayesian belief necworks and fuzzy logic. For the engine start-up
sequence, the Bayesian belief networks will be used to ascertain the state of the engine prior t© procceding

t0 main stage control. For main stage engine control approach, fuzzy logic will be employed and it is largely
dependenr on the complexity of the engine control requirements and funcrions.

l 17.6.1 Bayesian Belief Networks

For the engine start phase, the primary soft computing rechnology to be utilized is Bayesian belief nerworks
(BBNs). The sole intent of the BBN is ta qualify each of the states during engine start-up prior o reaching main
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Figure 17-22 Bayesian belief nerwork.

stage. This will further assure certainty in the health of the engine and proceeding into main stage in addition
to providing added assurance inro preventing any premarure engine shutdowns. BBNs have been proven
to be good prf:dictive and diagnostic mechanisms for reasoning about the seate of events in envirorf’mcnts
whe_re_uncertamty is universal. Suppressing the details, the genealogy of this SCT is strongly rooted in classic
statistical Bayesian inference theory where a subjectivist viewpoint is taken. Figure 17-22 sh Bayest
belief nerwork. ’ TR
In shor, _Bayt:sian inference uses a different incerpretation of probability where one’s degree of belief in
some event is part of the reasoning. BBNs are compurational architeccures that permit declaragive (prior
conditional probabilistic values) and subjective opinions {posterior probabilistic values) abour world {facrual)

knowle_dge to be part (-JF the reasoning and assessment chrough a visual nenwork representation and a unique
syntactic message-passing fearure.

L. Belief updating: When node X is activared to update its pararmeters for belief updating, it firse inspects all

Mmessages wansmirted to it by its parents {7r) and its children nodes (A). Then using all inpur, it updates
its belief. PP

2. Bostorn-up propagarion:

hn Using messages transmitred by Y and Z, compute message 1o transmir to parent
node U.

3. Top-down propagatiom: Node X then computes new messages to be sen to its children nodes Y and Z.

l1 76.2 Fuzzy Logic Control

For main stage conrro[: the pl?.n is 1o use fuzzy logic. The use of fuzzy logic is suitable in that it accommodates
the uncertainties associated with control during power. Fuzzy logic is a branch of mathematics that deals with
approximate reasoning.

Zadeh of [l'le _Un.iversilty of California ar Berkeley combines the topics of multivalued logic, probability
theory and arrificial intelligence for simulation of human thoughe by using computer software as a medium.

The technology of fuzzy logic enables 2 computer i make decision based on vagueness ot imprecision incrinsic
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in most physical systems. Fuzzy logic comprises sets and subsets where a set represents an inpur Hnguistic
variable and its subsets represent the linguistic values.

A cook-book process is followed using fuzzification and defuzzification to determine a suitable response
to condirions on any given system to be controlled. The centroid method {or center of gravity methed) will
be used for fuzzification. The intent in employing fuzzy logic with the SR-30 engine is to utilize all engine
test data and conventional PID data to design and develop the fuzzy logic based controller.

Once the soft computing techniques of BBNs and fuzzy logic have been developed and cested and verified
(off-line}, both will be integrated into the SR-30 engine tested control environment for final integration and
verification testing.

I 17.6.3 Software Engineering in Marshall's Flight Software Group

In every software development organization a set of processes and standards for their base product line are
typically adhered too. Such processes and standards generally adhere to a type of software development life
cycle. For the Flight Software Group the popular Waterfall Model is used. Furthermore, the Flight Software
Group's process is ISO 9001 certified. And more importantly, has recently been certified as a CMM Level 3
organization, a first for any NASA organization. CMM is the Capability Maturity Model for sofrware thar was
developed by Carnegie Melon’s Sofoware Engineering Institure and has become an internarionally recognized
standard for evaluating software development processes where a level 5 is the highest certification a software
development organization can achieve. The principle funcrion of the Flight Software Group is o develop flight
critical software for embedded systems, hence requiring all software development processes to be stringent
with software quality assurance functions underlying all activities of software development.

The Flight Software Group tradirionally views software engineering as the establishmenr and uses sound
engineering processes to develop reliable software, based on human processes and thinking, that works on real
machines. Furchermore, sofrware engineering is also viewed as the design and implemenration of a ser of user
requirements into software using sound engineering processes. The emphasis here is thac che Flight Sofeware
Group uses sound software development processes based on empirically proven and sound practices.

17.6.4 Experimental Apparatus and Facility Turbine Technologies SR-30 Engine

Soft compusing technology hardware-in the-loop experiments were conducted using Turbine-Technalogies
mode SR-30 twrbojer engine shown in Figure 17-21. The demenstration engine consises of the turbojet engine
manufactured by Turbine Technologies Led. in its custom enclosure. The enclosure includes 4 control panel
for engine operation and moniroring and a PC-based data acquisition unit for measuring the engine operating
conditions,

The SR-30 engine has a single-stage radial flow compressor with a maximum pressure ratic of PR = 3.4,
single-stage axial-flow turbine, and reverse-flow annular combustion chamber and it operates obeying the
Brayion thesmodynamic cycle in the same fashion as the lacge turbojet engines. The engine as produced by
the Turbine Technologies includes many pressuce and temperature sensors, a load-cell for thrust measure-
ments, 2 custom motor winding for reading the engine rpm and a fuel flow-rare measurement system to
monitor/measure the operating paramerers of the engine. The engine generates 20 lbs of thrust ac 90,000
tpm while ingesting 77 = 1.1 Ib s™! of air. The engine has a fength of 10.75 in. 2nd the exix exhaust diamerer
of Dexit = 2.25 in. ‘

The engine available is instrumented wirh pressure transducers in the compressor inlet and exix, in the
combustor, in the curbine exir and in che thrust nazzle exit, and Keype thermocouples in the compressor inlex
and exit, in the wrbine inler and exir and in the thrusc nozzle exit. Fhe engine available was also equipped
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with a National Instruments (NI) PCI 4351, A/D board wich 24 bit resolution for 16 analog inputs with a 60
samples s~! capabilicy, and a NI Virrual Bench Logger data acquisition program for monitoring the measured
parameters on a PC.

Slmrting the engine requires an external source of high-pressure air at minimum 100 psi to spin up the
engine to approximately 10,000 rpm. Subsequent fuel injecrion and ignition starts the engine. The fuel-flow
rate is controlled by the person operating the engine with the use of a lever, which basically controls a valve
f:onsrricting the fuel flow o the engine. Engine idles ar approximately 50,000 rpm and the thrust generated
increases with the increased rpm. To obrain higher thrust values the engine operator steadily increases the
fuel-flow rate from the idle condicions. In otder to stop the engine it is brought o the idle conditions and
run until the exhaust temperature drops under 100 °C, to minimize engine damage.

I 176.5 System Medifications

Turbine Technologies data acquisition system as purchased and used for classroom demonstrations is nat
sufficiently fast enough for use with the hardware-in-the-loop control algorithms. Since one of the main
scopes of the present work is to implement and demonstrate different control algorithms in controlling a
turbojet engine chrust, a new data acquisition system and software has been implemented into the existing
system to increase the daca acquisition speed and to increase the control capabiliry. Additionally, the available
system was designed and- used to collect and present daca and it did not have provisions to send signals via
computer for closed-loop control applications. Changes implemented include the replacement of the dara

acquisition board, connection panels for the sensors, addition of a low flow-rate fucl-flow rate measurement
unit, a fast acting linear servo-concroller.

I 17.6.6 Fuel-Flow Rate Measurement System

The SR-30 engine as produced by the Turbine Technologies uses a pressure rransducer together with a
calibration curve to determine the fuel-flow rate w the engine. The pressure values read on the fuel line are
plotred against the fuel flow spent and also against the rpm of the engine o generate pressure vs. the fuel rare
and the pressure vs. the rpm calibration curves for long term operacions. However, for the present purposes,
since the fuel-flow rate is mainly the only contral input to contral the desired thrust of the engine a mote
accurare and faster fuel-flow rate measurement device has ro be implemenred.

I 17.6.7 Exit Conditions Monitoring

Turbojer propulsion equarions used in calculation of the engine thrust requires the measurement of the
exit conditions, namely the exhaust toral pressure and the total temperacare. Although the existing system
available from Turbine Technologies incorporated a pressure transducer and a thermocouple, for this purpose,
the response time for the equipment was racher slow. In order o increase the time resolurion of the dara
obrained ar the exit conditions a new pressure transducer with a 0.2 ms response time and a 0.1 s response
time has been incorporated.

As a result of this effort, new insight has been gained into the behavior and application of soft computing
technologies in a rocket engine control environment. The methodology created here will provide a new
approach to the area of employing soft computing vechnolagies in rapid response engine control systems
for furure visian vehicles. It will yield berrer insighe into incorporating soft computing technologies with
proven and practical software engineering methods. It is expected thac this effore will demonstrate that by
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employing soft computing technologies, issues in quality and reliabilicy of the overall scheme of engine
controller development can be further improved and thus safery be Further insured.

Furthermore, the use of these soft computing technologies is expected to supplement efforts in improving
software management, software development time, software maintenance, processor execution, fault tolerance
and mitigation and nonlinear control in power level transitions, all of which contribute to a better engine
control syscem. It is projected that the final product will yield a foundarion for 2 path to further development
of an alternative low cost engine controller that would be capable of performing in unique vision spacecraft
vehicles requiring low cost and advanced avionics architectures for auconomous operations from engine
pre-start to engine shurdown.

ll?.? Summary

In this chapter we have dealt with the applications of soft computing techniques. The application areas of
these soft computing techniques are growing day by day. Neural nesworks and fuzzy logic are effectively used
in various control applications. Genetic algorithm plays a major rale in providing solutions for aptimizing 2
problem, The combinations of all these techniques give an accurate solution to complex systems. There are
various researches going around the world in the field of soft computing.

I 17.8 Review Questions

1. Stace che various applications of neural nerwarks, 7. Explain the application of fuzzy logic systems to
2. Mention the application areas of fuzzy logic. image processing applications.
8. Describe in desail the application of genetic

3. In whar areas does generic algorichm gives a best f e - 2PP
algorithm ro Civil Engineering area.

optimized solution?

9, Wich suitable block diagram, explain the prin-
ciple involved in a liquid Jevel controller using
neurofuzzy technique.

4. List few applications of hybrid fuzzy GA systems
and neurofuzzy systems.

5. Soft compuring techniques gives best solution o

complex problems. Justify. 10. With a case study example, describe in derai the

ication of ing.
6. With suitable case study, explain how neural application of soft compuring

network best performs its control action.

I17.9 Exercise Problems

1. Write a program for implementing genetic 4. Implementawaterﬂowmanagcmentsyscemand
algorithm based Incernet search technique. water treatment system using soft compuuing

2. Write a program for processing an image of size approaches.

16 x 16 using neural necworks and fuzzy logic. $. Construct a neural necwork training controfler

3. Build a 3D same using the design issues in for controlling the motion of a satellire.

genetic algorithm.
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6. Wirite a program for analyzing the landing of an
aircraft using fuzzy logic methodology.
7. Implement robor motion controf wsing neuro-

fuzzy controller.

8. Write a program using genetic algorithm to solve
2 traveling saleman problem.,

9. Implement with any example, the concepe
invalved in parallel genetic algorithm.

10, Wrice a program for controlling the motion of

an inverted pendulum using neural networks and

fuzzy Jogic.

b
i
i
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Soft Computing Techniques
Using C and C++

— Learning Objectives

* Gives the source codes for soft compuring * The Cartesian produces of two given fuzzy sets,
techniques in C and C++. max min composition for fuzzy relarions are
also implemented in C and C++ o enhance

* Neural network implementation is performed > ]
the reading of fuzzy logic concept.

for perceptron network, Madaline net, BPN,
CPN, ART and Kohonen self-organizing fea- * Few problems of maximizing and minimizing
fure maps. a function, traveling salesman problem, pris-
onner'’s dilemma, quadracic equation solving
are implemented in the universal language ro
depict the genetic algorithm operation,

In fuzzy logic, the implementacion is carried
out for primitive operations of classical sets
and fuzzy sets.

I 18.1 Introduction

This chapter gives the source codes for implementation of Soft Computing Techniques using the languages
Cand Cw+. Cis a general-purpose structured programming language thae is powerful, efficienc and compace.
It combines the features of a high-level tanguage with the elements of the assembler and thus is close o
man and machine. Pragrams wricten in C are very efficient and fast. C++ on the other hand is an objece-
oriented language that a C programmer can appreciate, especially who is an early age assembly language
programmer. C++ orients toward execution performance and then toward Hexibilicy. The name C++ signifies
the evolutionary nature of the changes [rom C. Thus Saft Computing being an approach based on evolutianary
strategies and evolutionary programming can be implemented using the structured programming and objecr
programming languages. This chaprer discusses few problems solved using C/C++.

Lw.z Neural Network Implementation

The various neural nerworks discussed through Chapters 2-6 are implemented using C and Ce+ languages
in chis seceion. The source code for ¢ach nerwork for a specific application is given below.

L8.2.1 Perceptron Network

The program for perceptron nerwork is as follows:

/*PERCEPTRON* /
#include<stdio. h»
#include<conio.h>
main ()
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signed int x([4]([2],tar(4];
fleoat w[2],wc[2],0ut=0;
int i,3,k=0,h=0;
float s$=0,b=0,bhc=0, alpha=0;
float theta;
clrseri};
printf ("Enter the value of theta & alpha”);
scanf ("%£%f",&ktheta, &alpha);
for(i=0;i<=3;i++)
{
printf{"Enter the wvalue of %4 Inputrow & Target",i};
for{j=0;j<=1;j++)

{
scanf {("%d", &x[i1[§]1);
}
scanf ("%d°,&tar[i]);
w[i]=0;
wclil=0;
}
printf{"\Net\t Target\tWeight changes\tNew weights\t Bias changes\tBias\n"):
printf{"-------""-"+-"-"--+"--"- \n");
mew:
orintf { "ITERATION £d\n", h);
PrimbE (e e e e \n");
for{i=0;1i<=3;1i++}
{
for{j=0;j<=1;3j++)
{
s+={Eloat)x[i] [j)*w(]];
}
s+=h;
printf{"%.2f\t",s);
if (s>theta)
out=1;
else if(s<-theta)
out=-1;
else
(
ouk=0;
}
printf("%d\t",tar(i]);
5=0;

if {out==tar[il)
(
for(j=0;j<=1;j++)
{
weli]=0;
be=0;
printf (“%.2f\t",we(31};
}

i 3
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for (j=0;j<=1;j++}
printf{"%.2f\t", wljl);
k+=1;-
b+=bc;
printf ("%.2£\c\t",bc);
printf{"%.2f\t",b);

}

else

{
for(j=0;j<=1;j++)
{
we[jl=x[i] [j}*tar(i]*alpha;
wlil+=wc[i]);
printf{"%.2f\t",wcljll;
wel[jl=0;
}
for(3=0;j<=1;J++)
printf("%.2f\t",wlj)};
be=tar[i]*alpha;
b+=hc;
printf("%.2f\t\t",bc};
printf("%.2f\t",b};

}
printf("\n");
}

if (k==4}

{
printf("\nFinal weights\n"};:
for(j=0;3<=1;j++)
{
printf ("w[%¥dl=%.2f\t",j,w[il};
}
printf("Bias b=%.2f",b);
}
else
{
k=0;
h=h+1;
getch{);
goto mew;
}
getch();
)

B I 18.2.2 Adaline Network

= The program for adaline network is as follows:

/*ADALINE*/
#incluge<stdio. h>
#include<conio.h>
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main(} bc=e*alp; !
( : printfi b=%.2£\t", b ;
. . getchi);
signed int x[4][4],tar(4]); . " _aEn
Float wcld),w[4],e=0,er=0,yin=0,alp=0.5,b=C,bc=0, t=0; printf(*\n Error Square=%f", er);
int i,j,k,g=1; if(er<=1.000)
3ok ; (
clrscr(); A
- d . printf("\n"};
£ =0;1<=3;
{°r(l O7ie=diire) for (k=0;ke=1;k++)
printf{"\nEnter the %d row and target\t",i); prln;f('-'%f\t“,w[k]); E
for (j=0;3<=3;i++] ) getch(); i
{
scanf ("%d", 5x(1119)}; else
) ( :
scanf("%a",&tar[i)}; e=‘j8 ' ;
printf{"%d", tar(i}}; er=t
w(i]=0.0; yin-O.-
weli)=0.0; a=q+l;
} goto mew;
mew: }
er=0;e=0; getch(}: Y
vin=0; } o
priotf{“\n ITERATION®A",q); : ) :
printf {("\n--—---—------o---ow "y . | '
for(izﬂ; i<=3;i++) l 18.2.3 Madaline Network for XOR Function h
t=tar(i); The program is as follows: r
for {3=0;3<=3;j++)
{ //¥O0R function using madaline 4
yvinsyin+x[1]13]*w(5]; #incluge<stdio. h> .
} #include<conio.h>
b=b+bc; . void main()
yvin=yin+b; {
be=0.0; . signed int x[4}[2]).tar([4];
printf{"\nNet=%f\t*,yin); float w[2i[2).a,0f2]);
e={float)tar[il-yin; fioat we(2](2],2zin(2),21=0,22=0,yin=0,b(2],er=0,b3=0,v1=0,v2=0.5;
yin=0.0; int i,j,c=0,1in,d;
printf{"Error=%f\t",e); i float bei2];
printf("Target=%d\t\n", tar[il}}; ' float alp=0.5;
er=er+etea; clrscr();
for (k=0; k<=3 1k++) : for(i=0;i«=3;1++)
{ {
we{k]=x[i] [k] *e*alp; printf("Enter the %d row & target:");
wlk)+=wclk]; ; for (j=0;i<=1:]j++)
we[k)=0.0; i scanf{"%d", &x[11131) ;-
) , scanf ("&d",&tar(il);
printf ("Weights \t"); 3 }
for (k=0;k<=3;k+1) . getch();
{ i printf ("Enter Weights:*);
printf("%f\v",wlik]); r for(i=0;i<=1;i++)

1 {
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for(j=0;j<=1;j++)
( :
scanf ("%£f", &a};
wli){jl=a;
wel[i}[31=0;
}
printf("bias®};
scanf{"%f",&b(il};
zinli]=0;
}
mew:
printf("Iteration\n");
printf{"~—-~r-mmuemem \n");
for{i=0;i<=3;i++)
{
for(in=0;in<=1;in++}
{
for(3=0;j<=1;j++)
{
zinlinl+=x[i]l (31 *w[j][c);
}
zin[in)+=bfiin];
printf{“zin%d= %.3f\t",in,zin[inl};
c+=1;

N —

0;

1;

{zin[cl>=0 & zin([d]>=0)
zl=z2=1;

else if(zinic)>=0 & zin[d)<=0)

{

z1=1;

z2=-1;

if

)
else if({zin{cl<=0 & zin[d]>=0}
{
z2l=-~1;
z2=1;
}
else
{
zl=g2=-1;
}
yin=zl*v]+z24v2+b3;
printf ("NET %.3f\t",yin};
for{in=0;in<=1;in++)
(
clinl=tar(i]-ziniin];
er+=ol[in]*o[in];
zin(in]=0;

|
|
H
|
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}
Lf{yin==tar(il]
[ -
for{in=0;in<=1;in++)
{
for{3=0;3j<=1;j++)
(
we [in] {5]=0;
wlin] [J1+=wc({in] [3];
}
bclin)=0;
1
¥in=0;
}
else
{
for{in=0;in<=1;in++)
{
for(j=0;j<=1;j++}
{
wclin] [j)=alp*o[j)*x[i] lin];
printf ("wckd¥d=%.3f\t",in,j.wclin] [§1};:
wiin] [§)+=wc[in] [3];
printf{"w=%_36\t", wlin] [j]};
we{in} [j]=0;
}
)
for(in=0;in<=1;in++)
{
belin)=alp*olinl;
blinl+=bclin];
printf ("\nb¥d=%.3{",in.b{in)});
1
for{in=0;i<=1;in++}
{
be{in]=0;
}
yin=0;
}
printf{"\n");
}
if{er<=1}
{
for(i=0;i<=1;i++)
(
for{j=0;j<=1;j++)
printf("%.3f", w[il(j1}:
}

else

= AT IFR
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vin=0;
for(in=0;in<=1;in++)
{
belin])=0;
zin[in]=0:
}
er=0;
getch();
goto mew;
}
getch{) ;
H

18.2.4 Back Propagation Network for XOR Function using Bipolar Inputs and
Binary Targets

In this case the assumption is made for the necessary parameters. The initial weighes and bias are assumed 10
be of smalt random values. The program is as follows:

/*BACK PROPAGATION NETWORK*/
#include<stdio.h>
#include<conio.h>
tinclude<math.h>
#include<stdlib. h>
void main()
{
float v[2][4],w[4J[1],vc[2][4],wc[4][lj,de,del[&],bl,bia,bc[4].e=0;
float x[4][2],t[43,zin[4],delin[4],yin=0,y,dy,dz[4],b[4],z[4].
es,alp=0.02;
int i,3,k=0,itr=0;
v[0][0]=0.1970;
vI0][1]1=0.3191;
v(0][2]=-0.1448;
vi0)(3]1=0.3594;
v[l](0]1=0.3099;
v[1][1])=0.1504;
v[1][21=-0.0347;
v[1][3]1=-0.4861;
w[0][0]=0.4919;
w[1][0]=-0.2913;
w[2]{0]1=-0.3979;
w[3]1[0)=0.3581;
b[0])=-0.3378;
b[11=0.2771;
bl2]=0.2859;
b[3)=-0.3329;
bl=-0.141;
x(0]1[0)=-1;
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x[0][1])=-1;
x[1][0]=-1;
x[1][1]=1;
x[2)([0]=1;
x[2][1]=-1;
x[31[01=1;
x[3][1]=1;
£i0]1=0;
t[1)=1:
£[2]=1;
t[3]1=0;
clrscr{);
for{itr=0;1tr<=387;itr++)
{
e=0;
es=0;
for{i=0;i<=3;i++)
{

do

{
for(j=0;j<=1;j++}

{
zinl[kl+=x(i}{31*v[j) [k};:
H
zin(k]+=h[k};
k+=1;

Jwhile(k<=4);

for(j=0;3<=3;j++)

(G-
z[J)={1l-exp{-zin[j]})/(l+exp(-2in[j]});
dz([j)=((1+z{3)*{1-2(31))*0.5;

)

for(3=0;3<=3;j++)

{
yint=z[j]*w(j][0];

}

yin+=bl;

y=ll-exp(-yin})/(l+exp(-yin)};

dy={{l+y}*(1-y}}*0.5;
de=(t[i)-y)*dy:

e=t[i]-y;

es+=0.5%(e*e);

for{j=0;j<=3;j++}
{

wc(jl[0)=alp*de*z(];

delin[j]l=de*w[j][0];

del[j]=delin(jl*dz(3];
}
bia=alp*de;
for{k=0;k<=1;k++)
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}

for(j=0;j<=3;j++)

{

velk] [j1=alp*del[j]*x[i] [k];
vik] [F]+=ve(k] []1;

1

for (j=0;j<=3;:j++)

{

}

befjl=alp*del[]};
wlil (0]+=we[j][0];
bljl+=bc[j]};

bl+=bia;
for{j=0;j<=3;3++)

{

}

2in[j]=0;
z[j1=0;
dz[3])=0;
delin{j]=0;
del[j]1=0;
bcli]=0;

k=0;yin=0;y=0;
dy=0;bia=0;de=0;

}

printf ("\nEpoch %d:\n",itr);
for{k=0;k<=1;k++)

{

}

for{j=0;j<=3;j++)
{
printf("%f\e" viki{jl};
}
printf(“\n");

printf ("\n");
for{k=0;k<=3;k++}

{

}

printE{"$f\t",w(k][0]);

printf ("\n%f",bl};
printf{"\t"};
for(k=0;k<=3;k++)

{

}

printf ("%£\t" blk]);

getch{);

}

getch();
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l18.2.5 Kohonen Self-Organizing Feature Map

The user can enter the inputs and initialize the weights of his wish,

//A ¥S0M to c¢luster four input wvectors
#include<stdio.h>

#include<conio.h>»

void maini)

{

signed int x[4][2};
float w[d4])[2],d%,d2,0,m=0;
int i,3,k,J;
float alp=0.6;
clrscr(};
printf [*Enter the input:"):
for(i=0;i<=3;i++)
{
for{j=0;j<=3;j++)
{
scanf ("%d",&x[11(71):
}
}
printf ("Enter the Weight matrix:");
for(i=0;1<=3;i++}
{
for{3=0;j<=1;j++)
{
scanf ("%f",&o};
wli]} [§1=0;
)
]
mew:
for(i=0;i<=3;i++)
{
forik=0;k<=1;:k++)
{
for{j=0;j<=3;j++}
{
if (k==0}
dl+= (w3l [kI-x[i]1 (31 *(w[3] (k) -x[1)([31);
else
az2+=(wl3] [k]I-x[11 (311 = {wl3d [kl-x[1}[7]}):
}
}
if{d1>d2)
J=1;
else
J=0;
dl=d2=0;
for (j=0;j<=3;j++)
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{ wijl (Tle=alp*(x[i) (i) -w[i)(J]);
;etch();
;1p=a1p/l.014:
if {(m>=100)
{ for(i=0;i<=3;i++)
{ for{j=0;j<=1;j++}
{ printf ("\n#f\t", w{il(jl);:
;etchl):

)

else

{
m=m+1;
for{i=0;i<=3;i++)
{
for(j=0:j<=1;3++)
{
printf{"\n%f\t*, w(il1[71};
]
printi("\n"):
}

getch(};

goto mew;

)

getchi);
)

l 18.2.6 ART 1 Network with Nine input Units and Twao Cluster Units

18.2 Neural Network Implemantation
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The program is as follows:

/* AN ART1 NET WITH 9 INPUT UNITS AND 2 CLUSTER UNIT */

fiinclude<stdio.h>

#include<conio.h>

main{)
{
fleoat ro;
float b{9]([3].t(21(9},5(9),x[9],sin=0,y[2),xin=0;
int i,3,k=0,J,c=0;
y{01=0;
y[1])=0;
b[0){0]1=0.33;b{1](0)=0.0;b(2)(0]=0.33;
b{31{0]1=0.0:b[4)10]1=0.33;b[5}10]1=0.0;

b[6)[0]=0.33;b[7}[0]1=0.0:b[8] [01=0.33;

B{0][11=0.1;b[1]1(1}=0.1;b{23(11=0.1;"
b{31111=0.1;b[4]11)=0.1;b{5] [1]1=0.1;
b(6][1]1=0.1;b[7][1]=0.1;b[8}[1]=0.1;
£[0][0]=1.0;t[0)[11=0;c(0](2]=1.0;t[0](3]=0;
t(07[4]=1.0;¢ [0} [5)=0; (0] [61=1.0;t{0][7)=0;
t[0){8]=1.0;

t(1100]=1;£[1101]1=1;c{1){2])=1;Ec[1](3]=1;
(1] [4)=1;t (1) [5)=1;c[11{6)=1;c(1][7)=1;
c[l}i8]=1;

clrscr{);
mew:
printf{"Enter the value of ro\n"}:
scanf ("%f", &ro};
printf{"Enter the input value\n"};
for{i=0;i<=8;i++}
{
scanf ("%£f",&s[i)};
x[il=s(i};
3
sin=s[0)+s|1])+5([2)+s5[3]+s[4])+s[5)+s5[6]+s5{7]+s5[8];
For(i=0;i<=1;it++}
{
do
{
y{ii+=s{k]*bl[k]i[1i]);
k+=1;
ywhile{k<=8);
k=0;
}
for(i=0;i<=1;i++)
printf ("\tyin=%f",y[i));
if (y[0)>=y([1])
J=0;
else
J=1;
printf{"J=%d",J);
me:
for(i=0;4i<=8;i++)
(
x[il=s[i]*c[JI[i];
}

xin:x{0]+x[1]+x[2]+x[3]+x[4}+x[5)+x[6]+x{7]+x[8];

if{{xin/sin)>= ro)
{
for{i=0;i<=8;i++)

{

; Boey— st U
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bli][J]=(2*x[1}) /(1+xin);
[T [(1]=x(i]};
1
}
else
{
yidJl=~1;
xin=0;
goto me;
}
printf("\nBottom up weights\n");
for(i=0;i<=8;i++)
{
for(j=0;j<=1;3++)
{
printf ("$£\t",biil[31);
}
printf ("\n");
].
e printf("\nTop down Weights\n"}:
-':' for (i=0;i<=1;i++)
\ {
} {
J printf{"%f\t~, t[i]1[j)};

\
/ )
;
2
;

for(j=0;j<=8;j++)

print€{"\n"};
}

getch{];

y(0]}=0;

yl1}=0;

y{2]=0;

sin=xin=0;

c+=1;

k=0;

if {ce=2)
goto mew;
getch();

}

p8.2.7 ART 1 Network to Cluster Four Veclors

The program is as follows:

/* ART1 NETWORK TQ CLUSTER FOUR VECTORS */
#include<stdio.h>
#include<conia.h>
main(}
{
float n=4.0,m=3.0,0=0.4,1=2,0;

18.2 Neural Network Implementation
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i
!

float b[4)13]),t(3)(4].8(4],x(4],8in=0,y{3],xin=0;
int i,7,k=0,J,c=0;
¥[01=0,y(1}=0,y[2}=0;

clrscr{);
for{i=0;i<=3;i++)
{
for{j=0;j<=2;j++)
{
bli)ij)1=0.2;
}
)
for(i=0;i<=2;i++)
{
for(j=0;j<=3;j++)
{
tlid{jl=1.0;
}
)
mew:

printf{"Enter the input value:\n"):
for{i=0;i<=3;i++)

{
scanf ("%f", &s(i]);
x[il=s]i);
sin+=s{i];
}
for(i=0;i<=2;i++)
{
printf{"\n¥"});
do
{
ylil+=s5[k]*b[k][i]);
k+=1;

}whileik<=3);
if{y[0i>=vI[1])
{
if(y[0]>=y[21}
J=0;
else
J=2;
}
else
{
if(y[1]l>=y(2])
J=1;
else
J=2;
}
for{i=0;i<=3;i++)

{
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x[il=sii)*c[J) [i];

xin+=x[1];
}
if (xin/sin>=0.4}
{
for(i=0;i<=3;i++)
{

bli] [J]=(2*x[i]) /{1+xin);

tlT] [(i1=x[i];
}
}
else
{
y[J]=-1;
}
printf("\n"};
for (i=0;i<=3;i++}
{
for (j=0;j<=2;j++)
{

printf("$£\t",b[i]1[j1};

}
printf("\n"};
}
For(i=0;i<=2;i++}
{
for{j=0;j<=3;j++)
{

princf ("$E\E", t[i1{F]1);

}
printf ("\n"}:
}
getch{);
¥[0]l=y[1]l=y[2])=0;
sin=xin=0;
c+=1;
k=0;
1f (cx=3)
gckto mew;
}
getch{};
)

l 18.2.8 Full Counterpropagation Network

The program is as follows:

/* FULL COUNTER*/
Finclude<stdio.h>
#include<conio.h>

18,2 Neural Network Implementation
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void main ()

{

float alp=0.6,x=0.1,n{10],v[1][10],d[10],p,w{1]}[10],y.bet=0.6;

floak wfl0](1].c(10)([1],2=0.6,b=0.6;

int i,3,J,k=0,m;
clrseri);
v[0][01=0.1;v[0][1]=0.
v[0}1[3]=0.3;v[0][4]=0.
vioj[6]=3.0;v{0])[7]=5.
v[0][9]1=9.0;
w[0]1[0]=9.0;w[0][1]="7.
w[0][3])=3.0;w[0][4]1=1.
w(0](6]=0.2;w[0]1[7]=0.
w[0]19]=0.1;
uf0l([0]=0.1;u{11({0]=0.
uf31[01=0.3;ul4]([0]=0.
uf6][01=3.0;ul7][0]=5.
u[2]1[0)=2.0;
c[0][0]1=9.0;t[1][0]=T7.
£[3]1(0)=3.0;t[4][0]=1.
£[6][0]=0.3;L[7]([0]=0.
£[9][0]=0.1;
do
{

¥=1/%;

printf{"\n");

for (J=0;j<=9;j++)

{

n{31=(x-v[0] [31) *{=x-v[0] [i])+{y-w[O] [J]) *{y-w{0)[]));:

dijl=n[3j);
}
for(m=0;m<=9;m++)}
{
for {j=m;j<=9;++3j)
(
if(d[k]=a&[il)
{
p=a[ijl:
d{jl=dlk]);
&lkl=p;
}
}
k+=1;
}
for(j=0;j<=9;j++}
{
if(al01==nljl}
{
J=7;
}

15;v[0}(2]=0.2;
5;vI0}[5]1=1.5;
0;v[0)[8]}=7.0;

0;w[01([2]1=5.0;
S;wl0]1[5]1=0.5;
2;wi0][8)=0.15;

15;u[2][0)=0.2;
S;ul[5]101=1.5;
0;u[8][01=7.0;

0;t(2][0]=5.0;
5;t[(5}(01=0.5;
2;t{83[0]=0.15;

e

TH L
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}
V(0] [T]+=alp* (x~-v[0] [J1);
w[Q] [dT+=bet* (y~w([0) [T]);
printf(*\nInput X=%f",x);
printf("\nUpdated weights: ﬁ“);
for(j=0;j<=9;j+4+)
{
printf ("$£\t",v[0)[4]);
n[jl1=0;
d[31=0;
}
printf("\n Updated weights: w");
for(j=0;j<=9;j++)
{
printf ("SE\L", w[0] [3]);
}
x=xX+0.5;
alp=alp/1.014;
bet=bet/1.014;
J=0;
k=0;
getch{) ;
}
while(x<=10.50);
x=0.1;
da
{
for{j=0;j<=9;j++)
{

n[j]=(x-v[0][j])*(x—V[OJ[j])+(y-w[0][j])*(y-wiﬁ}ij]);

dfjl=n(j];
}
for(m=0;m<=9;m++)
{
for{j=m;je=9;j++}
{
if{d[k]l=4[51}
{
p=dlil;
aljl=d(k);
dlk)=p;
}
}
k+=1;
]
for (j=0;j<=9;j++)
{
if(a(0)==n(31)
{ .
J=3;

W,r__._ SO
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H
}
ulJd} (0] +=a* {y-u(J] {01}
t(J] (0] +=b* (x-t[J]) [0]);
printf(*\n Input=%f", x);
printf{"\n Updated wights u:");
for{i=0;j<=9;i++)
{
printf ("&£\e",ui{jl[0]};
n{jl=0;
dljl=0;
}
printf{"\nUpdated weights t:");
for(j=0:j<=9;j++)
{
printf ("%E\L*,t[F]1[0]);

}

k=0;

J=0;
a=a/l.014;
b=b/1.014;
x=x+0.5;
v=1/x;
getch{];

}while(x<=10.5};

getch{};

)

I 18.3 Fuzzy Logic Implementation

The various concepts of fuzzy logic through chapters Chapters 714 are implemented using C and C++
languages in this section. The source code for the same is as given below.

18.3.1 Implement the Various Primitive Operations of Classical Sets

The program is as follows:

#include<stdio.h>
#include<conio.h>
#include<string.h»
#include<alloc.h>
Struct SET
{

char *elts;

int n;
};
typedef struct SET set;
set s;

void getval{set m,char x)
{
int i;
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printf{"\n Enter the %c:\n",x):

for(i=0;i2*s.n)

{

}

a
b

printf("\n Invalid values"};

getch(});
exit (0);

.elts=(char *) malloc(a.n):
.elts=(char *} malloc(b.n);

getval(s,*'S");
getvalia, ‘A’);
getval(b,'B’};

while(l)

{

printf("\n Menu:\n 1.AUB\n 2.2 B\n 3.A~\n 4.B~

S,A,B\n 6.Exic");
switch({ch=getch{}))
{
case ‘1';
ans=unionset{a,b);
printval {ans, 'U*);
getch();
break;
case '2";:
ans=interseti{a,b);
printval (ans, *"');
getch(};
break;
case "3':
ans=complement (a};
printval (ans, ‘a’);
getchi();
break;
case ‘4‘:
ans=complement (b) ;
printval({ans, 'b’};
getch(};
break;
case ‘'5’':
printvalis,‘S"};
printval{a,‘A’');
printval (b, B’} ;
getch{);
break;
case ‘6':
exit (0);

\n 5.Print

18.3 Fuzzy Logic Implementation
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Output

Enter the no of elts in sample space:5
Enter the no of elts in A:3
Enter the no of elts in B:2

Enter the
Element 1
Element 2
Element 3:
Element 4
Element 5

e W e

Enter the
Element 1:
Element 2:
Element 3:

Wk

Entexr the
Element 1:
Element 2:

oW

Menu:

1.AUB

\A"B

A~

B~

.Print S§,4,8
LExit

oW o W R

U={1,2,3,4}
T ={3}
a={4,5])
b=(1,2,5}
$={1,2,3,4,5)
B={1,2,3)
B={3,4}

I 18.3.2 To Verify Various Laws Associated with Classical Sets

The program is as follows:

#include<stdio. h>
#include<conioc. h»
#include<string.h>
Finclude<stdlib.h>

struct SET

{
char *elts;
int n;

};

- o 3 N

L

e e

o e

s P

N
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i 3, " (AUBY~")
typedef struct SET set; 5 printval{t2
s ti=complement {a};
i i printval(tl, "A~*);
¥01d getval (set m,char *x} tz:complemgnt(b);
int i;

printval(tZ.'BN“):
ans=intersect(t1,t2);
printval(ans."k~ B~");

printf("\n Enter the %s:\n",x};
for (i=0;i3*s.n)

break;
( case '2':
printf ("\n Invalid values"}; clrscr ()
getchi}; orintf(*\n Associative Law: (A"B)"C = AT(B7C)7):
) exit(0); tl:intersect[a.b) H
i 1(tl,"A"B");
a.elcs={char *)} malloci{a.n); prlvtva { 1,¢);
t2=intersect (tl.C);
b.elts={char *) malloc(b.n);
<]

.elts=(char *) malloc(a.n); prineval (t2, (A"B) "C*) ;
getval(s,"S"};
getvali{a, "A");
getval (b, "B");
getvalic,*C");

tizintersect(b,c};
printval {t1l,*B c®}:
t2=intersect{tl,al;

elrs ; printval (£2, "7 (B7C) ") ] Ue = AU(BUC) ")
l;rziéé("\n Menu: \n 1.DeMorgan's Law\ Eiiz;:i;:l;ﬁiﬁ;ﬁtatlve s (A9
\n 2.Associative Law\ : 1{tl,"AUB");
\n 3.Distribut.:ive Law\ E;iz;:znset(tl,c):
o 4 Comuacive s oo
while(1l)

{

t1=unionset {b.c);
switch{{ch=getch(}})

printval(tl,"BUC");

t2=unionset{tl.al;
| O areor. printval(tz."AU(BUC)'):
clrsecr(); bze?:i-
printf{"\n DeMorgan’'s Law: (A B)~=A~UB~"}; cas )

tl=intersect{a,b);
printval(tl,"A"B"};
t2=complemenk (t1);
printval (2, " (A"B}~"};

giziizzlin Distributive Law: (AUB)"C = {a"B) T (A"C)");
t1l=unionset(a,bl;

printval (t1, "AUB");

t2=intersect (tl.cl;

tl=complement (a}; : printval(tZ.'(AUB)"C'):

i:i;:;i ;:1;1;?.:)“ -) ; tl=intersect Ea."b)n H .
t2=complement(b); : prir.xtval(tl;:(A i)p
printval (£2, "B~"); : tzflntersei H:LC“;-
ans=unionset (tl,t2); . ‘ printvali{tl, i
printval (ans, "A~UB~");

; ans=unionset(t1,t2);

; printval(ans.'(A”B)U(A c1"):
printf(*\n DeMorgan’s Law: (AUR)~=A~ " B~7): printf("\n Distributive Law: (A"BIU C= (AUB) " (RUC} ") ;
;i;;ﬁiz?s(i:(ilhﬂg;] . tl:interSECt(i:,g) ,)

' ' intval (£1,” "}i

ans=complement (t1); b
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t2=unionset (tl,c}: Enter the B:

printval (t2, " (A"B)UC"); Element 1:2

Element 2:3
tl=unionset {a,b};

printval(tl, "AUB");

Enter the C:
t2=unionset (a,c); Element 1:1
printval (t1, "aucr); Element 2:3
E2=intersect(tl,t2);
printval(t2, * (AUB} " (AUC} =) ; Menu:
break; 1.DeMorgan’s Law
case '4':

2.Assocliative Law

3.Distributive Law
4.Commutative Law

5.Exit

printf{*\n Commutative Law-: AUEB=BUA") ;
til=unionset{a,b};

printval (tl1, "AUB");

tlzunionset (b, a};

printval(tl, "BUA"}:

DeMorgan’s Law: (A"B}~=h~UB~
printf ("\n Commutative Law: A"B=B A"} ;

A"B ={2}
tl=intersect{a,b); (A"B}~ ={1,3}
printval{tl,"a"B"); A~ =(3)
tl=intersect{b,a); B~ ={1)}
printval{tl, "B a"); A~UB~ =(1} .
break; DeMorgan's Law: (AUB)~=A~ " B~
case "5 AUB ={1,2,3}
exit(0); ; (AUB)~ ={1)
default: j a~ ={3)
putch('\a'); . B~ ={1}
} A~ " B~ =[1}
putch(’\n*); .
printval (s, "§"}; Associative Law: (A"B}"C = A" (B"C)
printval{a, "A"); ‘ ATB ={2}
printval (b, "B }; : (a7B)"C ={)
printval {¢, "C"); . B"C ={3}
getch(); ) a" (B C) ={}
] .
) Associative Law: (AUB)UC = AU{BUC)
i AUB =(1,2,3}
| (AUB)UC ={1,2,3}
Output 3 BUC ={2,3,1)

Enter the no of elts in sample space:3
Enter the no of elts in A:2
Enter the no of elks in B:2
Enter the no of elts in C:2

AU(BUC) ={2,3,1}

Distributive Law: (AUB)"C = {A"B) U {A"C)

AUB ={1,2,3)
Enter the §S: {AUB}"C =(1,3}
Element 1:1 ‘ 231 =(2}
Element 2:2 A"C =({1}
Element 3:3 ' (A"BIU(A"C) ={1}
Enter the A: : Distributive Law:(A"B)U C=(AUB)" (AUC)
Element 1:1 A"B ={2)
Element 2:2

(a"B)uC ={2.1,3}

"
e aiab e

T A

R R

e
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AUB ={1,2,3}
AUC ={1,2,3}
{AUB) " (AUC) ={1,2,3)

Commutative Law: AUB=BUA
AUB ={1,2,3)
BUA ={2,3,1}

Commutative Law: A"B=B"A

A™B ={2)
B A ={2}
5 ={1,2,3}
A ={1,2}
B =(2,3)
c ={1,3)

Soft Computing Techniques Using C and G+

l 18.3.3 To Perform Various Primitive Operations on Fuzzy Sets with Dynamic Components

The program is as follows:

At

#include<stdio.hs>
#include<alloc.h>
#include<conio.h>
#include<stdlib.h>

i struct SET
{
fleat nr([5];
float dar{5);
inkt n;
}i

typedef struct SET fuzzy;

void getval (fuzzy *m,char *x}
{
int i;
float £;
clrscr () ;
printf{"\n Enter the $s:\n",x);
for (i=0;i<m->n;i++)
{
printf (" Numerator Element %d
scanf ("%£",&f);
m->nr{i]=£;
fflush(stdin);
printf("Denominator Element %d:",i+l);
scanf ("%E", &£);
m->dr[i)=f;

cMoi+l)

T
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void printval (£uzzy *m,char *x}
{

int i;

printf{"\n gs5={",%x);

for (i=0;icm->n;i+s)

printf{"%6.2f / %6.2f“,m—>nr[i1,m->dr[i]);
if (il=m->n-1} putch(+);
}
printf("}");
: h)
fuzzy unionset{fuzzy a, fuzzy

{
fuzzy temp:
char ch;
int i;
temp.n=a.n;
for(i=0;i<a.nji++)

.

1
if(a.drii]!=b.dr[i1)

printf ("\n Denominators not equal*);:
getchi):
exit(0):
} -
if(a.nr[i]<b.nr[1T
temp.nr[i}=b.nr[1];
else
temp.nr{i]=a.nr[1];
temp.dr[i]=a.dr[i];
}
return Lemp;
}

fuzzy intersect (fuzzy a, fuzzy bl
{

fuzzy temp;

int i;:

temp.n=a.n;

for(i:U;ica.n;i++)

{ -

iE(a.dr[i]!:b.drlll)

printf (*\n Denominators not equal”);

getch(};
exit (0);

ifi{a.nrlil>b.nriil}



568

temp.nr[i]:b.nr[i];
else

temp.nf[i]:a.nr[i];
temp.dr[i]=a.dr[i]:

return temp;
}

fuzzy complement(fuzzy a)

fuzzy temp;

int i;

temp.n=a.n;

for(i:O;i<a.n;i++)

{
temp.nr[i}:l-a.nr[i];
temp.dr[i]:a.drii];

}

return temp;

void main(})

fuzzy a,b,ans;
char ch;
clrscr();
printf("\n Enter the no
scanf ("%d", &a.n);
b.n~a.n;
getval(ga, "A"};
getval(&b,"B“);
clrscr();
printval(&a,"Af};
printval(&b,"B");
getch{j;
while(1)
{
clrscr();
printf{"\n Menu:\n 1.auB
S.A,B\n 6.Exit"),
switch((ch:getch()))
{
case ’1':
ans=unionset(a,b};
pr1ntval{&ans,"AUB");
getch();
break;
case *2';
ans=intersect(a,b);
printval(&ans,“A"B');
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of componets: ") ;

\n 2.A"B\n 3.A~\n 4.p~

\n 5.Princ
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getchl{);
break;

case '3’':
ans=complement {(aj ;
printval (&ans, "A~");
getch(};
break;

case ‘47:
ans=complement (b) ;
printval {&ans, *B~");
getch();
break;

case ‘5':
printval (&a, “A°);
printval (&b, "B");

getch{);
break;

case ‘'6':
exit(0};

}
1
]
Qurpur

Enter the no of componets:3

Enter the A:

Numerator Element 1 :0.4
Denominator Element 1:1
Numerator Element 2 :0.2
Denominator Element 2:2
Numerator Element 3 :0.7
Denominator Element 3:3

Enter the B:

Numerator Element 1 :0.4
Denominator Element 1:1
Numerator Element 2 :0.8
Denominator Element 2:2
Numerator Element 3 :0.2
Denominator Element 3:3

A={ 0.40 / 1.00+ 0.20 / 2.00+ 0.7D0 / 3.00 }
B={ 0.40 7/ 1.00+ 0.80 / 2.00+ 0.20 / 3.00 3}
Menu:
1.aUB
2.A"B
3.A~

prooEa

NS

R T T el

v
e AL

- am
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4.B~
S.Print S,A,B
6.Exit

AUB={ 0.40 / 1.00+ 0.80 /7 2.00+ 0.70 / 3.00 }
A®B={ 0.40 / 1.00+ 0.20 / 2.00+ 0.20 / 3.00 }
A~={ 0.60 / 1.00+ 0.8C / 2.00+ 0.30 / 3.00 }
B~={ 0.60 / 1.00+ 0.20 / 2.00+ 0.80 / 3.00}

I 18.3.4 To Verify the Various Laws Associated with Fuzzy Set

The program is as follows:

#include<stdic.h>
#include<alloc.h>
#include<conio.h>
#include<stdlib.h>

struct SET
{
I float nr([5];
. float dr{5];
i inkt n;
3 }i
typedef struct SET fuzzy;

void printval {fuzzy *m,char *x}
; {
:: int i;
printf(*\n %s={",x);
for(i=0;i<m-»n;i++)
{
printf (" $6.2f / %6.2f", m->nr[il,m->dr[i)};
if (i!=m->n-1) putch{ +*);
}
printi(" }"};
}
fuzzy unionset (fuzzy a,fuzzy b)
{
fuzzy temp;
char ch;
int i;
tenp.n=a.n;
for(i=0;i<a.n;i++)
{
iff{a.dr(i)!=b.dr([i])
{
printf{"\n Denominators not egqual");
getch();

4 }'ﬁ
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exit{0);
3

}
if(a.nr{il<b.nr(il)
temp.nriil=b.nr{i};
else
terp.nrlil=a.nr(i};
temp.dr(il=a.arli};
}
return temp;

}

fuzzy intersect{fuzzy a, fuzzy b}
{

fuzzy temp;

int i;

temp.n=a.n;

for{i=0;i<a.n:;i++)

{

if{a.drfil!=b.dr[i])
{

getchy;
exit{0);
}
if(a.nrlil=b.nrli])
temp.nr[il=b.nr[il;

else
temp.nr[il=a.nrlil:
temp.driil=a.dr[il;
}
retyrn temp;
}

fuzzy complement{fuzzy a)
{

fuzzy temp;

int i;

temp.n=a.n;

for (i=0;i<a.n;i++}

(

temp.nr[i]:l—a.nr[i];
temp.dr[il=a.dr(il;
}
return temp;
! }

void main{)

{
fuzzy a,b,templ, temp2, ans;
char ch;

printf("\n Denominators not equal");
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elrscr(); printval (stemp2, "*B~");
a.n=b.n=3; : ans=unionset (templ, temp2);
3.0r(0]=0.1; a.dr(0]=1; printval (&ans, "A~ U B~"};
a.nr(1]=0.2; a.dr[1]=2; . break;
a.nr{2]=0.3; a.dr(2]=3; case ‘5°:
b.nr[0]=0.4; b.dx[0]=1; ans=complement {a) ;
b.nr[1]=0.3; b.dr(1])=2; an==unjionset (ans,a);
b.nr{2]=0.2; b.ar[21=3; printval (&ans, "5.A~"A");
printval (&a, =A") ; ans=complement (b) ;
printval (&b, "B"); ans=unionset {(ans,b);
getch(): printval {&ans, "B~B"};
printf("\n Menu:\n 1.Difference A/B \h 2.Difference B/a\n break;

3.DeMorgan’s law -1\n 4.DeMorgan‘s law -2\n 5.Excluded Middle case '6’:
laws\n 6.Print §.A,B\n 7.Exit"); printval {&a, "A");
while{1) printval (&b, "B"};
{ break;
switch((ch=getch(}}) case ‘7":
{ exic{0);
case ‘1‘: }
templ=complement (b} ; )
printval{&templ, 1 LB~mY ]
printval (&a, "a");
ans=intersect{a, tem 1j;
printval {&ans, "A/B E ATB~"); Output
break; Menu :
case '2': 1.Difference A/B
templ=complement {a); ‘ Z2.Difference B/A
printval {&templ, "2.a~"); i 3.DeMorgan’s law -1
printval (&b, “B") ; | 4.DeMorgan‘s law -2
ans=unionset (a, templ) ; ' 5.Excluded Middle laws
printval (&ans, "A/B = B A~"); 6.Print S,A,B
break; T.Exit
case ‘3‘: 1.B~={0.60 / 1.00+ 0.70 / 2.00+ D.80 / 3.00}

ans=unionset (a,b) ; A={0.10 / 1.00+ 0.20 /7 2.00+ 0.30 / 3.00)
ans=complement {ans) ;

A/B = A"B~=(0.10 / 1.00+ 0.20 / 2.00+ 0.30 / 3.00}
printval (&ans, *3. (AUB}~") ; i 2.A~=(0.90 / 1.00+ 0.80 / 2.00+ 0.70 / 3.00}
templ=complement {a); i B={0.40 /7 1.00+ 0.30 / 2.00+ 0.20 / 3.00} )
temp2=complement (b} ; ] A/8 = B"A~={0.9C / 1.00+ 0.80 / 2.00+ Q.70 / 3600)
printval (stempl, "a~"] ; ; 3. (AUB)~={0.60 / 1.00+ 0.70 / 2.00+ 0.70 / 3.00}
printval (&temp2, *B~"); i A~={0.90 / 1.00+ 0.80 / 2.00+ 0.70 / 3.00}
ans=intersect {templ, temp?2) ; ; B~={0.60 / 1.00+ 0.70 / 2.00+ G.80 / 3.00}
printval (gans, "A~"B~"]; A~ "B~={0.60 / 1.00+ 0.70 / 2.00+ 0.70 / 3.00}
break; 4.{a"B)~={0.90 / 1.00+ 0.80 / 2.00+ 0.80 / 3.00}
case '4°;: ) A~={0.90 / 1.00+ 0.80 / 2.00+ 0.70 / 3.00}
ang=intersect{a,b); . B~={0.60 / 1.00+ 0.70 / 2.00+ 0.80 /7 3.00)
ans=complement (ans} ; N A~ U B~={0.90 / 1.00+ 0.80 / 2.00+ 0.80 / 3.00)
Drintval(&ans,"4.(A“B)~“); : 5.A~"A=(0.90 7 1.00+ 0.80 / 2.00+ 0.70 / 3.00}
Eempl=complement (a) ; , B~ B={0.60 / 1.00+ 0.70 / 2.00+ 0.80 / 3.00}
temp2=compl ement (b} ; . : A={0.10 / 1.00+ 0.20 / 2.00+ 0.30 / 3.00}
printval (&templ, "a~"); ' B={0.40 / 1.00+ 0.30 / 2.00+ 0.20 / 3.00}

.
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I 18.3.5 To Perform Cartesian Product Over Two Given Fuzzy Sets

#include<stdio.h>
#include<limits.h>
#include<alloc.h>
#include<conio.h>
#include<stdlib.h>
#idefine min(x,y} (x<y ? % : ¥}

struct SET
{
float nr[5];
float dr[5];
int n;
}:
typedef struct SET fuzzy;

void printval{fuzzy *m,char *x)
{
int i;
printf{"\n %s={",x};
for (i=0;i<m-»n;i++)
{
printf{" $5.2f /%$5.2f *,m->nr[i),m->dr[il);
if(i'=m->n-1} pukch{ +7);
}
print£(® }");
}

void main()

(

fuzzy V,I;

int i,3;

float P[61([6];

clrscr();

V.n=I.n=5;

v.nr[0]1=0.2; V.dr{0)=30;
V.nrf1]=0.8; V.dr[1]=45;
v.nri2]1=1; V.dr[2]1=60;
V.nr[3)=0.9; V.dr[3]=75;
V.nr([4]1=0.7; V.dr[4]=90;
I.nrf0]=0.4; I.dr[0]=0.8;
I.nr[1}=0.7; I.dr[1]1=0.9;
I.nr(2)=1; I.dr(2]=1;
I.nr[3]=0.8; I.dr[3j=1.1;
I.nr(4]1=0.6; T

dr[4]=1.2;

printval (&V, V") ;

18.3 Fuzzy Logic Implementation

printval(&I,"I");
printf(*\n"):
for(iz0;ic=V.n;it+)
for (§=0;3<=I1.n;J++)
{
if{i==0 && j>0)
pri}fjl=x.drii-1};
else if{j==0 && i>0}
Pli)[5}=V.drli-1}:
elge if(i»D &E =0} ]
P[i][jl=min(v.nr{i—11,I.nr[j—l]);
}
for(i=0;i<=v.n;i++)
{
fox (§=0;j<=I.n:j++)
{
if{i==0 && j==0)
print€(" ");
else )
printf{" %6.2f =, plil(jl}+:
}
printf (*\n");
}
geteh();

Output
v={0.20/30.00 + 0.80/45.00 + 1.00/60.00 + 0.90/75.00 +00i726?0.00]
1={0.40/0.80 + 0.70/0.90 + 1.00/1.00 + 0.80/1.10 + 0.6 /1.

vxl=

¢g.80 0.90 1.00 1.10 1.20
30.00 0.20 ©.20 0.20 0.20 0.20
45.00 0.40 ¢.70 0.80 0.80 .60
60.00 0.40 p.70 1.00 0.80 0.60
75.00 0.40 0.70 0.90 0.80 0.60
90.00 0.40 p.70 0.70 0.70 0.60

Cartesian Product

I 1836 To Perform Max-Min Composition of Two Matrices Obtained from

The program is as follows:

#include<stdio.h>
pinclude<limits.h>
#include<alloc.h>
#include<conic.h>
#include<stdlib.h>

#define min(x,y) (x<y ? X ! ¥
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struct SET

{
flcat nr[5];
float dr(5};
int n;

b

typedef struct SET fuzzy;
void printval {fuzzy *m,char *x)
{
int i;
printf("\n %s={",x);
for(i=0;i<m->n;i++)

{

printf(" %5.2f /%5.2f ".m->nr(i), m->drfi]);

if{it=m->n-1) putch(’+');
}
printf(" }y;
}

void main()

{
fuzey v,1.c;
int 1.3,k prows,pcols, trows, tcols;
float PI61[61,T(6][4],E(6] (4], max;

clrscr();

V.n=I_ n=5; C.n=3;
V.nr(0)=0¢.2; V.dr{01=30;
V.nr[1]=0.8; V.dr([l]=45;
V.nr(2]=1; V.dr{2)=60;
V.nr(3]1=0.9; V.dr[3]=75;
V.nr{4]=0.7; V.dr[4]=90;
I.nri0]=0.4; I.dr(0]=0.8;
I.nr[1]=0.7; I.8rl11=0.59;
I.nr(2)=1; I.dr[2])=1;
I.nrl3]1=0.8; I.dr[3]=1.1;
I.nr[4]1=0.6; I.dr(41=1.2;
C.nr(01=0.4; C.drl0]=0.5;
C.nr[l]=1; C.dr[1]=0.6;
C.nr{2}=0.5; C.érl[2]=0.7;

printval (&v, "v");
printval(&l,"l“);
printval (&C, "C") ;
printf({"\n M=vxIi=r),

£Or{i=0;1<=V n; i+
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for{j=0;j<=I.n;j++)
{
if(i==0 && j>0}
PEi]l[j]=T.dx{j-1]1;:
else if(j==0 && i>0)
P[il[ji=V.dr[i-1];
else if(i>0 && j>0)
P[i]1[4§)=min(V.nr[i-1],I.nr{j-11);

]

for(i=0;i<=I.n;1++)
for(j=0;3<=C.n;j++)
{
if(i==0 && j>0)
T(i)[j)=C.ar[j-1];
else if(j==0 && i>0)
T[i] (j)=Y.dx (i-1};
else 1f{i>0 && j>0)
T[i)[j]=min(I.nr[i~1]1,C.nr(j-11):
}
for(i=0;i<=V.n;i++}
{
for(j=0;j<=I.n;j++)
{
if(i==0 &&
princf(-
else
printf{" %6.2f ", P[i][]]);

j==0)

")

)
printf{"\n"};
1
printf("\n N=IxC=");
for{i=0;i<=I.n;i++)
{
for{j=0;j<=C.n;j++}
{
if{i==0 E&& j==0)
printf(" "};
else .
printf{" ¥6_2f =, T[i]1[]]):
}
printf{"“\n");
}

prows=6,pcols=6;
trows=6, tcols=4;
for(i=0;i<prows;i++)
{
for(i=0;j<tcols;j++)
{



878

 Soft Computing Techniques Using C and G++

}
}

if{i==0 && j==0)
E[i][j1=0;
else if{i==0 && §>0}
ETi)(31=T1i)15};
else if({i>0 && j==0)
E[il[3)=P[i][]];

else

{

max=0;

for (k=1;k<pcols;k++)

f

}

1f(i>0 && §>0)

}

getchi();

E[1][ji]=max;

printf({"\n M o N");
for{i=0;i<prows;i++)

{

Eor (§=0; j<tcols;j++)

t

H

1f{i==0 g& j==0}

princf(" «);

else

if(i>0 && §>0)
if{max < min(P{i] [k],T(k] (3]}
max=min{P[i] [k], D[k][]]};

printf (" &%6.2f ", E[i][5]);:

printf("\n");

H

getchi);

}
Ourput

V=(0.20/30.00 + 0.80/45.00
I={0.40/0.80 + 0.70/0.90 +
C={0.40/0.50 + 1.00/0.60 +

M=VxI=

30.00
45.00
60.00
75.00
90.00

0.80
0.20
0.40
0.40
0.40
0.40

0.90
0.20
0.70
0.70

0.70.

0.70

L= =R o~ =

.00
.20
.80
.00
.90
.70

(=i =N o« N«

+ 1.00/60.00 + 0.90/75.00 + 0.70/530.00)
1.00/1.00 + 0.8a/1.10 + 0.60/1.20}

0.50/0.70}
.10 1.20
.20 0.20
.80 0.60
.80 0.60
.80 0.60
.70 0.60
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N=IxC=

0.80
0.90
1.00
1.10
1.20

MoN

30.00
45.00
60.00
75.00
90.00

l1 8.3.7 To Perform Max-Product Composition of Two Matrices Obtained from

.50
.40
.40
.40
.40
.40

[ T o e R e

.50
.20
.40
.40
.40
.40

oo oo oo

0.60
0.40
0.70
1.00
0.80
0.60

.60
.20
.80
.00
.30
.70

corRr oo

[= B B R R}

.70
.40
.50
.50
.50
.50

0.70
0.20
0.50
0.50
0.50
0.50

Cartesian Product

The program is as follows:

tinclude<stdio.h>

#include<limits.h>

#include<alloc.h>
#include<conio.h>»

#include<stdlib.h>

#define product(x,y} {({x)*(y)}

struct SET

{

float nrl5);
float dr(5];
int n;

¥;

typedef struct SET fuzzy:

void printval({fuzzy *m,char *x)

{

int i;
printf{"\n %s={",.x);
for{i=0;i<m->n;i++}

{

princf{" %5.2f /%5.2f ", m->nr{i).m->drlil);

}

if (i!=m~»n-1) putchi{‘+*);

printf(~ }");

}

void main(]

{
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fuzzy v, I1.C;
int i,j,k.prowé,pcols,trows.tcols;
float PI61(6]1,T[61(4),E[6] (4], max;

clrscr();

V.n=I.n=5; C.n=3;

V.nr[d)=0.2; V.ar{0]=30;
V.nr{l1=0.8; V.dr[1]=45;
V.nr{2]=1; V.dr[21=60;
V.nr[3}1=0.9; V.dr[3]=75;
V.nr[4)=0.7; V.dr([4]1=90;

I.nr[0]=0.4; I.ar([0]=0.8;
LI.nr{l]=0.7; 1.8r[1)=0.9;

I.nr{2]=1; I.dr[2]=1;
I.nr[3]=0.8; I.dr(31=1.1;
I.nx([4)=0.6; I.dr[4)=1.2;

C.nr[0]=0.4; C.dr[0]=0.5;
C.nr[1]1=1; C.dr[1]=0.6;
C.nr(2]=0.5; C.dr([2}=0.7;

printval{&V,“V“);
printval (&1, "I");
printval(&C,"C“);
printf{"\n"j;

fOr(i=0;i<:V.n;i++)
for(j=0;j<:1.n;j++)
{
if(i==0 && j>0)
Pli)i§)=I.dr[§-1];
else if(j==0 && i»0)
Pli])[3)=V.ar[i-1];
else if(i>D && >0}
P[i][j]=min(v.nr[ih1],I.nr[j—l]);
}

for(i=0;i<=I.n;i++)
for(j=0;j<=C.n;j++)
{
if{i==0 && j»0)
T{il{j)=C.ar[j-11;
else if(j==0 && i>0)
Tli){j}=1I.dr[i-1};
else if(i»0 && j»0)
T[i][j]=min(I.nr[i-1],C.nr[j—l]];

18.3 Fuzzy Logic Implementation
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for{i=0;i<=V.n;i++)
{
for{j=0;j<=I.n;j++)
{
if{i==0 && Jj==0)
printf{= ");
else o
printf(~ %6.2f *,P[i1[3}}:
}
printf("\n"};
}
printf("\n"};
for(i=0;i<=I.n;i++}
{
for(j=0;j<=C.n;j++}
{
if {i==0 && 3==0)
printf{" ");
else .
printf{" %6.2f ", T{il(3]};:
}
printf("\n");
)

prows=6,pcols=6;
trows=6§, tcols=4;
for{i=0;i<prows;i++)
{ for{j=0; j<tcols;j++)
{
1E{i==0 && j==0)
E[11(7)=0;:
else if(i==0 && j>0)
E(i)[3]1=Tli1(3);
else if(i»0 && j==0)
E(i)1(51=P(i] (3]
else
{
max=0;
for{k=1;k<pcols;k++}
{
if{i>0 && j>0}

if (max < product(P[i][k].T(k][j])}
max=product (P{il (k],T(k1[J]1);

)
if{i>0 &k j>0)
E[i] [j]}=max;
}

1 P s AT [P S T D8, § 4
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getch();

printf("\n"};

for (i=0;i<prows ried)

{

getch();

}
Output

for(j=0;j<tcols; j++)
{

}
printf(*\nv);

if(i==0 && j==0)
printf ( " -) ;
else

Printf(" %6.2f "Eli}(31);

V={0.20/30.00 + 0.80/45.00 +
E={0.40/0.80 + 0.70/0.90 +
C={0.40/0.50 + 1.00/0.60 +

M=VxI

30.00
45.00
60.00
75.00
530.00

0.80
0.90
1.00
1.10
1.20

=

o N

30.00
45.00
60.00
75.00
90.00

I 18.4 Genetic Algorithm Implementation

OO0 o oo

OO0 0o oon

0
0
0
0.
0
0

.80
.20
.40
-40
.40
.40

.50

40

.40
-40
.40
-40

.50
.08
.32
40
.36
.28

cocrooco

.80
.20
.70
.70
.70
.70

oOCcCooc oo

-60
.40
.70
s
.80
-60

0.60
.20
.80
.00
.50
.70

(==l K]

[T B o B o B = RS

COoOR OO

.00
W20
.80
Nily
.90
.70

.70
-490
.50
.50
.50
.50

(=Rl = B o B o N

.70
.10
.40
.50
.45
.35

Coo o oM

1.00/60.00 + 0.90/75.00 + 0.70/90.00})
1.00/1.00 + 0.80/1.10 + 0.60/1.20})

0.50/0.70)
100 1,20
L2000 0,20
.80 0.60
.80 0.60
.80 0.gD
.70 0.60

The genetic algorithm concept disc
in this section. The source code for

ussed in Chaprer 15 is brought for various applications using € and C+
each application is given b ’

elow.
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18.4.1 To Maximize Flx1, xo) = 4xy + 3x9

To find the solution of the function Max Flx, 2;) = 4% + 3x2, given the constraints

using genetic algorichm.

Steps involved

2xxp+ 3%k <6
—Fxx1+2%xm <3
2%x+x <4
0<xx2

rStep 1: Generate initial population by using random number generation.
Step 2: Use the rournament selection method to select any two parents.
Step 3: Generate the offsprings by using the following arithmeric crossover operator:

xp=axx +{l —a)*xx
axxz+ (1 a)*x

!

x2

Step 4: Calculate the maximum ftness value by applying this operation separately for each iteration.

I Step 5: To print the ourput of the funcrion.

|

#include<stdio. h>
#include<conio.h>
#include<dos.h>
#include<stdlib.h>
#include<math.h>

float mutation(float ,int };
//Main Program

void main{()

{

float x1(10),x2{10],sum{10],max_val=0.0,a,max_x1,max_x2;

int flag=0,3,1i,k;
clrscr{);
randomizel};

//Initial Population Generation
printf{"\tInitial Pecpulation \n"};

for{i=0;i<4;i++)

(

x1{i]={float} {random(1000.0)} ) /500.0;
x21il=(float) {random{1000.0}}/50D0.0;

printf("\t¥ditxl :

)

for(i=0;i<10;1i++)
{
for (j=0;j<d;j++)

BENEx2

$0\n",i,x1(3i],%21i]);
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{
flag=0; .
//Constraints

LECU{2* %1 {3 ) +{3*x2[§1) ) <=6) //2X1+3x2<=§
(

TECU-3*x1 (1) +(2*x2 (3} )<=3) //-3x1+2x2<=3
{
IECUE2*X1 153 +(x2[§7) ) <=4) /42%]1+x2<=4
{
flag=1;
sum[j]=(4*x2[5]) +{3*x2(5]);
]
}
}
if(flag==0}
sum(3j]=0;
}
printf{"\t After %d generation\n",i);
for{k=0;k<4; k++)
{
: printf{*\t%d\txl - BE\tx2 : %f\tsum : %f\n',k,xl[k],x2{k].sum[k])-
for (k=0;k<4;k++)
{
if (max_val<sum[k])
{
max_val=gsum[k] ;
max_x1=x1[k];
max_x2=x2 k] ;
)
}
Printf("\tx1l : %f\tx2 : £\ tMax
getch{};
for(k=0;k<3;k++)
{

: ¥f\n" . max_x1,max_x2,max_val);

f/cross over operation
a=(float)(randcm(lODO.U))/lDD0.0;
xl[k}:((a*xl[k])+(1—a)*x2[k+1]);
] x2[k]=((a*x2[k])+(1-a)*xl[k+1]):

a=(float)(random(lOD0.0))/lOOO.G;
x1[4}=({a*x1[4]}+(1-a) *x2[1]);
x2[4]={(a*x2[4])+(1—a)*x1[1]);

//Mutation Operation
for (k=0;k<4;k++}
{
if {sum{k]==0)
{
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®x1{k)=(x1(0]+x1[1¥+k1[2]1+x1[3]})/4.0;

kL [k]=(x2{0)+x2[1]+x2[2])+x2[3]1})/4.0;

}

if (sumik]==sumfk+1])

{

x1{k]=(float) {random{1000.0))/500.0;

x2[k])={float) (random(1000.0))/500.0;

1

}

}
clrscr():
printf (“\tTHE SOLUTION OF THE FOLLOWING PROBLEM IS\n");
printf ("\n\CSUM: \tMAXIMIZE\LF{x1,x2) : 4x1+3x2*);
printE("\n\n\t2*x1+3*x2<=A\n\C-I*x1+2*x2<=3\n\t2*x1+x2<=4\n"};
printf{"\n\txl : %f\tx2 : $f\tMax : $f\n",max_x1,max_x2,max_val};
getch();
}

void cross_over{float x1,float x2)
{
int a;
a={float) {random(1000))/1000;
x1={(a*x1)+(1-a)*x2);
x2=((a*x2)+(1-a)*x1);
}

fleat mutaticnlifloat x,int i)
{

}

float max(float sum)
{

int i;
for(i=0;i<3;i++)

{
if(sum[i]<sum([i+1])
max=sum[i+1];

else

max=sum[i];

return max;

)

Output
Initial Popularion
0 x1 : 0.432000 =x2 : 1.366000
1 x1 : 1.452000 =x2 : 0.468000
2 x1 : 0.92B000 x2 : 0.854000
3 x1 : 0.860000 x2 : 1.342000

After 0 generation
0 =x1 : 0.432000 x2 : 1.366000 sum : 5.826000

e e -
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[ S

x1
xl :
: 0.860000
x1l

X1

1,452000
0.928000 -

0.8860000

Afrer 1 peneration

0

1
2
3

x1 :
: 1.364000.
x1
x1 ;

x1

x1

1.477638

0.820297
0.524000

: 1.364000

After 2 generation

0

1
2
3

x1l -
x1 :
x1 :
x1 :
x1 :

0.979173
1.039542
.914141
.524000
-364000

H oo

After 3 generation

0

1
2
3

X1
x1 :
1 0.784797
x1 :
xl

x1

1.342291
0.922836

0.782000
1.342291

After 4 encration

g

1
2
3

x1 :

x1

x1

1.180576

1 0.858469
x1 :
: 0.782000
x1 :

0.774369

1.342291

After 5 generation

0

1
2
3

%1l :
x1 :
: 0.757664
x1 :

x1

x1

1.106081
0.842442

0.782000

:1.342291

After 6 generation

0

1
2
3

x1
x1

x1

: 1.071964
: 0.839420
x1 :
: 0.782000
x1l :

0.695954

1.342291

x2 :
x2 ;
x2
X2

x2 :
*2 :
x2
X2 :
x2

X2 :

x2
X2 :
x2
X2 :
x2 :

X2
x2

x2

x2
x2

X2 :
x2 :

x2

x2
x2
X2 :
x2
x2

[~ = = I =

P O oOooo

XZ :
x2

HFoooo

P o o

[=N =l =R =0

ook R

P oo oo

-468000
.B854000
.342000
.342000

397484
.960000
.933684
,990000
.960000

-364504
-854660
.707129
-590000
.960000

.076486
.088421
.836438
-690000
.076486

.978611
.B862221
.830450
.690000
.076486

-950498
.B811970
.820857
690000
.076486

-937963
.804367
. 785419
. 690000
.076486

sum :
sum
sum :
Max

sum :
sum :
sum -
sum :
Max :

sum :
sum :
sum :
sum :
Max :

sum :
sum :
s5um :
sum :
Max :

sum
sum :
sum -
sum :
Max :

sum :
sum
sum :
sum :
Max :

sum :
sum
sum
sum

oW o) (== BV L B B« R | oW U o (= B N T, B I ) oo, oo ~ =2 on )

a U -l

.212000
.274000
.466000
-466000

-000000
.336000
.082220
-066000
.336000

.000000
.122147
.777948
.066000
-336000

.598619
.956608
.648500
-198000
-598619

-658136
-020540
-588825
-138000
-598619

275816
.805677
-493226
-138000
.59861%

.101746
.770781
.140076
.198000C
.598619

Cas

18.4 Genstic Algonthm Implementation

587

THE SOLUTION OF THE FOLLOWING PROBLEM IS
SUM: MAXIMIZE F(xl,x2) = 4x1 4 3x2

2%x1 +3%xx2<=6
—3axl +2%x2<=3
2xxl Fx2<=4

x1: 1342291 x2:1.076486 Max:8.598619

h8.4.2 To Minimize a Function F{x) = x2

To write & program to minimize Flx) = x2 using genetic algorithm.

Steps invalved

l Step 1: Generate the random number as .

Step Z: Inidialize /, f w0 n and rr respectively.

Step 3: Max « 1000, »{7) + 0, sum « 0, m_max + 1000

Step 4: Compute x[i] « x{i)+{ppl[il[j]*pow(2,p-1-j}} and
FRUEEHEE D
sum = sum + /7]

Step 5: If (max>=fxi])

Step 6: max + K[il;

Step 7: until m_max>max

LStep 8: Compuse minimum value

Program
%#include<stdic.h>
#include<iostream.h>
#include<conio.h>
tinclude<stdlib.h>
#include<math.h>
Finciude<time _h>

int pop{10]1[10) ,npop(10] (101, tpop(10]{101,x[10], £x[10],m_max=961,
ico=0,icol, it=0;

void iter(int [103}{10],int,int):

int u_rand{int);

void tour_sellint,int);

void cross_oviint, int);

void mutat{int,int);

void main()

{

int k,m,j,1,p{10]),0=0,a[10],nit;

elrscr{);
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|

randomize () ;

cout<<"\C\LENTER THE NUMBER OF POPULATION IN EACH ITERATION :

cinr>n;
cout<<“\n\t\tENTER THE NUMBER OF ITERATICN :
cin»>nit;
m=5;
for{i=0;i<n;i++)
{
for(j=m-1;3>=0;j--}
{
popli) (jl=u_rand(2);
}
}

cout<<"\nITERATION "<<it<<" IS :\n";
iter(pop,n,m);

it++;

getchi};

do

{

it++;

cout<<"\nITERATION "<<it<<" IS :\n":
tour_sel{n,m);

iteripop.n,m);:

getch{};

Iwhile(it<nit};

cout<<"\n\nAFTER THE "<<icol<<" ITERATION, THE MINIMUM VALUE IS :

“<<f{int) sqrtim_max);
getch();
}
void iter(int ppll10)(10],int o, int p)
{
int i, j,sum,avg,max=%61;
for{i=0;i<o;i++}

{

x[i}=0;

for (3=0;j<p:j++)
{

x[il=x[il+{pp[i][]j])*pow{2,p-1-1));
]
Exlil=x[i]*xfi];
sum=gsum+Ex [i];
if {max>=fx[i]}
max=£x(i);
}
avg=sum/o;
cout<<"\n\ns5,N0 .\t POPULATION\tX\LF [X)\n\n";
for (1=0;1i<0;i++)
{
cout<cico<<"\L";
ico++;

:

i
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for{j=0;i<p;j++)
cout<<ppl[il (31;
cout<<"\E\E" cex[i) << "\t <efx[i]<<"An";

}

cout<<™\n\CL SUM : "<<sum<<*\CAVERAGE : re<avg<<” \CMINIMUM :

if (m_max>max)
{
M_Max=max;
icol=it;
}
}
int u_rand{int x)
{
int y;
y=rand() %x;
return{y);

}
void tour_sel{int np,int mb}
(
int i,j.k.1l,co=0,cc;
do
{
k=u_rand(np);
do
{
cc=0;
1=u_rand(npg) ;
if (k==1}
cC¥+}

}whilelcc!=0};
if (Ex[k1>fx([1))
{
for{j=0;j<mb;j++)
npoplcol [j)=popik]li3];:
}
else if (fx[k]<fx[11}
{
for(j=0;j<mb; j++)
npop[cel [31=pop[1i (3]
}
COt++;
Jwhile(co<npl;
getchi);
cross_ovi{np,mb):
getch{);
]
void cross_ov(int npl,int mbl}
{
int i,3j.k,1.co,temp;
i=0;

"e<max<<"\n";

STVRERENE P2 NEL Y bSO s

ir o et B EEZEE)
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do

{

k=rand()$2;

do

{

co=0;

l=u_rand(mb1);

1 (=<0} s& {1==0)) || ((k==1} s (1==mbl)})
Co++;

Iwhile{col=0y;

if ((k==0} && (1t=07)
{
for(j:D;jcl;j++)
{
temp=npop (1] [}];
npop(i) [j]=npop[i+1][j];
npop[i+l] [§]=temp;
}
}
else if ({k==1) &g (l!=mbil))
{
for(j:l;j<mb1;j++)
{
temp=npop [i] [7];
npopli]) [1]=npop(i+1](j];
npopli+l} [j)=temp;
1
}
i=i+2;
Ywhile(i<nply;

for (i=0;i<npl;i++}
{
for{j=0;3j<mbl;++)
{
tpopl(i] [j1=npap(il {j];
}
}
mutat (npl,mbl) ;
]
void mutat (int np2,int mbh2)
{
int i,3,r, temp,k,z;
i=Q;
do
{
for{k=0; k<np2; k++}
{

r=0;

e ———— e e

18.4 Genetic Algorithm Implementation

591

if (it=k)
{
for{j=0;j<mbZ;j++)
{
if (tpopli]{j)==tpop(kl[i]}
r++;
1
if (rt=mb2-1)
{
z=u_rand {mb2) ;
if (tpoplil [z]==0)
tpopl[il[z]=1;
else
tpop(i]l{z]=0;
if (npoplk][u_rand(mb2)])==0)
npop (k] [u_rand(mb2) ]J=1;
else
npop[k] [u_rand(mb2} ]1=0;
mubtat{k,mb2);
}
}
}
iv+;
twhile{i<np2);
for{i=0;i<np2;i++)
{
Eor{j=0;j<mb2;j++}
{
popli) [i)=tpop[i][i];
}
}
}

Ourput

ENTER THE NUMBER OF POPULATION IN EACH ITERATION:

ENTER THE NUMBER OF ITERATION: 8
ITERATION 1 IS :
S.NO. POPULATION X F(X)

0 Q0001 1 1

1 11011 27 729

2 11011 27 728

3 01001 9 81

4 00111 7 49
SUM : 1589 AVERAGE : 317 MINIMUM : 1
ITERATION 2 IS :

S.NO. POPULATION X F(X)

5 10101 21 441

6 11011 27 729

7 01011 11 121

5
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8 10010 18 324

9 11110 30 900
SUM : 2517 AVERAGE : 503 MINIMUM : 121
ITERATION 3 IS ;

S5.NO. POPULATION X F(x)

10 10010 18 324

11 10110 22 484

12 11011 27 729

13 01111 15 225

14 01011 11 121
SUM : 1886 AVERAGE : 377 MINIMUM : 121
ITERATION 4 IS .

5.N0. POPULATION X F(X}

15 10111 23 529

16 10101 21 441

17 11001 25 625

18 10101 21 441

19 10100 20 400
SUM : 2440 AVERAGE : 488 MINTMUM : 400
ITERATION 5 IS

S.NO. POPULATION X F(X)

20 10110 22 484

21 11111 31 961

22 01111 15 225

23 10111 23 529

24 10120 22 484
SUM : 2685 AVERAGE : 537 MINIMUM . 295
ITERATION 6 IS .

S.NO. POPULATION X F(x)

25 01001 9 81

26 01111 15 225

27 01011 11 121

28 01111 15 225

29 11100 28 784
SUM : 1436 AVERAGE : 287 MINIMUM : §1
ITERATION 7 1§ -

S.NO. POPULATION X F(X)

30 00000 0 0

11 09100 4 16

32 01111 15 225

33 11101 29 841

34 11010 26 676
SUM : 1760 AVERAGE 352 MINIMUM . O
ITERATION 8 IS -

3.N0, POPULATION X F(X)

35 10000 18 256

36 00000 0 0

17 01011 11 121
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a8 01010 10 100
39 00001 1 1

SUM : 481 AVERAGE : 96 MINIMUM :.0D

AFTER THE 7 ITERATION, THE MINIMUM VALUE IS : 0

l1 8.4.3 Traveling Salesman Prablem (T SP)

In TSP, salesman travels # cities and returns to the starting city with the minimal cost; he is nocallowed to cross
the ciry more than once. In this problem we are taking the assumption chat all the n cities are interconnected.
The cost indicates the distance between two cities. To solve chis problem we make use of GA because the
ciries are randomly selected. Also the initial population for this problem is randomly selected cities. Fitness
function is nothing bur the minimum cost. Initially the fitness funcion is set to the maximum value and for
each travel, the cost is calculated and compared wich the fitness funceion. The new fitness value is assigned to
the minimum cost. Initial population is randomly chosen and taken as the parent. For the next generation,
the cydic crossover is applied over the parent,

Cyclic Crossover
Ler PI and P2 are two parents

01345796
54689723
Setect the first cicy P1 make it as the first city of offspring1(01)

Ol: 2 « « = = = = = - -

To find the next city of offspring O1 search current city, which is selected from P1 in P2. Find the location
of city in P2 and select the city which is in the same location in P1. O1: 2 -- - - -~ - 9-

Continue the same procedure, we will ger O1 as

O1: 2801 -435-9-

In the next step we will get the city 2 which is already present in O1 and then stop the procedure. Copy
the cities from parent P2 in the corresponding locations

O1: 2801645793

For the generacion offspring O2 the initial selection is from the parent P2, 2nd repeac the procedure with P1
Oz: 1 543897 26

If the initial population contain V parencs it will generate AN — 1)/2 offsprings. The next generation
the offsprings are considered as parent. The procedure is continued for N number of generation to find the
minimum cost.

Source Code

#include<stdioc.h>

#include<conio.h>

int tsp[l0][101={{%99,10,3,2,5,6,7,2,5,4},
(20,999,3,5,10,2,8,1,15,6},

PR PN ORI
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{10,5,999,7,8,3,11,12,3,2},
(3,4,5,999,6,4,10,6,1,8},
{1,2,3,4,999,5,10,20,11,2},
{8,5,3,10,2,999,6,9,20,1},
{3.8,5,2,20,21,999,3,5,6},
{5,2,1,25,15,10,6,999,8, 1},
{10,11,6,8,3,4,2,15,999,1}
{5,10,6,4,15,1,3,5,2,99%}
};

int pa[1000}{10)= ({0,1,2,3,4,5,6,7,8,9},
{9,8,6,3,2,1,0,4,5,7},

{(2,3,5,0,1,4,9,8,6,7},
(4.8,9,0,1,3,2,5,6,7)
}:

int i,3,k,1,m, ¥, loc,flag,row,col,it,x=3,y=3;
int count, row=0,res[1]1[10],rowl,coll,z;
int numoff=4;
int offspring[1000)([10];
int mincost=9999,mc;
main )
{
int gen;
clrscr();
printf{"Number of Generation : "});
scanf("%3", &gen};
offcall(pa);
offcal2(pa);
printf (" \n\t\t First Generation\n"};
for{i=0;i<count;i++)
{
for(j=0;j<10;j++}
printf ("%d “,offspring(i][j]});
printf{~\n");

}
for (y=1;y<=gen-1;y++)
{
getch();
clrscr();

for(i=0;i<count;i++}
for{j=0;3<10;:j++)
palil (jl=ofispringl[il [3]:
numof f=count;
offcall{pal;
offcal2(pa};
printf (" \n\t\t %48 Generation\n",y+l);
for{i=0;i<count;i++)
{
for (§=0;7<10; j++)
printf ("% ", offspring{il[j1);
printf ("\n");
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)

getchl();

clrscril;
)]

printf{"\n\nMinimum Cost Path\n"};

for (z=0;2<10;2++}
printf ("%d ', res(01([z]);

printf {"\nMinimum Cost $d \n",mincost);

}

/* finding the offspring using cyclic crossover */

offcall (pa)
int pa[1000][10];
{
count=0;
for(i=0;1i<1000;i++}
for{j=0;j<10;++)
offspring (i1 (j]=-1;

for (k=0;k<numoff;k++}
{
for{1=k+1;1l<numoff;1++)
{
offspring[row! {01=paik] [0];
loc=palll[0]:
flag=1;
while({flag != 0}
{
for(3=0;3<10;++)
{
if{palk] (3] == loc )}
( -
if {(offspring{rowl[j]
{

offspring[row][j]=loc;

loc=pall)(j):
}
else
flag=0;
]

)
}1/* end while*/
for (m=0;m<l0;m++)

1

{
if (offspring(row] [m] == -1}
offspring[row][m]:pa[l][m];
}
for (2z=0;2<10;z++)
{

if(z<9)
(
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rowl=offspring[row] [z];
coll=offspring[row] [z+1];

me=me+tsp [rowl] [coll]);
3

else
{
rowl=offspring[row][z]:
coll=offspring [row] [0];
mc=mc+tsp[rowl) [coll];
}
}
if (mc < mincost)
{
fox{z=0;z<10;z++}
res[O][z]:offspring[row][z];
mincost=me;
)
count++;
TOW++;
1/% end 1*/
)
}
offcal2(pa)
int pa[l000)[10};
{
for (k=0; k<numoff;k++)
{
for(l=k+l;l<numoff;1++}
{
offspring[row][0]=pa[1][0};
loc=pa[k] [0];
Elag=1;
while(flag !'= 0)
(
for{j=0;3<10;j++)
{
if(palll[j}? == loc )
{
if (offspring[row][j]::—l}
{
offspring[rowl [{]=loc;
loe=paikl(j};:
}
else
flag=0;
}
]
}/* end while*/
for(m=0;m<10;m++)
{

e e e
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if (offspring[row)(m] == -1)
offspring[row} [m)=palk] (m];
}
for (z=0;z<10;Z++}
(
if(z<9)
{

rowl=offspring[row] [z];
coli=offspring[row] [z+1];
mc=mc+tsplrowl] [coll);

1

else

{
rowl=offspring[row] [z];
coll=offspring[row] [0];
me=mc+tsp{rowl] [coll];

}

row++;
if{mc < mincost)
{
for(z=0;z<10;2++)
res[0] [z]=offspringlrow] [z];
mincost=mc;
}
count++;
)/* end 1%/

}
Outpur

Mumber of Generation : 2
First Generation

0 g8 2 3 4 1 6 7 5 9
0 1 2 3 4 5 9 8B & 7
01 2 3 4 5 6 7 8 9
9 8 5 3 2 1 ¢ 4 6 7
S 8 6 0 1 3 2 4 5 7
2 3 5 01 4 9 8 6 7
91 6 3 2 5 0 4 8 7
2 3 5 01 4 6 7 8 9
4 8 ¢ 0 1 3 2 5 6 7
2 3 6 0 1 4 9 8 5 7
4$ 89 3 2 1 0 5 & 7
4 8 9 01 3 2 5 6 7
2 Generation

0 1 2 3 4 5 8 7
01 2 3 4 5 6 7 8

¢ 8 2 3 4 1 6 7 5 9




598 Soft Computing Techniques Using C and C++

0 8 6 3 4 1 2 7 5 9
0 8 2 3 1 4 6 7 5 9
01 2 3 4 5 6 7 8 9
0 8 2 3 1 4 6 7 5 9
0 8 % 3 4 1 2 5 & 7
0 8 2 3 1 4 6 7 5 8
0 8 2 3 4 1 6 7 5 9
08 5 3 4 1 2 5 868 7
0 1 2 3 4 5 6 7 8 9
Minimum Cost Path

0 8 2 3 4 1 & 7 5 9

Minimum Cost 53

I 18.4.4 Prisoner's Dilemma

Cooperation is usually analyzed in game theory by means of a non-zero-sum game called the “Prisoner’s
Dilemma.” The two players in the game can choose berween two moves, either “cooperate” or “defect.”
The idea is thac each player gains when hoth cooperate, but if only one of them cooperates, the other one,
who defects, will gain more. If both defecr, both lose {or gain very litde) but noc as much as the “cheated”
cooperator whose cooperation is not returned. The whole game situation and its different outcomes car be

summarized by the following table where hypothetical “points” are given as an example of how the differences
in result might be quantified.

Action of A/Action B Coapetare Defect
Cooperate Fairly good {45) Bad [—10]
Defece Good [+10} Mediocre [0]

The type of crossover thar is performed is a “single point crossover” where the point of crossover is randomly
selected. The mutasion is expected to happen every 2000 generation. It is easy to change the muradion as it
is implemented as a separate function.

Source Code

#include<stdlib.h>
#include<stdio. h>
#include<conic.h>

int calculate(int*];

int* select{int *};

void c¢rossover {int*,int*):

void sort_select{void);

//THESE ARE SOME GLOBAL VARIABLE USED
int best_score[20];

int scorel9];

int index[é6];

void main()

{
int a[l0][70]),select_string[5}[70];
int best_string[20] [70],max, ind=0;
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int p,counter=1;

int i,n,j,temp{l10];

randomize() :

clrser();

for (J=0;3<10;j++)

for (1=0;i<70:i++)
afjl{i}=random(2);

//THE NUMBER OF GENERATION TO BE SCANED IN

printf(* BEnter the no of generation ");

scanf{"%d",&n);

for(i=0;i<10;i++)
score[i]:calculate(&a{i][D]); . )

//function for sorting the score array and finding the index of

best score

sort_select();

for(i=0;1<7;i++)

( p=index[i}: //THE ORDER OF BEST SCORE STORED IN INDEX.
for (j=0;3<70;++}

select_stringlil[§1=alpl [3]1:

)

best_score{(]=score(0);

for{i=0;i<70;i++)
best_string[D][i]=select_string[0][i]:

while (counter < n)
{
for(i=0;1i<7;i=1+2}
crossover(&a[i][ﬁ],&a[i+1][0]);
For{i=0;1i<9;i++}
score[i]=0;
for{i=0;i<7;i++)
scoreli}=calculate(&a{i] [01};

/ /CALCULATE FUNCTION RETURNS SCORE OF EACH STRING
sort_select(};
best_score[counter)=score[0];
p=index([0];

for (3=0;3<70;++)

best_stringlcounter] (j1=alpl(il:

counter++;
i/OUTPUT THE BEST SCORES.
for {p=0;p<n;p++)
{ printf{"The best score in the generation %d :".p+1):

printf{" %4 \n", hest_scoreipl};

i/OUTPUT THE BEST STRINGS.
for (i=0;i<n;i++)
{

JE——
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printf ("\n\nTHE BEST STRNG IN GENERATION %d :\n\n",i+1); pl=pl+3; p2=p2+3;
for(§=0;7<70;3++) } .
{ ' iffalil==1 && al[i+1]==0}
1f(j%2==0&&7'!=0) {
printf(® =); . pl=pl+5; p2=p2+0;
if (best_string[i) [j) ==1) } ]
printf(=d"); if{a[i]==0 && ali+l]l==1}
//COVERTING 1‘S AND 'S TO d AND < {
else pl=plt0; p2=p2+5:
print£("c"); }
} if{alil==0 && ali+l]==0}
] (
/ /CALCULATING THE BEST OF THE BEST pl=pl+l; p2=p2+l; :
for{i=0;i<n;i++) } E
temp[i)=best_scoreli}; ! :
max=temp{0]; return{pl+p2}; //RETRUN THE TOTAL SCORE OF THE STRING. %
"
for{i=1;i<n;i++) 1 ¥
{ void sort_select{) //ORDINRRY SORTING PROCEDURE ?
if{max<temp[i]} { ﬁ
t : int templ9).i,3.t: ;
max-temp(i]; . for (i=0;1i<10;i++) % 3
ind=i; L templil=score[i): 7|§
} L .
} Eor {1=0;1<10:i++)
/ /CALCULATING THE BEST FROM THE SELECTED. for {3=9;j>=1i3--) L
printf{"\n\n"}; { 11
. . DURE . k.
printf{"\nTHE BEST STRING IN ALL GENERATION IS \n\n"); ! if(temp[i}<templj]) //USUSAL SWAPPING PROCE i
for{i=0;i<70;i++) ! { i
( | t=templjl:
if(i%2==08&i!=0) i temp{il=templil;
printf(" "); i temp(i]=t:

if (best_string(ind] [i]==1)
printf{"d"};

]
}

else for (i=0;1i<7;i++)
printf("c"); For (§=0;3<10;j++)
} if (tempii]==scorelil)
printf{"\n\nTHE CORRESPONDING BEST SCORE IS: %@ ",best_score([ind]); index[i]=3;
getch(); score[0]=temp(D};
}
int calculate(int* ptr) Loid crossover (int *ptri,int *ptr2)
{ f {
int *a; ! int temp,i,Jj:
int pl:p2.i: i ;nt indzraniom(ﬁo); //RANDOM POINT OF CROSSOVER
a=ptr; for{i=ind;i<70;1++)
pl=0; p2=0;

for(i=0;i<70;i=i+2) //calculating the wvalues according to truth

table.
(
iffalil==1 && a[i+l]==1)
( i

{
temp=ptrl{il;
ptrilil=ptr2(il;
ptr2(il=temp;

) .
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Ourput
Enter the no of generation 5

The best score in the generation 1i: 171
The best score in the generation 2: 160
The best score in the generation 3: 170
The best score in the generation 4: 166
The best score in the generation 5: 169

The best string in generation 1:

dd dc cd dc dec ¢d ¢d dd cc de de dé dd dec 4d cd dc ¢d cd cc dc ¢cd cc cd dd cd
cd dd cd dec cc cd dc dd dd

The best string in generation 2:

cd cc ¢d cc cd ¢d dd dc cd c¢ dc cc dd cd dd €d cc ¢c dec dd dc ¢d cd dd dc dd
dd ¢¢ cd dd d¢ dc cd de ce

The best string in generation 3:

cd cc ¢d ¢c cd cd dc dd cd d¢ dd cc ¢d cd cc dd cd dd dc ed de de dd cd dec dec
de ¢d cd cd dc dc d4d de dd

The best string in generation 4:

cd cc ¢d cc cd cd de dd cd de d4d cc ¢d ed cc dd ¢d dd dc cd d¢ dc dd dd de dd
dd cc od dd dec dc ¢d dc cc

The best string in generation 5:

€d dd ¢c¢ cd dd dec cd cc dd cd dd dd dc cd ¢d cc dc cd cd dc cc dd dd dc de dc
dd de¢ dc ¢d dc cc de cd d4d

The best string in all generation is

dd dc cd dc dc cd c¢d dd cc de de de-dd de dd cd de cd cd cc d¢ ¢d cc cd dd cd
cd dd ¢d dc cc ¢d dc dd dd

The corresponding best score is : 171

I 18.4.5 Quadratic Equation Solving

To find the roots of the quadratic equartion using genetic algorithm. To solve the abave problem for the
quadratic equation x % x + 3 * x + 6 using following procedure. It could be used for solving any quadraric
equartion by changing fitness function £ (x) and changing length of chromosome.

Steps involved

Step 1: Initial population size is 10 and chromosome length is set to 5. Selecting initial popularion, i
random approximare solution to the problem, which are 10 different 5-bit binary strings. Here

initial population consists of 10 chromosomes. Chromosomes are generated by using random
number generator.

Step 2: Converting the chromosome's genorypes to its phenotype (i.¢. binary string into decimal value).
In the binary string the most significant bit is sign bir. Its weight is —2 * (# — 1) and other bits
are maghitude bits their weights are 2 # (7 — 1).

Step 3: Evaluace the objective function f{x) = x % x + 5 * x + 6. For each chromosome:
* Convere the value of the objective funcrion inso fitness. Here for this problem fitness is simply
equal ro the value of the objective funcrion.

* if f(x) == 0 for a particular chromosome, that chromosome is required accurate solution. Now
display the value of chromosome and stop. Otherwise perform next generation by continuing
following steps.
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Step 4: Implementation of selection operarion, For this problem the tournamenc selection is adopted{.l
The tournament selection is implemented as follows: Take any two chromosomes ra:ndomly an
select one with min. Ritness for next generation. This process has to be repeated till we get 10
chromosomes.

Step 5: Implementation of crossover operation on new‘populatio!a. Take chromoson?e 1 arlxjd 2 ranlzjio:.ly
fix the cut-point position and randomly decide left or right crossovet and interchange the ;B
and the resulting chromosomes ace used in the next generacion. Repeat the abovF process for
chromosome pair (3,4), pair (3,6), pair (7,8) and pair (9,10). This crossover operation generates
10 new chromosomes for the next generation.

I Step 6: Jump 1o Step 2 fie. perform next generation). J

Source Code

#include <stdio.h>
ginclude <conio.h»
#include <dos.h>
#¢include <math.h>
¢include <stdlib.h>
#include <time.h>
int £(int);

void main()
{
struct cf
int chromosome[5];
int decimal_val;
int fittness:
Y:
struct ¢ ipopil0], newpop{l0];
inkt i,j,cut,gen,t,Elag,num,sl,sZ:
clrser(}):

/* generating Inmitial population */
randomize();
for{i=0;1<10; ++i]
for (j=0; i<5: ++1)
ipopli] chromosome[j] = rand()%2;

/* start of the next generation */
gen=1;

while(1)

{

/* Converting a binary string intc decimal value */
For{i=0;1<10; ++i}
{
num=0;
for (§=0;j<4i++1} . .
num = numt (ipop[i].chromosome{j] * pow(2,j});
num = num- (ipop(i) _chromosome [4]*pow(2,4));
ipop[i] .decimal_val = num;
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/* Calculating fittness value */
for(i=0;i<10;++i)

ipop[i].fittness = f{ipop[i].decimal_wval);
printf{*Generation- %1d\n", gen):
printf(*Initial population- output\n®};
for(i=0;1i<10;++1)

{
for (j=4; j»=0:; --j}

?rintf(“%ld', ipop(i)].chromosome([5]] ;
pr}ntf(" %d", ipop(i].decimal_val);
printf(® %4-, ipop[i].fittness);
printf("\n"};

}

for(i=0;i<10; ++i)

{
if (ipop(i].fittness ==0}
{

printf ("stop generations\n"};

printf("result = %d\n-", ipop[i] .decimal_val);

goto 11; .

}
}

/* tournament selection */
printf (" tournament selection\n "};
i=0;
while{i<=9)
{
sl = rand()%10;
52 = rand()%10;
pr1nt§("%d &d %d %d\n", 51,82, ipop(sl). fittness, ipop(s2].
fittness);
getche();
if{ ipoplsi].Ffittness < ipop(s2].fittness)
{
for (§=0;3<5;++3)
, newpop[i].chromoste[j] = ipop[sl].chromosome{j]:
else
{
for(3=0;j<5;++7)
} newpop[i).chromosome[j] = ipop[sZ].chromosome[j];
it++;
}
getchel(};
printf{"new population -output\nr}:
for{i=0;i<10;++1i)
{
for(j=4; j»=0; --5)
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}

printf ("%1d", newpopli] .chromosome(j]);
printf("\n*);

getche(};

/*crossover operation */
printf("crossover operation\n");
printf{"left/right cut-point position\n*):
for(i=0;i<=4;++1i)

{

]

filag= rand{)%2;
cut= rand{)%5;
printf{"%1d $%$1d\n", flag, cut);
if{flag==0) /* crossover to left of cutpoint position*/
for(j=0;:j<=cut-1;++j}
{
t=newpop[2*i].chromosome[i];
newpop{2*i).chromosome{jl= newpop[{2*i+l}].chromosome[j];
newpop [ {2*i+1)].chromosome[jl= t;
}
else /* crossover to the right of cutpoint position*/
for{j=cut+l;j<=4;++j)
{
t=newpop[2*i].chromosome[j];
newpop[2*i] . chromosome [j]= newpopl[ (2*i+l)]).chromosome[]];
newpop[ (2*i+1) ] .chromosome[j]= t;
)
for{j=4; j>=0; --3)
printf("$1d”, newpopl[2*i].chromosome[j]);
print£{“\n");
for(j=4; j»=0; --j)
printf("%14d", newpopl2*i+l].chromosome(j]};
printf("\n");
}

/* copy newpopulation to initial population*/
for(i=0; i<10; ++i}
{
for(j=0; j<5;++3)
ipopli).chromosome[j] = newpopli].chromoscmelj];
}
gen=gen+1;
}
1l:
printf{"end\n");

int f(int x)

{

return { x*x + 5%x + 6);
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Output

At the end of fifth generation, the output is

Generation- 5

Chromosome decimalvalue Fittnessvalue
oDool 1 12
11100 ~4 2
11100 —4 2
00000 0 6
00001 1 12
00001 1 12
13001 ~15 156
01100 12 210
11101 -3 0
00000 0 6
stop generations

result = -3

l 185 Summary

Thus in this chaprer the implementation of soft computing concept using C/Co+ has been dealt. The conceprs
of neural necworks, fuzzy logic and genesic algorichm discussed in various chaprers have been implemented
here. C being a universal language helps in evolving the soft computing techniques and since it is poreable,
soft compuring programs written in C for one computer can be run on another with little or no modification.
With the availability of large number of functions, the programming task becomes simple. C++, an evolution
of C, has helped soft compuring 1o run in an objecs oriented programming environmenc.

l 18.6 Exercise Problems

1. Implement the AND funcrion using perceperan

9. Maximize Rosenbrocks function using a G+
nerwork using a C program.

program.

2. Write a C++ program to apply back propagation 10, Minimize Rastrigin's function using structure-
network for a pattern recognition problem. oriented programming language.

3. Implement OR function with bipolarinputsand  11. Given a polynomial equartion of the form f{x) =
targets with 2 MADALINE neural net. 45 4323 £ 252 4 x+ 7. Find the roots of this

4. Wite a program to create an ART 1 nerwork polynomial using GA approach.
to .clusrer seven input units and three cluster 12 Consider a hyperbolic tangent function. Max-
uniss, imize it within the range 0<x<22/7 using

5. Develop a Kohonen self-organizing feature map a C program. Apply two-point crossover and
for a image recognition problem wsing a C tournament selection process.

program. 13. Find the roots of the quadratic equation using
6. Wirite a program to implement various apera- GA. The quadratic equation is f (x) = 6 +
tions of fuzzy sers. 5x+ 3.

7. Implement the properties of fuzzy ses usinga 14 Find the solution of the function f(x) =

C++ program. sin{7m x) + 10 with the constraint —~3 < x< 3
8. Develop a C program to perform compositional by using genetic algorithm.
operations in fuzzy refations. 15. Write a program to minimize “cosine” funiction.

MATLAB Environment for
Soft Computing Techniques

—— Learning Objectives

logic toolbox, Genetic algorichm toolbox ~ are
included with commands for ready reference
of the user.

* Discusses how soft computing techniques are
implemented using MATLAB software.

* Gives brief note on the developmenc of

MATLAB sofeware. * The chapter apart from the command line
functionsalso discusses the implementation of
soft computing techniques using SIMULINK
blocks and graphical user interface (GUI)
toolbox.

= Derails how basic operations are carried out

using MATLAB.

* An introduction SIMULINK which is 2
branch in MATLAB package is discussed.

» The various solt computing toolboxes in

MATLAB ~ Neural nerwork toolbox, Fuzzy

The chapter provides the reader several prob-
lems solved using MATLAB software for soft
compuring techniques.

l1 9.1 Introduction

MATLAB (Marrix Laboratory), a produce of Mathworks, is a scientific sofrware package designed to provide
integrated numeric computation and graphics visualization in high-level programming language. Cleve Moler,
Chief Scientist at MathWorks, Inc., originally wrote MATLAB o provide easy access to marrix sofoware
developed in the LINPACK and EISPACK projects. The very first version was wricten in the late 1970s for
use in courses in matrix theory, linear algebra and numerical analysis. MATLAB is cherefore buile upon a
foundation of sophisticated matrix software, in which the basic data element is 1 marrix thac does not requite
predimensioning.

MATLAB program consists of standard and specialized roolboxes allowing users to rake advanrage of the
marrix-algorithm-based projects. MATLAB offers interactive fearures allowing the users a great flexibilicy in
the manipulation of data and in the form of matrix arrays for computation and visualization. MATLAB
inputs can be entered at the “command line” or from “mfiles,” which contains a programming-like ser of
instructions to be executed by MATLAB. In the aspect of programming, MATLAB works differently from
FOTRAN, C, or Basic; for example, no dimensioning required for matrix arrays and no object code file
generaced. MATLAB offers some standard toolboxes and many optional (at extra charges) toolboxes such as
Financial Toolbox and Statistics Toolbox. Users may create their own toolboxes consisting of “mfiles” written
for specific applications. MATLAB is a high-performance language for technical computing. It integrates
computation, visualization and programming in an easy-to-use environment whete problers and solutions
are expressed in familiar mathematical notation. Typical use includes:

1. math and compuation;

2. algorithm development;
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3. modeling, simulation and prototyping

4. dara analysis, exploration and visualization;

5. scientific and enginecring graphics;

6. application development, including graphical-user interface building.

MATLAB's two- and three-dimensional graphics are object-oriented. MATLAB is thus both an environ-
ment and a mauix/vector-oriented programming language, which enables the use to build own required tools.

The main features of MATLAB are:

. Advancealgorithms for higt€performance numerical computations, especially in the field of matrixalgebra.
. A large collection of predefined mathematical funcrions and the ability to define one’s own functions.

. Two- and three-dimensional graphics for plotting and displaying daca.

. A complere help system online.

. Powerful macrixfvector-oriented high-level programming language for individual applications.

AW b W B

. Abiliry to cooperate with programs written in other languages and for importing and exporting formartted
data,

7. Toolboxes available for solving advanced problems in several application areas.

I 19.2 Getting Started with MATLAB

Clicking on the program ican on 2 Windows/Mac machine can stare MATLAB. The command window can
be used o interactively issue commands and evaluare expressions. The extensive help files are essential for
obraining information about the various commands and functions available. Typing help at the command
prompt generares a list of the various function categories and toolboxes with a brief description of each. Typing
help tapic generates help on the specified topic, which is generally 2 MATLAB command or toolbox name.
This can be used 1o get the syncax for different commands. A more user-friendly graphical help system is also
available via the help menu.

MATLAB uses conventional notation for real numbers. Scientific notation is also accepred in the form of
a real number followed by the lewter e and an integer exponent. Imaginary numbers are obtained by using
either i or j as a suffix. Examples of valid numbers: 5, 4.55, 1.945e-20, /, 104154

The basic mathematical operators (4, —, %, /, "} can be used directly at the command prompt to perform
catculations, as can various clementary mathemarical functions. help elfun gives a list of the elementary
mathematical funcrions. Remember that angles are specified in radians to funcrions like sin{) and cos{).

Examples of usage:
BB+ 345
ans = 13.0000 -+ 3.0000¢
3 sqre(—4)
ans = 0 4 1.41424

19.2,1 Matrices and Vectors

Construction:  The simplest way vo construct a matrix in MATLAB is to enumerare its elements row by row
within square brackers, the rows scparated by semi-colons, the elements of each row separated by spaces.

,—a&\."' oA D
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These elements can be real/complex numbets or other vectors and marices, as long as the dimensions march

up. For example,

$A=[1234,5678]
Pl _
1234
5678

Row vectors are simply matrices with one row of clements:

Sx=[4567]
X=

4567
Vectors with equally spaced elements can be constructed using the colon notation:
x = starting value: increment: maximum value

A default increment of 1 is used if the increment is omitted. I the vector has to have a specific last clement,
we use the linspace command:

x = linspace( first_elemens, lwst_element, number_of_elements)
Coliemm vectors are constructed as matrices with several rows of one element each:

»y=[1;2%3]
JJ:
1
2

Equally spaced column vectors are obrained by first generaring a row vector usinlg t!’lc colon_ noration or the
linspace command, and then applying the transpose operator. There are other built-in functions to generate
specific types of marrices:

1. eye{m, n) generates an 7 X » matix with ones on the main diagonal and zeros elsewhere. [f m = n, eyeln)
can be used inscead.

2. zeros(m, 1) is an m X 1 matrix whose elements are all zeros.

3. ones(m, x) is an m % n matrix whose elements are all ones.

4. diag(s) is a square diagonal matrix with vector v on the main diagonal.

5. diag(A) i¥a column vector formed from the matn diagonal of A.
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Addressing elements:  The element in the jth row and jth column of a marrix A is A(, 7). The sub;cripm fand
Jcannot be negarive or zero. In the case of a vector x, the /th element of the vector is addressed as x(a):

»A=[12378Y9]

A2,1) =7
»x=[456]
H2) =5

Matrix operations:  Marrix addition, subtraction and mulriplication are implemented using the traditional
operators +, — and #. The inverse of a square matrix A is given by inv{A). There are two marrix division
operartors, \ and /. If Aisa non-singular matrix, then 4\Band B/4 correspond to the left and right multiplication
of Bby inv(A). The transpose of a matrix A is given by A'. The expression A” produces the conjugare rranspose

of A, that is it transposes A and replaces its elements by their complex conjugates. If the-elements of A are
real, then A" and A." are equivalent.

Array operations: Itis also possible to work with the matrix as an array, that is to perform uniform elementwise
operations. The array operators (+, —, .%, ./, .") are used for this purpose. For example, if 4 and B are of the
same dimensions, the expression A. * Bwould multiply each elemenr of A with the corresponding element of
B 1o produce a matrix of the same dimension as A and B.

Scripts. Instead of executing individual commands at the promp, it is possible to make a texc file with a
sequence of commands, that is a MATLAB scripr, and execure all the commands in sequence. The script must

be a plain ASCII file with a “.m™ extension. When this file is in the working directory, ryping the name of
the file without the extension is sufficient to execute the script.

Plotting: The general form of the ewo-dimensional plot command is plot{x, y, §) where x and y are vectors
of the same type and dimension and S is a string of characters within quotes which specifies plor attribures
like color, line sryle, etc. Use help plot to find out oprions and related commands.

I 19.3 Introduction to Simulink

Simulink (Simulation and Link) is an excension of MATLAB by Mathworks. It works with MATLAB 1e offer
modeling, simulating and analyzing of dynamical systems under a graphical user incerface (GUI) environ-
ment. The construcrion of a model is simplified with click-and-drag mouse operations. Simulink includes
a comprehensive block library of toolboxes for both linear and nonlinear analyses. Models are hicrarchical,
which allow using both top-down and bottom-up approaches. As Simulink is an integral part of MATLAB;
it is easy to switch back and forth during the analysis process, and thus, the user may take full advantage
of features offered in both environments. MATLAB is an interactive package for numerical analysis, matrix
compuration, control system design and linear system analysis and design available on most CAEN (Com-
puter Aided Engineering Nerwork} platforms (Macintosh, PC, Sun and Hewlett-Packard). In addirion to the
standard Funcrions provided by MATLARB, chere exist large set of toolboxes, or eollections of funcrions and
procedures, available as part of the MATLAB package. The roolboxes are:

1. Control spstem: It provides several features for advanced control system design and analysis.

2. Communications: It provides fanctions to model the components of 2 communication system's physical
layer.

3. Signal processing. 11 conrains functions to design analog and digital filters and apply these filrers to data
and analyze the results.

e
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4. System identification: Tt provides features to build mathematical models of dynamical systems based on
observed system data.

5, Robustcontrok It allows users to create robust multivariable feedback control system designs based on the
concept of the singular-value Bode ploc.

. Simulink: v allows you to mode! dynamic systems grai:)him]ly.
. Neural network: v allows you to simulate neural networks.

. Fuzzy logic. It allows for manipulation of fuzzy systems and membership funcrions.

(- -

. Image processing: Tt provides access 1o a wide vasiery of funcrions for reading, writing, and filtering images
of various kinds in different ways.

10. Analysi: It includes a wide variety of system analysis tools for varying matrices.

11. Optimization: It conrains basic wols for use in constrained and unconsirained optimization problems.

J2. Spline: Tt can be used to find approximarte funcrional representations of dara sets.

13. Symbolic. It allows for symbolic (rather than purely numeric) manipulation of functions.

14, User interface utilivies. It includes tools for creating dialog boxes, menu utilities and other user interaction
for script files.

In MATLAB command window, enter: > > simulink and press ENTER to invoke Simulink. A Simulink
library browser window would appear as shown in Figure 19-1.

by Brows

= |

- Ji COMA Refesence Blocheet
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13- Powet System Blocksel
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N Statefion _

Figure 19-1 Simulink library browser.
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I 19.4 MATLAB Neural Network Toolbox

The MATLAB neural nerwork toolbox provides a complete set of functions and a GUI for the design,
implementation, visualization and simulation of neural networks. It supports the most commonly used
supervised and unsupervised nerwork architecrures and a comprehensive set of training and learning functions.
The neural network roolbox extends the MATLAB computing environment to provide tools for the design,
implementation, visualization and simulation of neural nerworks. Neural nerworks are uniquely powerful

tools that are used in applications where formal analysis would be difficult or impossible, such as partern
recognition and nonlinear system identification and control,

Saltent Features:

GUI for creating, training and simulation of neural nerworks.
Set of training and learning functions.

Pre- and post-processing functions for improving network training and assessing nerwork performance.

1.
2.
3. Automaric generation of Simulink models fromi neural nerwork objects.
4.
5. Routines for improving generalizarion.

6. Visualization functions for viewing nerwork performance.

I 19.4.1 Creating a Custom Neural Network

The command NETWORK creates a custom neural nerwork.
Synapsis:
net = network
ner = necwork(numInputs,numLayers,biasConnecr,
inputConnect, layerConnect,outputConnect,targertConnect)
Descripsion:

NETWORK creates new cuscom nerworks. It is used to create nerworks thac are then customized by
functions such as NEWP NEWLIN, NEWFE etc.

NETWORK takes the following aptional arpuments (shown with default values):

numlnputs; Number of inputs, 0.
numLayers: Number of layers, 0.
biasConnecr: numLayers-by-1 Boolean vector, zeros.
inputConnect: numLayers-by-numInputs Boolean matrix, z¢ros.
layerConnect: numLayers-by-numLayers Boolean matrix, zeros.
ourputConnect: 1-by-numLayers Boolean vector, zeros.
rargetConnect: 1-by-numLayers Boolean vector, zeros.
and rerurns,
NET: New nerwork with the given property values.

Properties

Architeceure properties

net.numlInputs: O or a positive integer.
Number of inputs.
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net.numLayers: 0 or a posirive integer.
Number of layers.
net.biasConnect: numLayer-by-1 Boolean vector.

If net.biasConnect(f) is 1 then the layer £ has a bias and
net.biases{i} is a structure describing that bias,
net.inputConnect: numlayer-by-numInputs Boolean vector.

If net.inputConnect(s, ) is 1 then layer  has a weight coming from _
input j and net.inpurWeights{s, 7] is a structure describing thar weight.
netlayerConnect: numLayer-by-numlayers Boolean vector.

If net.layerConnect(s, j) is 1 then layer i has a weight coming from
layer j and nec.layerWeightsts, f} is a structure describing that weighe,
ner.outpurConnect: 1-by-numLayers Boolean vecror,

T net.outpurConnect(j} is 1 then the nerwork has an output from layer i and net.outputs{s] is a structure
describing that outpur,

net.targetConnecr: 1-by-numLayers Boolean vector.

If ner.outpurConnect(i) is 1 then the nerwork has a target from layer / and netaargews(¢] is a structure
describing thac targer.

ner.numOutpucs: 0 or a positive integer. Read only.

Number of necwork outpus according ta net.ourputConnect.
ner.numTargers: 0 or a positive inceger. Read only.

Number of rargess according to nev.rargerConnect.

net.numInputDelays: 0 or a positive integer. Read only.
Maximum input delay according ta all
net.inputWeighc{/, j } delays.
net.numLayerDelays: 0 or a positive number. Read only.
Maximum layer delay according o all Ner layerWeight{/, /].delays.

Subobject structure properiies

net.inputs: numInpurs-by-1 cell array.

necinpuss(i} is 2 scructare defining input it

net layers: numLayers-by-1 cell array.

net.layers{;] is a structure defining layer i:

net.biases: numLayers-by-1 cell arcay.

iF net.biasConnect(s) is 1, then net.biases{i} is a structure defining the bias for layer i.
nec.inpucWeights: numLayers-by-numlnpucs cell array. .
if net.inputConnect(s, j) s I, then nec.inpurWeightsl, /} is a structure defining the weight o layer ¢
from inpuc 5.

net.layerWeights: numLayers-by-numLayers cell array.

if net layerConnect(i,j) is L, then net.layerWeighrsfs, j} is a strucrure defining the weight to layer
from layerj.

o
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net.outpures: 1-by-numLayers cell array.

if nec.outputConneet(i) is 1, then nec.outputs{é] is a scrucrure defining the network outpur from
layer i, ’

nec.targets: 1-by-numLayers cell array.

if nev.rargerConnect(/} is 1, then net.targets{:} is a scrucrure defining the network targer to layer 7.
Function propersies:

ner.adaptFen: name of a nerwork adaption funcrion

net.initFen: name of a network initialization function

net.performFen: name of a network perfarmance funcrion

ner.trainFen: name of a nerwork training function or
Parameter properties:

net.adaptParam: nerwork adaption parameters,

net.initParam: nerwork initalization paramerers.

ner.performParam: network performance paramerers,

net.trainParam: nerwork training paramerers.
Weight and bias value properties:
net.IW: numLayers-by-numInpucs cell array of inpuc weight values,

net. LW numLayers-by-numLayers cel) array of layer weighe values.
nec.l: numLayers-by-1 cell array of bias values.

Other propertics:

ner.userdata: structure you can use to store useful values.

l 19.4.2 Commands in Neural Network Toolbox

The various commands used in the neural nerwork toolbox are as follows:

Graphical wser interface functions:
nntool: Neural network toolbox graphical user interface,

Analysis funesions:
errsurk: Error surface of single input neuron.
maxlinie: Maximum learning rate for a linear layer.

Distance functions:
hoxdisc: Box distance funcrion.
dise: Euclidean distance weight function.
mandist: Manhartan distance weight function.
linkdist: Link distance function.

Layer inttializarion functions:
initnw: Nguyen-Widrow layer inicializadon function.
inicwb: By-weight-and-bias layer initializadion function.
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Learning functions:
learncon: Conscience bias learning function.
learngd: Gradient descent weight/bias learning function.
learngdm: Gradient descent w/momentum weight/bias learning function,
learnh: Hebb weight learning function. )
learnhd: Hebb with decay weight learning fuaction.
learnis: Instar weight learning function.
learnk: Kohonen weight learning function.
learnlv1: LVQI weight learning function.
learnlv2: LVQ2 weighe learning function.
learnas: Ourstar weight learning funcrion.
leatnp: Perceptron weight/bias learning function.
learnpn: Normalized perceptron weight/bias learning function.
learnsom: Self-organizing map weight learning function.
learnwh: Widrow-Hoff weight/bias learning rule.

Line search functions:
srchbac: Backeracking search.
srchbre: Brent's combination golden section/quadratic interpelacion,
srcheha: Charalambous’ cubic interpolation.
srchgol: Golden section search,
srchhyb: Hybrid bisection/cubic search.

New networks:
nerwork: Create a custom neura) network.
newc: Create a competitive layer.
newcf: Create a cascade-forward backpropagation nerwork.
newelm: Create an Elman backpropagation nerwork,
newff: Create a feed-forward backpropagacion network.
newffid: Create a feed-forward input-delay backprop nerwork.
newgmn: Design a generalized regression nevral nerwork,
newhop: Create a Hopfield recurrent nerwork,
newlin: Create a linear layer.
newlind: Design a linear layer.
newlvq: Create a learning vector quantization network,
newp: Create a perceptron.
newpnn: Design a probabilistic neural network.
newrb: Design a radial basis nerwork.
newrbe: Design an exacr radial basis nerwork.
newsom: Create a self-organizing map.

Net input functions:
netprod: Product nec input funcrion,
netsum: Sum net input funcron.

Net input derivative functions:
dnetprod: Product net inpur derivative funcrion.
dnetsum: Sum net input derivative funcion,
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Nerwork initialization functions:
initlay: Layer-by-layer nerwork initialization funcrion,

Performance functions:
mae: Mean absolute error performance function.
mse: Mean squared etror performance funcrion.
msereg: Mean squared error with regularization petformance function,
ss¢; Sum squared error performance function.

Performance derivative functions:
dmae: Mean absolute error performance derivarives funcrion.
dmse: Mean squared error performance derivatives function.
dmsereg: Mean squared error witeg performance derivative function,
dsse: Sum squared error performance derivative function,
Plotting functions:
hintonw: Hinton graph of weight marrix.
hintonwb: Hinton graph of weight matrix and bias vector.
plotbe: Plot network performance for Bayesian regularization training,
plotes: Plot an error surface of a single inpur neuron,
plotpe: Plot classificarion line on perceptron vector plor.
plotpv: Plot perceptron input/target vectors.
plotep: Plot a weighr-bias position on an error surface.
plotperf: Plot network performance.
plotsom: Plor self-organizing map.
plorv: Plot vectors as lines frem the origin.
plotvec: Plor vectors with different colors.

Pre- and post-processing:
prestd: Normatize dam for unity standard deviarion and zero mean.
poststd: Unnormalize data which has been normalized by PRESTD.
trastd: Transform daca with precalculated mean and standard deviation.
premnmx: Normalize data for maximum of 1 and minimum of —I.

postmnmex: Unnormalize dawa which has been normalized by PREMNMX.

ramnmx: Transform data with precalculated minimum and maximum.
prepca: Principal component analysis on input data.
wrapca: Transform dara with PCA marrix computed by PREPCA.
postreg;: Post-training regression analysis.
Simttelink supprre:
gensim: Generare 2 Simulink block to simulate a neural network.
Topology functions:
gridrop: Grid layer topology function.
hextop: Hexagonal layer topology function.
randtop: Random layer topology funcrion.
Thapsfer functions:
compet: Competitive transfer function.
hardlim: Hard limic transfer function.
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hardlims: Symmetric hard fimit cransfer function.
logsig: Log sigmoid transfer function.

poslin: Positive linear cransfer function.

purelin: Linear transfer function.

radbas: Radial basis cransfer funcrion.

satlin: Saturating linear transfer function.

satlins: Symmetric saturating linear transfer function.
sofemax; Soft max transfer function.

ransig: Hyperbolic rangent sigmoid transfer function.
tribas: Triangular basis transfer funerion.

Training functions:
trainb: Barch training with weighc and bias learning rules.
trainbfg: BFGS quasi-Newron backpropagation.
crainbr: Bayesian regularizadion.
traine: Cyclical order incremental training w/learning funcrions.
trainegb: Powell-Beale conjugate gradient backpropagation.
traincgf: Flewcher-Powell conjugare gradient backpropagation.
traincgp: Polak-Ribiere conjugate gradient backpropagarion.
traingd: Gradient descent backpropagation.
traingdm: Gradient descent with momentum backpropagation.
traingda: Gradient descent with adaptive lr backpropagarion.
traingdx: Gradient descent w/momentum and adaprive Ir backpropagation.
trainim: Levenberg-Marquardt backpropagation.
trainoss: One step secant backpropagation.
traine: Random order incremental training w/learning funcrions.
trainrp Resilient backpropagation (Rprop).
trains: Sequential order incremental training w/learning funcrions.
trainscg; Scaled conjugate gradienr backpropagation.

Transfer derivative functions:
dhardlim: Hard limit transfer derivative function.
dhardims: Symmetric hard limic transfer derivative function.
dlogsig: Log sigmoid transfer derivative function.
dposlin: Positive linear cransfer derivative function.
dpurelin: Hard fimir transfer derivative function.
dradbas: Radial basis transfer derivative function.
dsatlin: Sarurating linear transfer derivarive function.
dsattins: Symmetric saturating linear sransfer derivacive funcrion.
dransig: Hyperboiic rangent sigmoid transfer derivative function.
drtibas: Triangular basis cransfer derivarive function.

Update netwarks from previous versions:
nnt2c: Updace NNT 2.0 competiuive layer.
nne2Zelm: Updare NNT 2.0 Elman backpropagation network.
nne2ff: Updace NNT 2.0 feed-forward network.
nnr2hop: Update NNT 2.0 Hopficld recurrent nerwork.




618 MATLAB Environment for Soft Computing Techniques

J‘g 19.4 MATLAB Neural Network Toolbox ] 619

ont2lin: Updare NNT 2.0 linear layer,

ant2lvg: Update NNT 2.0 learning vector quantization network.
nnt2p: Update NNT 2.0 perceptron,

ane2rb: Update NNT 2.0 radial basis network,

nnt2sem: Update NNT 2.0 self-organizing map,

Using nerworks:
sim: Simulate a neural network.
init: Initialize a neural necwork.
adapr: Allow a neural network to adapt.
train: Train a neural nerwork.
disp: Display a neural necwork’s properties.

display: Display the name and properties of 2 neural nerwork variable.

Vectars:

celizmat: Combine cell atray of marrices into one marrix.
concar: Create concurrent bias vecrors.

con2seq: Converr concurrent vectors to sequential vectors.
combvec: Create all combinarions of vecrors.

ind2vec: Convert indices to vectors.

mat2cell: Break matrix up into cell array of matrices.
minmax: Ranges of matrix rows,

nncopy: Copy matrix ar cell array.

nerme: Normalize columns of a matrix.

normr: Normalize rows of a matrix.

pnorme: Pseudo-normalize columns of a matrix,

quant: Discretize values as mulriples of a quantity.
seq2con: Converr sequential vecrors to cancurrent vecrors.
sumsqr: Sum squared elements of marrix.

vecZind: Converr vectors to indices,

Weight finctions:

dist: Euclidean distance weight function.

dotprod: Dot product weight funcrion.

mandist: Manhatran distance weight funcrion.
negdist: Dot product weight functien.

normprod: Normalized dor product weight function.

Weight and bias initialization functions;

initcon: Conscience bias initialization function.

initzero: Zero weight/bias initialization function.

midpoint: Midpeint weight initialization funcrion.

randne: Normalized column weight initialization function.
randnr: Normalized row weight initialization function.
rands: Symmetric random weight/bias initialization function.

Weight derivasive funcrions:
ddotprod: Dot producr weight derivative function,

Train and adapt
There are two types of training thar are given below.

1. Ineremental iraining.  updaring the weights after the presentation of each single training sample.

2. Batch training:  updating the weights after each presenting the complere data ser.

When using adapt, both incremental and batch training can be used. When us.ing train, on the o':helr
hand, only barch training can be used, regardless of the formar of the data. T}}c big plus poinc of train is
thac it gives you 2 lot more choice in training functions (gradient descent, gradient descent w/momentum,
Levenberg-Marquards, etc.) which are implemented very efficiendy.

The difference berween wain and adapt is similar as che difference between passes and epochs. When
using adapt, the property that determines how many rimes the completc: training data sec is l.-ISCd for
training the network is called net.adaptParam.passes. But, when using train, the same property is calted
net.trainParam.epochs.
>> net.trinFen = ‘traingdm’;
>» net.frainfaram.epochs = 1000;

»> net.adapiFen = ‘adaptwh’;
»> net.adaprParam.passes = 10;

I 19.4.3 Neural Network Graphical User Interface Tooibox

A GUI can be used to

. create nenworks;
. create data;

1

2

3. train the necworks;
4. export the networks;
5

. export the data to the commiand line workspace.
The salient fearures of GUI are the following:

1. It is designed to be simple and user-friendly. This tool lets you import potentially large and complex data
sets.

2. It also enables you to create, initialize, train, simulate and manage the neworks. It has the GUI
Network/Data Manager window.

3. The window has its own work arez, separate from the more familiar command line workspace. Thus,
when using the GUI, one might “export” the GUI results to the (command line) workspace. Similarly,
one might “import” results from the command line workspace ro the GUL

4. Once the Network/Data Manager is up and running, create a network, view it, toain ir, simulate it and
export the final results to the workspace. Similarly, import data from the workspace for use in the GUL

This tool lets you inport potentially large and complex data sets. The GUI a.!so enables you o create,
initialize, train, simulate and manage your necworks. Simple graphical representarions allow you to visualize
and understand necwork architecture (see Figure 19-2). .

The following example deals with a perceptron network, It gives a step-by-step procedure of creating a
nerwork.
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Figure 19-2 This window displays portions of the neural nerwork GUI. Dialogs and panes allow you ro
visualize your network (top), evaluare training results (botromy), and manage your
neworks {center).

Create a Perceptron Network (NN Tool)

Creace a perceperon network to perform the OR function in this example. It has an input vecror dasa
1=[0011;0101)anda target vector data 2 = [0 1 | 1]. The nerwork can be called OR Net. Once creared,
the network will be trained. Then save the nerwork, its output, ctc. by “exporting” it to the command Jine.

Inpus and targer
To starr, type NN tool. The window shown in Figure 19-3 appears.

First step is to define the network input, data 1, as having the pardcular value {0 0 1 ;
0 1 0 1], Thus, the nerwork had a two-element input and four sets of such two-element vectors are pre-
sented o it in training, Create New Data appears. Set the Name to dara 1, the Value o [00 1 1;0 1 0 1],
and make sure that Data Type is set to Inpats. The Create New Data window will then look like the one
shown in Figure 19-4.

Now click Creare to actually create an input file data 1. The Network/Data Manager window comes up
and dara 1 is shown as an inpurt.

Step 2 is to create a network target. Click on New Dara again, and this ime enter the variable name
data 2, specify the value [0 1 1 1] and click on Target under dara type. The window will look the one given
in Figure 19-5.
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Figure 19-4 Window for creating new daca (inpurs).

Again click on Create and see the resulting Nerwork/Data Manager window thar has data 2 as a targer as
well as che previous data 1 as an inpuc.

Create network:

Now we want to create a new nerwork, which is OR NET. To do this, click on New Network, 2nd a Create
New Network window appears. Enter OR NET under Network Name, Set the Network Type to Percepuon,
because that is the kind of network to create. The input tanges can be set by entering numbers in thar field,
but i is easier to ger them from the particular inpur dara that you want e use. To do this, click on the down
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Figure 19-6 Window for creating new network.

arrow ac the right side of Input Range. This pull-down menu shows thar you can get the input ranges from
the file p. This should lead 1o inpur ranges [0 1; 0 1]. We want 1o use a hardlim transfer function and a
learnp learning function, so set those values using the arrows for Transfer function and Learning function,
respectively. By now your Create New Nerwork window should look like the one given in Figure 19-G.
Next you might look at the network by clicking on View ( Figure 19-7). Figure 19-7 shows a nerwork with
a single inpue (composed of twa elements), 4 hardlim transfer funcrion and a sitigle outpur which is going to
be created. This is the perceptron nerwork. Now click Create co generate the aetwork. Now go back to the
Network/Data Manager window. Note that OR NET is now lisced asa nerwork.
Train the perceptronm:

To train the neework, click on OR NET to highlight ir. Then click on Train, This leads co a new window
labeled Networl:OR NET (Figure 19-8). At this point you can view the nerwork again by dlicking on the
1op 12b Train. You can also check on the initialization by clicking on the top tab Initialize. Now click on the
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Figure 19-7 Window to view the new architecrure created.

Figure 19-8 Perceptron net for AND function.

top tab Train. Specify che inpus and outpurs by clicking on rhc_leﬁ b Tra.iniflg Info and selecting dacal

from the pop-down list of inpurs and daca2 from the pull-down list of targets (Figure 19-8). | Thee
On clicking the Training Parameters tab, it shows paramerers such as the epo.chs and error goal. esk

parameters can be changed ar this point if dcsirecl.;\low click Train Network to train the perceptron networ!

following training results {(Figure 19-9).

and'lflfzst.ht;coail:nvori was :rn?ned to zerog:rror in four epochs. (Note thar other kinds of nerworks commonl-y

do not train to zero error and their errors commonly cover a much larger range. On tha account, plor their

errors on a log scale rather than on a linear scale such as that used above for perceprrons.)
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Figure 19-¢ Training results of OR function.

To check that the trained network does indeed give zero error by using the input p and simulating the
network, go to the Network/Data Manager window and click on Network Only: Simulate. This will bring
up the Network: OR NET window. Click there on Simulate. Now use the Input pull-down menu to specify
data 1 as the inpug, and [abel the output as OR NET_outputsSim to distinguish it from the training output.
Now click Simulate Network in the lower-right corner. Look ar the Network/Data Manager. It will show
a new variable in the outpur: OR NET_outputsSim. Double-click an it and a small window Daw:OR

I\?E_.T_ourputsSim appears with the value [0 1 1 1]. Thus, the nerwork does perform the OR of the inpurs,
giving 0 as an outpur only in this ficst case, when both inpurs are 0.

I 19.5 Fuzzy Logic MATLAB Toolbox

Fuzzy logic in MATLAB can be dealr very easily because of the existing new Fuzzy Logic Toolbox. This
pm_vid&s a complete set of Functions to design and implement various fuzzy logic processes. The major fuzzy
logic operations include fuzzification, defuzzificadon and the fuzzy inference. These all are performed by
means of various functions and can be even implemented using the GUI. Many of the applications can be

simulated using the “firezy logic controller” simulink block present in Matlab Simulink toelbox. The features
are the following,

1. It provides tools w create and edit Fuzzy Inference Systems (FIS).

2. Ir allows integrating fuzzy systems into simulation with SIMULINK.

3. It is possible ro create stand-alone C programs that call on fuzzy systems built with MATLAB.
The Toolbox provides three caregories of togls:

1. command line functions;

2. graphical or interactive wools;
3. SIMULINK blocks.
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I 19.5.1 Commands in Fuzzy Logic Toolbox

The various commands in Fuzzy Logic Toolbox 1o be operated in command line ate as follows:
GUI editors c

anfisedic.  ANFIS training and testing UT tool

findcluster: Clustering UT tool.

fuzzy: Basic FIS editor.

miedit: Membership function editor,

ruleedic  Rule ediror and parser.
ruleview:  Rule viewer and fuzzy inference diagram.
surfview:  Ourput surface viewer.
Membership funceions:
dsigmf:  Difference of two sigmoid membership functions.

gauss2mf  Two-sided Gaussian curve membership function.
gaussmf:  Gaussian curve membership function.

ghellmf:  Generalized bell-shaped curve membership funcrion,
pimf: Pi-shaped curve membership function.

psignf  Product of two sigmoid membership functions.

smf: S-shaped curve membership funcrion.

sigmif: Sigmoid curve membership function.

wapmf:  Trapezoidal membership function.

trimf: Triangular membership function.

zmf: Z-shaped curve membership funcrion.

Command line FIS functions:
addmf  Add membership function to FIS.
addrale:  Add rule to FIS.
addvar:  Add variable o FIS.
defurz:  Defuzzify membership function.
evalfis  Perform fuzzy inference calculation,
evalmf  Generic membership function evaluation.
gensurf:  Generate FIS ourput surface.
getfis: Ger fuzzy system properties.
mf2mf:  Translate parameters berween funcrions.
newfis:  Create new FIS.
parsrule:  Parse fuzzy rules.
plocfiss  Display FIS input-outpur diagram.
plotmf:  Display all membership functions for one variable.
readfiss  Load FIS from disk.

rmmf: Remove membership funcrion from FIS.
rmvar: Remove variable from FIS.

serfis: Ser fuzzy system properties.

showfs:  Display annotated FIS.

showrule: Display FIS rules,

writefis:  Save FIS o disk.




626

MATLAB Environment for Soft Computing Technigies

Advanced techniques .
anfis:  Training routine for Sugeno-type FIS (MEX only),
fem: Find clusters with fuzzy c-means clustering,

genfisl:  Generate FIS matrix using generic method.
genfisZ:  Generate FIS matrix using subtractive clustering,
subclust: Estimate cluster centers with subtractive clustering,

Miscellaneous functions:
cm_anvenﬁs: Convert v1.0 fuzzy marrix 1o v2.0 fuzzy structure,
discfis: Discretize a fuzzy inference system.

cvalmmf  For multiple membership functions evaluarion.

Buvear Concatenare macrices of varying size,
fuzarich:  Fuzzy arichmaric funcrion,
findrow:

Find the rows of a matrix that match the input seing,

genparam: - Generates initial premise parameters for ANFIS learning.
probor:  Probabilistic OR.

sugmax:  Maximum ourput range for a Sugeno system,
GUI helper files

cmfdl:  Add customized membership function dialog.

cmthldlg: Add customized inference method dialog.

fisgui: Generic GUI handling for the Fuzzy Logic Toalbox.

gfmfdlg:  Generate FIS using grid partition method dialog.

mfdlg; Add membership function dialog.

mfdrag:  Drag membership functions using mouse.

popundo:  Pull che lasr change off the undo sack.

pushundo:  Push the current FIS data onto the undo stack.

savedlg:  Save before closing dialog.

statmsg:  Display messages in 2 stacus field,

updefis:  Update Fuzzy Logic Toolbox GUI toals.

wdlg: Open from/save to workspace dialog,

I 19.5.2 Simulink Blocks in Fuzzy Logic Toolbox

Once fuzzy system is created using GUI tools or some other methad
SIMULINK using the firzzy logic controller (FLC) block as shown in Figure 19-10.

Make suze that the FIS matrix correspondi i
_ ponding co the fuzzy system is both in the MATLAB ks
and referred to by name in the dialog box associared with this FLC. Although it is possible ca use\‘:or ey

L

Fuzzy logic
controfler

» it can be directdy cmbedded into

he Puzzy

Figure 19-10 Fuzzy logic controller Simulink black.
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Figure 19-11 Membership functions.

Logic Toolbox by working serictly from the command line, in general it is much easier to build a system up
graphicafly so thar GUI tools are commonly used for building, editing and observing FIS.

The process of mapping from a given input to an outpur wsing fuzzy logic involves membership functions,
fuzzy logic operators and If-Then rules.

Membership functions.  This toolbox includes 11 built-in membership function types, built from several basic
functions: piecewise linear functions (friangular and trapezoidal), the Gaussian distribution function (Gaussian
curves and generalized bell), the sigmoid curve, and quadratic and cubic polynomial curves (Z, S, and Pi curves)
(Figure 19-11).

Fuzzy lagic operators:  According to the fuzzy logical operations, any number of well-defined methods can fill
in for the AND operation or the OR operation. In the Fuzzy Logic Toolbox, two built-in AND methods are
supported: min (minimum) and prod (algebraic product). Two buile-in OR mehods are also supported: max
{maximum) and the probor (probabilistic OR, also known as algebraic sum).

Based on implication methed, two buile-in methods are supported. These are the same functions that are
used by the AND method, so that, m/n method truncates the output fuzzy ser and prod scales the outpur
fuzzy ser.

Based on aggregation method, chree buile-in methods ace supported: smax (maximum), probor (probabilistic
OR) and sum (simply the sum of each rule’s outpur ser).

Although centroid calculation is the most popular defuzzification method, there are five builr-in metheds
supported: centroid, bisector, middie of maximum, largest of maximan and smallest of maximun.

If-Then rules: Since rules can be edited in chree different formars {verbase, symbolic and fndexed), verbose
format makes the system easier to interpret. Every rule has a weight (a number berween 0 and 1) which is
applied to the number given by the antecedent. Generally this weighe is 1 and so it has no effecc at all on che
implication process. For example, let us enter a sample rule {rule number one):

Verbose format. 1. if Temperature is warm then Sky is grey {1)

Symbolic formar: 1. (Temperature = = warm) =>Sky = grey (1)

Indexed formar 1,1 (1): 1

Here che first “1” corresponds to the inpus variable, the second corresponds to the outpur variable, the
third displays the weight applied to each rule and the fourth is shorthand that indicates whether this is an
OR {2) rule or an AND (1) rule, So a literal interpretation of rule number one is: “if inputl is MF1 (che first
membership function associared with input 1} then ourputl should be MF1 (the firse memberskip funcrion
associared with outpue 1) with the weight 17, Note that as long as the aggregation method is commutarive,
the order in which the rules are executed is not imporrant.

Once an FLC is ereated, it can be saved on a disk (FIS-file is created, i.e., juggler.fis) as an ASCII text
format so that it can be edired and modified. An FLC can also be saved into MATLAB wotkspace as 2 matrix
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variable {FIS matrix) so that it can be modified; however, its representation is extremely different from FIS-file
fepresentartion.

l1 9.5.8 Fuzzy Logic GU! Toolbox

The fuzzy logic can be simulated in MATLAB using GUL On typing “fuzzy” in the command prompr,
the fuzzy GUI wolbox opens up. The main windows corresponding w0 Fuzzy GUI tools are shown in
Figures 19-12-19-17. '
In Figure 19-12 the FIS editor — Mamdani or Sugeno model ~ is selected. The inference mechanism can be
selected at this step. The various mechanisms to be selected in the FIS editor are AND method, OR method,
implication, aggregation and defuzzification. Here, the number of input and ourput variables can be specified.
The membership function editor is shown in Figure 19-13. In this editor, for the inpur variable and the
corresponding output variable, the membership functions using linguistic variables along with cheir tange are
defined. Figure 19-13 shows the membership funcrion editor for the input variable and Figure 19-14 shows
the membership function editor for the output variable.
The rules to be formed based on the inpur variables o get the output are defined in the rule editor. The
inference of these rules gives the fuzzified outpur of the problem under consideration. For rule definition either
AND connective or OR connective can be used. Figure 19-15 shows a rule editor with 3 rules formutared.
The formulated rules can be viewed in the rule viewer as shown in Figure 19-16. On viewing these rules,
informarion about the output can be obrained.
Figure 19-17 shows the surface view of the defined fuzzy inference editor. The fuzzy logic GUI toolbox
helps us in designing a suirable FLC module for any application.

T L A

Figure 19-13 Membership function editor (input 1). ;
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; Figure 19-14 Membership function editor (output 1, in Sugeno-style}.
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Igure 19-16 Rule viewer (in Sugeno-style).
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F Suface Viewer: Unhiled

Figure 19-17 Surface viewer {input 1 and input 2 versus outpur 1}.

l19.6 Genetic Algorithm MATLAB Toolbox

The genetic algorithm {GA) is a methad for solving both constrained and unconstrained optimization prob-
lems that are based on nacural selection, the process that drives biological evolution. The GA repeatedly
modifies a population of individual solutions. At each step, the GA selects individuals at random from the
current population to be parents and uses them to produce the children for the next generation. Over suc-
cessive generations, the populacion “evolves” roward an optimal solution. One can apply the GA to solve
a variety of optimizatien problems chat are not well suited for standard optimization algorithms, including
problems in which the objective function is discontinuous, nondifferentiable, stochastic or highly nonlinear.

The GA and ditect search toolbox are a coflection of funciions that extend the capabilicies of the optimiza-
tion toolbox and the MATLAB numeric computing environment. The GA and direct search toothox include
routines for solving optimization problems using

1. genetic algorithm;
2. direct search.
These algorithms enable you to solve a variety of optimization problems that lie ourside the scope of the
Optimization Toolbox.

The GA uses three main types of rules at each step to create the next generation from the current
population:
1. Selection rules select the individuals, called parents, that contribure to the population at the next generation.

2. Crossover rules combine two parents to form children for the next generation.
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3. Mutarion rules apply random changes 1o individual parents to form children.
The GA at the command line calls the GA funcrion ga with the syrieax

{x ftval] = ga{@fimessfun, nvars, options)

where @fimessfun is a handle to the fitness function; nvars is the number of independent variables for the

fitness function; options is a structure containing options for the GA. If you do not pass in this argument,
ga uses its default options.

The results are given by
x: Point av which the final value is atrained.
fval: Final value of the fimess function.

The GA tool is a GUI that enables one to use the GA without working at the command line. To open the
GA tool, enter

Garool
at the MATLAB command prompt.

The Optimization Toolbox extends the MATLAB technical computing environment with tools and
widely used algorithms for standard and large-scale optimization. These algorithms solve constrained and
unconstrained continuous and discrete problems. The toolbox includes functions for linear programming,
quadratic programming, nonlinear optimization, nonlinear least squares, nonlinear equations, muldi-objective
optimization and binary integer programming.

l1 9.6.1 MATLAB Genetic Algorithm Commands

The various commands used in GA MATLAB toolbox are as follows.
binZin:  BINary string to INTeger string conversion.
binZreal:  BINary string ro REAL vector conversion.
bindecod:  BINary DECODing to binary, integer or real numbers.
Compdiv: COMPute DIVerse things of GEA Toolbox.
compdiv2: COMPute DIVerse things of GEA Toolbox.
compere:  COMPETition between subpopulations.
Comploc:  COMPute LOCal model things of toolbox.
Compplot: COMPute PLOT things of GEA roolbox.
peamain2:  MAIN funciion for Genetic and Evolutienary Algorithm toolbox for matlab.
Initbp: CRea'Te an inirial Binary Population.
Inicip: CReaTe an initial {Integer value) Popularion.
Initpop:  INITialization of POPulation {including innocularion).
Initpp: Create an INITial Permutation Population.
Initrp: INITialize a Real value Popularion.

Migrate:  MIGRATIon of individuals between subpopulations.
Muate:  high level MUTATion function.

Mutbin:  MUTadon for BINary representation.

Mutbmd:

real value Mutation like Discrete Breeder genetic algorithm.
mutcomb:  MUTation for combinatorial problems.

mutesl:  MUTadon by Evolutionary Strategies 1, derandomized self adaprion.
mutes2  MUTation by Evolutonary Steategies 2, derandomized self adaption.

T
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mutexch:
murting:
Murinvert:
MuLmove:
Mutrand:
Mutrandbin:
Mutrandint:
Mutrandperm:
mutrandreal:
Mutreal:
Mutswap:
IUESWapryp:
rankgoal:
Ranking:
rankplt:
rankshare:
recdis:
recdp:
recdprs:
recgp:
recint:
reclin:
reclinex:
recmp:
recombin:
[Ecpm'.
recsh:
recshrs:
recsp:
ICCSpIS:
reins;
reinsloc:
reinsreg:
selection:
sellocal:
selrws:
selsus
seltour:
seltrunc:
thx3bin:
thx3comp:
thz3esls

thx3guifunl:
thx3int:
thx3perm:

MUTation by eXCHange. .

MUTation for INTeger representation.

MUTadon by INVERTing variables.

MUTation by MOVEing variables.

MUTation RANDom.

MUTation RANDom of binary vatiables.

MUTasion RANDom of integer variables.

MUTation RANDom of binary variables.

MUTztion RANDom of real variables. )

real value Muration like Discrete Breeder genetic algotithm.
MUTation by SWAPping variables.

MUTation by SWAPping variables of identical ope
perform goal prefereuce calculation between multiple objective values.

RANK-based fitness assignmen, single and multi objectve, linear and nonlinear.

RANK two multi objective values Partially Less Than.

SHARing berween individuals.

RECombination DIScrete,

RECombination Double Point.

RECombination Double Point with Reduced Surrogate.
RECombination Generalized Position.

RECombination extended INTermediate.

RECombination extended LINe.

EXtended LINe RECombination.

RECombination Multi-Poin, low level function.

high level RECOMBINatiou function.

RECombination Partial Matching.

RECombination Shuffle.

RECombination SHuffle with Reduced Surrogate.

RECombination Single Point.

RECombinatdion Single Point with Reduced Surrogate.

high-level RE-INSertion function.

R.ég.l:llNSertion of offspring in population replacing parents LOC-:]J.
REINSertion of offspring in REGional population model replacing parents.
high ievel SELECTron function.

SELection in a LOCAL neighborhood.

SELection by Rouletre Wheel Selection.

SELection by Stochastic Universal Sampling,

SELection by TOURnament.

SELection by TRUNCation. _ ‘ .
ToolBoX function to define parameters for optimization of binary v‘fl.tlablcs.
ToolBoX function to define paramerers for COMPering subpopulation.

ToolBoX function to define parameters for local oriented optimization of real

variables. o -
ToolBoX function to define parameters for optimization, test of gui.
ToolBoX funcrion to define parameters for optimization of integer variables.

ToolBoX function to define paramerers for optimizasion of permutation variables.
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thi3plotl: ToolBoX function to define paramerers for grafical display options.

thx3real:  ToolBoX function to define paramecers for aptimization of real variables.

terminai:  TERMINATIon function.

Objective funcrions:
inirdopi: INITialzation function for DOuble Integrator objdopi.
initfun1: INITialzation function for de jong’s FUNction 1.
mopfonsecal: MultdObjective Problem: FONSECAs function 1.
mopfonseca2:  MultiCGbjective Probler: FONSECA’ function 1.
maptest: MultiObjective funcdon TESTing,
objéwings:  OBJective function FOUR-WINGS.
objbean: OBJective function for BRANin rcos funcrion,
objdopi: OBJective function for DOuble Inteprator.
objeasa: OBJective function for EASom function.
objflerwell: ~ OBJective function after FLETcher and PoWELL,
objfracral: OBJective function Fractal Mandelbrot.
objfunl: OBJective function for de jongs FUNction 1.
objfun10: OBJective function for ackley’s path FUNctien 10.
objfunll: OBJective function for langermann’s FUNction 11,
objfun12: OBJective function for michalewicz's FUNcrion 12.
objfun]a: OBJective funcrion for axis parallel hyper-ellipsoid.
objfunlb: OBJective function for rotated hyper-¢llipsoid.
objfunle: OBJective function for moved axis parallel hyper ellipsoid Ic.
objfun2: OBJecive function for rosenbrock’s FUNction.
objfuné: OBJective function for rastrigins FUNetion 6.
objfun7: OBJective function for schwefel's FUNcrion.
abjfun8: OBJective funcion for griewangk’s FUNction.
objfun9: OBJective function for sum of different power FUNction 9.
objgold: OBJective function for GOLDstein-price function.
objharv: OBJective function for HARVest problem.
objintl: OB]Jective function for INT function 1.
objine2: OBJective function for INT function 2,
objine3: OBJective function for INT funcrion 3.
objinr4: OBJective function for INT function 4.
objling: OBJective funcrion for discrere LINear Quadraric problem.
objling2: OBJective function for LINear Quadraric problem 2.
objonel: OBJective function for ONEmax function 1,
objpush: OBJective function for PUSH-cart problem.
objridge: OBJective function RIDGE.
objsixh: OBJective function for SIX Hump camelback funcrion
objsoland: OBJective function for SOLAND function,
objtspl: OBJective function for the traveling salesman exaraple.
objsplib: OBJective function for the traveling salesman Library.
plotdopi: PLOTing of DO{Ppeljuble Integration results.
plousplib: PLOTing of results of TSP optimization (TSPLIB examples).
simdopil: M-file descripion of the SIMULINK system named SIMDOPIL.
simdopiv: SIMularion Modell of DOPpelintegrator, s-function, Vectorized.
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simlingl: ~ M-file descriprion of the SIMULINK sysremlnarned SIMLINQI.
simling2:  Modell of Linear Quadraric Problem, s-function.

tsp_readlib: TSP utlity function, reads TSPLIB-‘data_f_illes.

tsp_uscity: TSP utility function, reads US Ciry deﬁI}vltlons.

Plot funcrions:

Fidiste:  FlTness DISTance Correlation compuration.
meshvar:  create grafics of objective functions with plotmesh.
plotmesh:  PLOT of objective functions as MESH PI-O[.
plotmop:  PLOT propertics of MultiObjective functions.
reslook:  LOOK at saved RESules. o
resplo:  RESult PLOTing of GEA Toolbox optimization.
samdaea:  sammon mapping: dara examples.
samgrad:  Sammon mapping gradient calculation. .
sammon: Multidimensional scaling (SAﬁI:(MON mapping).
obj:  Sammon mapping objective funcdon. ) _
iaaipl;t: Plot Functior? Fpor %/Iulltidimcnsional scaling (SAMMON mapping}.

l 19.6.2 Genetic Algorithm Graphical User Interface

The GA rool is a GUI that enables you 10 use the GA without working at the command line. To open the
GA rool, enter

gatool

ac the MATLAB command prompt. This opens the tool as shown in Figure 19-18. To use the GA rool, you
must first enter the following information.

. L .o ™
1. Fitness funcsion: The objective funceion you want to minimize. Enter the ﬂtncss-ﬁ.lncuon in the fo
@firnessfun, where frnessfun.m which is an M-file that compures the fimess funcrion.

2. Number of variables. The number of variables in the given fitness funcrion should be given.
The plat options

. best fitness;

. best individual;
. distance;

. expectation;

. genealogy;

. range;

. score diversity;

. SCOres;

Vo =1 G WA e W

. selecrion;

. StOpping.

p—
(=4



Figure 19-18 Geneic algorithm tool,

On the basis of the problem, custom Fancrion may also be built. The various parameters essential for running

GA tool should be specified i i i
decrmid fOHEw ;lc appropriately. The parameters appear on the right-hand side of the GA tool. The

Population: In this case population type, population size and creation funcrion may be selected. The

initial population and initial i i « § i
il fgiven. imuial score may be specified, if not, the “GA tool” creates them. The initial range

L

Fismess scaling: It should be any of the following:
* rank;

* proportional;

* top;

* shift linear;

* custom.

3. Selection: The selection is made opy any one of the methods shown

4 Reproduction: In reproduction che elite co
specified, it is raken as 2 (Figure 19-20).

in Figure 19-19.
unt and crossover fraction should be given. If elite count is not

5. Musation: Generally Gaiissian or uniform mutation is carri

muacon operation i 19 20y od out. The user may define own customized

t

cr
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Figure 19-19 Selection.

_Figure 19-20 Reproduction.

Figure 19-21 Muration.

6. Crossover. The various crossover techniques are shown in Figure 19-22,

7. Migration: The parameter for migration should be defined as in Figure 19-23.

8. Hybrid funceion:  Any one of the hybrid functians shown in Figure 19-24 may be sefected.

9. Stopping criteria:  The stopping criteria play 2 major role in simulation. They are shown in Figure 19-25.

The other parameters Queput funcidion, Display to command window and Vectorize may be suitably defined
by the user.

Running and Simulation
The menu shown in Figure 19-26 helps the user for running the GA tool.

The running process may be temporarily stopped using “Pause” option and permanently stopped vsing
“Stop” option. The “current generacion” will be displayed during the iterarion. Once the iterations are
completed, the sratus and resules will be displayed. Also the “final point” for the fitness function will be
displayed.
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Figure 19-22 Crossover.

Figure 19-23 Migration.r

Figure 19-25 Stopping criteria,
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Figure 19-26 Run solver.

L1 9.7 Neural Network MATLAB Source Codes

1. “Wite 2 program to implement AND function using ADALINE with bipolar inputs and outputs

Source Code

clear all;

cle;

disp(-adaline network for and function bipolar inputs. bipolar

targets’);

xi=[1 1 -1 -1); %input pattern
x2=[{1 -1 1 ~11; %input pattern
x3={1 1 1 1]; %x3 for bias
e=[1 -1 ~1 ~11; fLarget
wl=0.1;
we=0.1;
»=0.1;
alpha=0.1;
e=2;
delwl=0;
Gelw2=0;
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delb=0;
epoch=0;
while(e>1.018)
epoch=epoch+1
e=0;
for i=1:4
nety (i)=wl*x1(i}+w2*x2(i}+h;
nt=[nety(i) t{i)]; %netinput, target
delwl:alpha*(t(i)—nety[i))*xl(i);
delw2=a1pha*(t(i)—nety(i))*xZ(i);
delb=alpha* (t{i)-nety{i)) *x23{i);
we=[delwl delw2 delbl; $%weight chanches
wl=wl+delwl; %updating of weights
w2=w2+delw2;
b=b+delb;
w=[wl w2 b]; %weights
x=[x1{i}) x2{i} %3(i)]; %input pattern

pr=[x nt we wj %to print the result
end

for i=1:4
nety{i)=wl*x1(i)+w2*x2({i}+b;
e=e+(t{i)-nety(i}} 2;
end
end

2. Write a pragram ro implement AND funcrion using MADALINE with bipolar inputs and outputs.
Source Code

clear all;
clc;
disp{‘madaline network for and Function bipolar inputs,
targets');
x1=[1 1 -1 -13}; %input pattern
x2=[1 -1 1 -11; %input pattern
x3=[1 11 1]; %x3 for bias
t=[{1 -1 -1 -1]; %target
wli=0.1;
wl2=0.1;

bipolar

alpha=0.5;

delwll=0;
delwl2=0;
delw2l=0;
delw2i=0;

epry
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delbl=0;
delb2=0;
delb3=0;
delvl=0;
delv2=0;
epoch=0;
while (e>1.00)
epoch=epoch+1
e=0;

for i=1:4
zinlaxl (i} *wll+x2 (i) *w21l+bl;
zin2=x1(i)*w12+x2{i)*w22+b2;
z=[zinl zin2};
if (zinli>=0)

z1=1;
else

zl=-1;
end

if {zin2»>=0)
z2=1;
else
z2=-1;
end

hid=i{z1 2z2];
nety=b3+zl*v1+22*v2;

if (nety>=M
y=1;
else
y=-1;
end
nt=[t (i) nety ¥l;

if (£(i}==1}
if (zinl<zin2)
delbl=alpha*(1-zinl);
hl=bl+delbi: )
delwll=alpha*(lazin1)*xl(l);
wll=wll+delwll; .
delw2l=alpha*(l-zinl)*x1{i);
w2lsw2l+delw2l;

else .
delb2=alpha*{i-zin2);
b2=b2+delb2; ]
delwl2=alpha* (1~zin2)*x2 (1) ;
wl2=wl2+delwl2; )
delw22=alpha* (1-zin2) *x2{i);
w22=w22+delw2?;

end
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elseif {t(i)==-1)
if (zinls0)
delbl=alpha*({~1-zin1)
bl=bl+delbi;

H

de1w11=a1pha*{—l—zinl}*xl(i);

wll=wll+delwll;

delel:alpha*(—l-zinl}*xl(i);

w2l=w2l+delw2l;

else
delb2=alpha* (-1-zin2}
b2=b2+delb2;

de1w12=alpha*(-1—zin2)*x2(il;

WlZ=wl2+delwi2;

de1w22=alpha*(-1—zin2)*xZ(iJ;

we2=w22+delw22;
end
end

del=[delwll delw2l delbl delwl?2 d

ins{x1(i) x2(i) x3({1)];
bi=[vl v2 b3];

pr=(in z hid nt de] bi]
end

for i=1:4

zin1=b1+x1(i)*w11+x2(i)*w21;

zin2=b2+xl(i)*w12+x2(i}*w2
z=[zinl zin2];
if (2inl>=0}
z1=1;
else
z2l=-1;

end
if (z2in2»=0)
z2=1;
else
22=-1;
end
nety=vi*zl+v2*z2+b3;
e=e+(t(i)-nety) 2;
end
end

3. Write a MATLAB pro
nule,

Source Code
clear all;
cle;

disp(’ AUTO ASSOCTIATIVE NETWORK

2;

elw22 delb2];

E7am 10 constrisct and test auco associative network for input vector using HEBB

HEBB RULE’) ;

T F
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w=[0 000 ;0000 ;d 000:000G01;

s=f1 11 -11;

£=[(1 11 -1];

ip=[1 -1 -1 -1);

disp(‘INPUT VECTOR'):

s

for i=1:4
for j=1:4

wii,J)=w(i,j)+{s(i)*e{)};

end

end

disp(’WEIGHTS TO STORE THE GIVEN VECTOR IS'}:

gisp('TESTING THE NET WITH VECTOR'};:
ip
yin=ip*w;
for i=1:4
if yin{i}>0
y(i}=1;
else
y(i)=-1;
end
end
if y==s
disp{'PATTERN IS RECOGNIZED’)
1
© zisp(’PATTERN IS NOT RECOGNIZED')
end

Output

»> AUTO ASSOCIATIVE NETWORK----- HEBB RULE
INPUT VECTOR
5 =

111 -1 X
WEIGHTS TO STORE THE GIVEN VECTOR I
w =

[ el
1
IR el o

1

TESTING THE NET WITH VECTOR
ip =

1-1-1-1
PATTERN IS NOT RECOGNIZED

R ]
L ol

4 rite I l AB [OPT: 1 test (4] OCIALYE ]l&!work f()f input veCror using ourer
CONSTIUCT a d. esC ARtO assocr: D
. W 1e a M.A P Og am 0

product rule.

Source Code
clear all;
clec;
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disp('To test Aute associatie network using outer product rule for
following input vector’); '
x1=[1 -1 1 -11;
x2=[11 -1 -1);
n=0;
wl=x1"'*x];
wZ=x2'*x2;
win=wl+w2 ;
disp{‘input’});
x1
x2
disp(’'Target’);
=1
x2
disp{‘Weights);
wl
w2
disp{’'Weight matrix using Outer Products Rulae’};
wim
yin=xitym;
yin
for i=1:4
if(yin(i}>0)
¥=1;
else
y=-1;
end
ny{i}=y;
if (y==x1{i})
n=n+1;
end
end
ny
if{n==4)
disp(’This pattern is recognized’);
else
disp(’This pattern is not recognized’);
end
n=0;
yin=x2*wm;
yin
for i=1:4
iffyin{i)>0}
y=1;
else
y=-1;
end
ny (i}=y;
if(y==x21(1i))
n=n+l;
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end

end

ny

if [n==4) .
disp!('This pattern is recognized’); .

else . .
disp{'This pattern is not recognized’);

end

end

Output

s> To test Auto associative network u8ing outer preduct rule for
following input vector

input
x1l =
1-11-1
x2 =
11 -1 -1
Target
x1l =
T1-11 -1
X2 =
11-1-1
Weights
wl =
1 -1 1-1
-1 1 -1 1
1 -1 1-1
-1 1-1 1
w2 =
i1 -1-1
11 -1 -1
-1 -1 1 1
-1 -1 1 1
Weight matrix using Outer Products Rule
wWin =
2 0 0-2
0 2 -2 0
0-2 2 ©
-2 0 0 2
yin =
4 -4 4 -4
ny =
1-11 -1
This pattern is recognized
yin =
44 -4 -4
ay =
11 -1 -1

This pattern is recognized
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5. Write a MATLAB program to construct and test hereroassociarive necwork for binacy inputs and targers.

Source Code

%To construct and test Heteroassociative network for binary inputs
and targets
clear all;
cle;
disp(’Heteroassociative Network’);
x1=[1 0 0 0);
X2=(11 0 0];
x3=[0 00 1);
x4=[0 0 1 1};
tl={1 0];
E2=[1 07;
£3=[0 13];
td=[0 1];
n=0;
for i=1:4
for j=1:2
W(i.j)=((2*x1(i))—l)*((2*t1(j))-1)+((2*x2(i))—1)*({2*t2(:i))—1)+
{(2*x3(i})—1)*((2*t3[j)J~1)+((2'x4(i))-13*((2*t4(j))—1);
end
end
W
yinl=xlvy
Yyin2=x2+%w
Yin3=x3*y
yind=x4d*w
tl={ 1 -1];
t2=[ 1 -1];
E3=[-1 1];
td=1-1 171;
for i=1:2
if{yinl(i)>0)
yi(i)=1;
elgeif (yinl{i)==0)
y1{i)=0;
else
yl(i)=-1;
end
end
vl
for i=1:.
if{yl{iy==t1(i})
n=n+l;
end
end
if {n==2)
disp('The pattern is matched’);
else
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disp(‘'The pattern is not matched’);
end
n=0;
for i=lL:2
if (yin2 (i)>0}
y2(i)=1;
elseif (yin2(i)==0}
y2(i}=0;
else
y2{il=-1;
end
end
y2
for i=1:2
if(y2(1)==t2(1))
n=n+l;
end
end
if (n==2)
disp(’The pattern is matched’};
else
disp{’'The pattern is not matched’};
end
n=0;
for i=l:2
if{yin3{i)>0)
y3{i}=1;
elseif (yin3d{i)==0)}
y31i)=0;
alse
y3(ii=-1;
end
end
¥3
for i=l::z
1f{y3(i)==t3 (1))
n=n+l;
end
end
if [n==2}
disp(’The pattern is matched’};
else
disp('The pattern is not matched');
end
n=0;
for i=1:2
if (yind {1)>0}
y4d{i)=1;
elseif (yind{i)==0)
y4{i)=0;
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6. Write a MATLAB program to implement Discrete Hopfield Network and test the input partern.

else
ya(iy=-1; "
end
end
¥4
for i=1:2
if{yd(i)==td (1))
n=n+l;
end
end
if {n==2)
disp(’The pattern is matched’);
else
disp{’'The pattern is not matched’);
end
n-0;

Source Code

clear all;
clc;
disp('Discrete Hopfield Network');
theta=0¢;
x=[1"-1-1-1;-1 11 -1;-1 -1 -1 1}
%Calculating Weight Matrix
w=x'*x
%calculating Energy
k=1;
while (k<=3)
temp=0;
for i=1:4
for j=1:4
temp=temp+ (x(k, 1) *wi{i, j)*x{k,j));
end
end
E{k)=(-0.5) *temp;
k=k+1;
end

$Energy Function for 3 samples
E

%Test for given pattern s=[-1 1 -1 -1]
disp(’Given input pattern for testing');
Xi=[-11 -1 ~-1)
temp=0;
For i=1:4

for j=1:4

temp=temp+(x1 (1) *w(i, 3} *x1(j)};

end

end

10.7 Neural Network MATLAB Source Codes
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SE=(-0.5) *temp
disp{‘By synchronous updation method’};
disp(’The net input calculated is'};
Cyin=xl*w
for i=1:4
if (yin(i)>theta)
y(i)=1:
elseif (yin{i)==theta)
y{i)=yin(i};
else
y{iy=-1;
end
end

disp{‘The output calculated from net input is’);

Y
temp=0;
for i=1:4
for j=1:4
temp=temp+(y (i) *w(i, j}*y(3));
end
end
SE=(-0.5}) *temp
n=0;
for i=1:3
if {SE==E(i})
n=0;
k=1;
else
n=n+1;
end
end

if (n==3)

disp('Pattern is not associated with any input pattern’);

else
disp(’'The test pattern’);
x1
displ’is associated with’);
xlk, )

end

Output

»» Discrete Hopfield Network

X =
1-1-1-1
-1 1 1 -1
-1 -1 -1 1
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w = -
3-1-1-1
-1 03 3 -1
-1 03 31
-1-1-1 3

E = -10 -12 -10

Given input pattern for testing
#l =-11-1-1

SE = -2

By synchronous updation method
The net input calculated is

yin = -2 2 2 -2

The output calculated from net input is
y=-111-2

SE = -12

The test pattern

xI =-11-+-1 -1

is associated with

ans = -1 11 -1

7. Write a program to implement Kohonen self-organizing feature maps for given inpur pattern using

learning rate as 0.6.

Source Code
clear all;
clc;
disp(‘Kohonen self organizing feature maps’}:
disp( The input patterns are');
x={1100; 0001; 1000;0011]
t=1;
alpha(t)=0.§;
e=1;
disp(‘Since we have 4 input pattern and cluster unit to be formed
is 2, the weight matrix is’);
w=[{0.2 0.8; 0.6 C.4; 0.5 0.7; 0.9 0.3}
disp('The learning rate of this epoch is‘);
alpha
while(e<=3)
i=1;
j=1;
k=1;
m=1;
disp{'Epoch =');
e
while(i<=4)
for j=1:2
temp=0;
for k=1:4
temp= temp + {{w({k,j)-x(i,k)) 2};
end
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D{j)=temp
end
if(D(L1<D{(2)]
J=1;
else
J=2;
end
disp(’The winning unit is ');
J
disp('Weight updation’};
for m=1:4
wlm,J)=w({m,J) + (alphale) * (x{i,m)-wim,J}});
end
w
i=i+1;
end
temp=alphalel;
e=e+l;
alphale}={0.5*temnp);
%displ’First Epoch completed’):
%disp{‘Learning rate updated for second epoch’});
alphaie)
end

8. Write a MATLAB program to implement full counter propagation network for 2 given input pattern.

Source Code

clear all;

cle;

disp(‘FULL COUNTERPROPAGATION NETWORK ')
x=[1 00 0);
y={1 0};
alpha=0.4;
beta=0.3:
a=0.2;

b=0.1;

e=1;

v=[0.8 0.2; 0.8 0.2;
w=[0.5 0.5; 0.5 0.5]);
t=[0.6 0.4 0.4 0.6];
u=[0.7 0.7};

0.2 0.8; 0.2 0.8]1;

while{e<=3)

m=1;

n=1;

for 3=1:2
cemp=0;
for k=1:4

temp= temp + ((vik,j)-x0c)1” 2):

end
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for k=1:2 3(n)=u(n) + (afoe} * {y(m)-uln)));
temp= temp + ((w{k,j}-v{k})" 2); :n
end
eng(j)=temp a{e)=(0.5*tema);
. - * .
1£(D(1)<D(2)) 1 ﬁ(e)-co.s temb) ;
J=1; !
else ] b
J=2; I end
tel(e)=e;
S i i | xl=te;
disp('The winning unit is ); 5 N
J | :
disp(‘Weight updation’); § yl=alpha;
for m=1:4 : yzibeta;
vim,J)=vi{m,J) + (alpha{e) * {x(m)-v(m,J))); ‘ ﬁzg
?d ; figure(l)
for n=1:2 ' h=plot(xl,yl,xl,y2,x2,y3,x2,y41‘
) : setth, {'Colox'},{'x';'g";'b';'m'})
win,J)=w(n,J) + (beta{e} * (yin}-win,J}1)); ‘
end grid on
w xlabel {*EPOCH')
ylabel (*ERROR RATE®) oK
itle (! COUNTERPROPAGATION NETW ' .
cencerametr o : izzeﬁé(h ‘alpha’, 'beta’,'a’,'b"}
tembeta=betale]; , - o
temazafe) ; The error rate versus epoch for [ull counter propagation network is showr in Figure 19-27.
temb=b{e};
osmes -} Finuiz Ne. 1 -
tele)=e; CRT AT
ese+l;
te(e)=e;

tel(oe)=ce;
alpha(e)=(0.5*temalpha) ;
alpha
beta(e)={0.5*tembeta};
beta

disp(’ for Weight updation from cluster unit to output unit‘}:
for m=1:4
vim J)=v(m,J) + (alpha(e) * (x(m)~v(m,J)));:
end
v
for n=1:2
win,J=w(n,J) + {beta(e) * (v (r)-win,d}));
end
w
for m=1:4
E(m)=ti(m} + (bfoe) * {x{m) -t (m) ) ) ;
end
t ' Figure 19-27 Epoch vs error rate for full counter propagation nerwork.
for n=1:2 .

il
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9. Implement a back propagation
Perform 3 epochs of operation,

Source Code

$back propagation network
clear all;
cleg;

disp(‘Back pbropagation Network');

v=[0.7 -0.4;-0.2 0.3]

x=[0 1]

t=[1]

w=[0.5:0.1]

t1=0;

wb=-0.3

vb={0.4 0.6)

alpha=0.25

e=1;

temp=0;

while (e<=3)

e
for i=1.2
for j=1:2
temp:temp+(v(j,i)*x(j]);

end
zin(i)=temp+vb(i);
templ=e (-zin(i}yy;
£z2{i)=(1/{1+templ});
z{i)=fz{i);
fdz(i):fz(i)*(l—fz(i]);

temp=0;
end
for k=1
for j=1:2
temp=temp+z () *w (5, k};
end

yin(k}=temp+wb(k);
fy(k)={1/(1+(e -¥inik)}));
yik)l=fy(k);
temp=0;

end

for k=1
fdy(k):fy(k)*(l—fy(k));

delk(k)=(t(k)—y(k))*fdy(k);
end

for k=1
for j=1:2
dw(j.k)=alpha*de1k(k)*z(j);
end

necwork for a given input pattern by a suirable MATLAB program

19.7 Naural Network MATLAR Source Codas 855

dwb (k) =alpha*delk (k) ;
end

for j=1:2
for k=1
delin(j)=delk(k)*w(j, k);
end
delj{i)i=delin(j)*fdz(j};
end

for i=1:2
for j=1:2
dvii,j)=alpha*delj(j}*x(i);
end
dvb(i)=alpha*delj(i):
end

for k=1
for j=1:2
wi{j. ki= w(j,k)-\-dw(j,k];
end
wb (k) =wb (k) +dwb (k) ;
end
W, wb

for i=1:2
for j=1:2
vii,jr=vii, jr+avi{i,i};
end
vbi{i)=vb{i)+dvb(i};
end
v,vb
te(e)=e;
e=e+l;
end

10. Write a program to implement ART 1 network for clustering inpus vectors with vigilance paramerer.

Source Code
clear all;
cle;
disp (’Adative Resonance Theory Network 1°):
L=2;
m=3;
n=4;
rho=0.4;
te=L/ (L~1+n};
te=te/2;
b=[te te te;te Le te;te te te;te te te&l
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t=ones(3,4)

s=[1200;0001;100 0:0 01 1]
ecl; ’

while(e<=4)
temp=0;
for i=1:4
temp=temp+s (e, i) ;
end
ns=temp;
x{e,:)=s(e,:);
for i=1:3
temp=0;
for j=1:4
Cemp=temp+(x (e, }*b(j,1i});
end
yin(i)=temp;
end
3=1;
ifJ(iin(jJ>=yin(j+lj& yin(j}>=yin{j+2))
eljeif (yig(j+1]>=yin(j)&yin(j+1)>=yin(j+2))
else
J=3;
end
J
for i=1:4
x1(i)=x{e, i) *L(J,1i);
end
®1;
temp=0;
for i=1:4
CLemp=temp+x1 (i) :
end
nx=temp;
n=nx/ns;
if (m<rho)
Yin(J)=-yin{J);
d=1;
ifJ(§in(j)>=yin(j+1J&yin(jJ>=yin(j+2)1
el:e;f (yin(j+1)>=yin(j}&yin(j+1)>£yin(j+2)J
else
J=3;
end
J
end
for i=1:4

19.7 Neural Network MATLAB Source Codes

657

b
for i=1:4
(T, i)=xl(i});
end
£
e=e+l;
end
Ontpur
»> Adative Resonance Theory Network 1
b =
0.2000 ©0.2000 0.2000
0.2000 ©0.2000 0.2000
0.2000 0.2000 0.2000
0.2000 0.2000 0.2000
£ =
1 1 1 1
1 1 1
1 1 1 1
5 =
1 1 0 0
0 0 0 1
1 0 0 o0
0 0 1 1
J =1
b =
0.6667 0.2000 0.2000
D.6667 0.2000 0.2000
¢ 0.2000 0.2000
0 0.2000 0.2000
£ =
1 1 0 0
1 1 1
1 1 1 1
J =2
b =
0.6667 0 0.2000
0.6667 0 0.2000
0 0 0.2000
¢ 1.0000 0.2000
t =
1 1 0 0
0 0 0 1
11 1 1

temp=0;

temp=L-1+nx;

b(i,J)={L*x1(i))/temp;
end
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J =1
b =
1.0000 0 0.2000
0 0 0.2000
0 0 0.2000
0 1.0000 0.2000
t =
1L 0 0 0
0 0 0 1
1 1 1 1
J =2
h =
1.0000 0 0.2000
0 0 0.2000
0 0 0.2000
0 1.0000 0.2000
t =
1 0 0 0O
0 0 0 1
11 1 1

11. Implement adaprive resonance theory nerwork 2 for given inputs by a MATLAB progeam. Perform 2

irerations only.

Source Code
clear all;
clec;

disp(’Adative Resonance Theory 2°};

s=[0.8 0.6]

a=10;

b=10;

c=0.1;

d=0.9;

e=0;

rho=0.9;

theta=0.7;

wb={7.0 7.0];

wk=[0 0];

alpha=0.6;

it=1;

u=[0.0 0.0]

tem=0;

Eor i=1:2
tem=s{i} Z2+tem;

end

ns=sqrt{tem);

p=[0 0]

for i=1:2
x(1)=s(i);
wii)=sli);

|
|
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qlil=p(i);
end
X
w
q
temp=0;
templ=0;
for i=1:2
temp=wi{i) 2+temp;
templ=p(i} 2+templ;
end
nw=sqrt{temp) ;
np=sqrt{templ] ;

for i=1:2
if {(x[(i)>=theta)
fx=x({i};
else
fx=0;
end
if (gti)»>=theta)
fg=qii};
else
fg=0;
end
v(i)=fx+{b*fq);
end
v

tem=0;

for i=1:2
tem=tem+v{i} 2;

end

nv=sgrt{tem);

disp(’Updating Fl activation again’};

for i=1:2
ul{iy=v{i);
wi{il=s{i)+(a*uli));
pliy=uii);

end

u

W

P

tem=0;

temp=0;

for i=1:2

tem=tem+w (i) 2:
temp=temp+p{i} 2:
end
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nw=sqgrt{tem); .
np=sqrt (temp) ;
for i=1:2
x{i}=w(i};
Ai)=p(i);
end
x
q
for i=1:2
if {x(i)>=theta)
Ex=x(i);
else
fx=0;
end
if (qli}>=theta)
fo=q(i};
alse
fg=0;
" end
V(i)=fx+(b*fq);
end
v

disp(’Computing signal to F2');

for i=1:2
temp=0;
Lemp=temp+wh (i} *p(i};
Y (i} =temp;

end

Y

temp=0;

templ=0;

for i=1:2
temp=temp+v(i) 2;
templ=tampl+u(i) 2;

end

nv=sgrk (temp) ;

nu=sqgrk (templ) ;

for i=1:2
uliy=v{i);
p(i)=u(i)+(d*wt[i]);

end

u
P

temp=0;
for i=1:2

Lemp=temp+p (i) 2;
end
np=sqgrt{temp} ;
for i=1:2

r(i}=(u(i)+c*9(i))/(e+nu+(c*np));

|
|
i
'
)
I
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end
temp=0;
for i=1:2

temp=r(i) 2+temp;
end
nr=sqrt{temp);
i=1;
if(y(i}>=y(i+l))
J=1;
else
J=2;
end
%Check for RESET
if {nr>=rho}
for i=1:2
wiil=s(i)#a*u(i);
v{i)=fx+b*fq;
temp=0;
tem=0;
for i=1:2
temp=temp¥w (i) 2;
tem=tem+p{i) 2;
end
nw=sqrt (temp) ;
np=sqrt (tem) ;
x(i}=w(i}/ (e+nw};
q{iy=p(i}/{e+np);
end
end

disp('Update weights for 2 iterations’');

while (it<=2}

wt {(J}={alpha*d*u(J}s+1+ (alpha*d} *wt (J);
wb(J)=(alpha*d*u(J))+1l+{alpha*d} *wb(J};

wt

wh

for i=1:2
ulil=v{i);

plil)=u(i)+d*wt{i);
wii)=s{ij+a*u{i);
x{i)=w{il);
q{iy=pli);
vii)=fx+b*fq;

end

it=it+l;

end

12. A perceptron neural net uses a hard-limit transfer function. Plot this transfer function.

Source Code
$Plot of hard limit transfer function

x = ~4:0.1:4;

R
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Y = hardlim{x);
pPlot{x,y}

Qutpui

e Mo 1

Figure 19-28 Dlot of perceptron hard limit transfer funceion,

- per P NN 1] h it P -
13 (:l €ale a perceprro, E[\\'(Hk ust the comm Ild W llld Ob a L. CllOlllla
£ ma ne p fain s nce

Source Code
%Program to creat
€ & perceptron network 1
zet el e o Using command ‘newp’
No ., '

of epochs js given ag 4
net.trainParam.epochs = 4;
%Let define the input vecto
p=112;2) [1; -2] (-2

- t=[0101)];
%The net can be train with
neF = train(net, p, t) i
%¥Finally simulare the trained
a = sim(net,p)

rs and the target vector
i 21, 0-1; 1) ;

network for each of the inputs.

Outpuc

TRAINC, Epoch 0/4
TRAINC, Epoch 3/4
TRATNC, Performance goal met,
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Figure 19-29 Training performance for a perceptron net.

14, Wrice a MATLAB program to create a feed forward nevwork and perform Batch tmining

Source Cade

%Program to create a feed forward network and perfrom batch training

$Create a training set of inputs p and targets t.

%For batch training, all of the input vectors are placed in one matrix.

p=[-1-122;0505];

L =1f{-1-111];

%Create the feedforward network. The function minmax is used ko

¥determine the range of the inputs to be used in creating the network.

net=newff (minmax(p},[3,1), {'tansig’, 'purelin’}, 'traingd’};

$Set training parameters.

net.trainkParam.show = 50;

net.trainParam.lr = 0.05;

nekt.trainParam.epochs = 300;

net.trainParam.goal = le-5;

% Now train the network.

[net, tr)l=train(net,p,t};

% The training record tr contains information about the progress
of training.

% Now the trained network can be simulated to obtain its response
to the inputs in the

% training set.

a = sim{net,p)
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Ourput

»>> TRAINGD, Epoch 0/300, MSE 0.69466/1e-005, Gradient 2.29478/1le-010
TRAINGD, Epoch 507300, MSE 4.17837e-005/1e-005,

| 665
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Qutput

S P o1

P L

o

Gradient 0.00840093/le-010

TRAINGD, Epoch 68/300, MSE %.35073e-006/1e-005,
Gradient 0.0038652/1e-010

TRAINGD, Performance goal met.

a =
-1.0008 -0.9956 1.0053 0.9971
o Tesrane with THAINGL
Figure 19-31 Radial basis funcrion.
16. Consider a surface described by z = sin{x}cos(y) defined on a square ~3<x<3-3<y=<3
» Plor the surface 7 as a funcrion of x and . ]
i * Design a neural network which will fit the dam. You should stud)’ different alternarives and test the
final n:sult by studying the fiting error.
Source Code
" tGenerate data
Figure 19-30 Training performance of a feed-forward network. x = -3:0.25:3
. y = -3:0.25:3
. . z = sin(x)’*cosly)
15. A radial basis nerwork is a nerwork with twa layers. It consists of a hidden layer of radial basis neurons surf(x,y,2)
and an output layer of linear neurons. Plor a radial basis function. xlabel(’'x axis');
Source Code

ylabel('y axis )

%Plot of radial basis function zlabel{’'z axis'};

title{’surface z = sin(x)cos{y)’}):
ae %Store data in input matrix P and output vector T
L ' P = [x;¥);
= -5:;.1:5; vl |
: 25, 25 in
y = radbastx): %Set small number of neurons in the first layer, say
plot{x, vy}

sthe output.
gInjitialize the network
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taining with FHATH

net=newff([-3 3; ~3 3], [25 25], {'tansig’ 'purelin’}, 'trainlm’};
$Apply Levenbérg—Marquardt algorithm
§Define parameters
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = le-3;
$Train network
netl = train{net,P,T);

= sim{netl,P};

surf(x,y,a)

Curput
TRAINLM, Epoch 0/300, MSE 6.57445/0.001, Gradient 1010.2/1e-010
TRAINLM, Epoch 47300, MSE 0.000424834/D.001, Gradient 10.0448/1e-010
TRAINLM, Performance goal met.

B

Figure 19-32 Surface for z = sin{x) cos(y}. ﬁwm1iﬂ Surface of {x, y, a).



668 .
MATLAB Environment for Soft Computing Techniques 110.8 Fuzzy Logic MATLAB Source Codes ) 669
17. Find a neural neework model, which produces the same behavior as Van der Pol equarion: id
: 2 i gri
x+ (”2 ~Dr+x=0 $plot of training vectors
(P . . < = Lt’;
Solution: The given Van der Pol equation can be represented in state space form as T ; - Xt
b = i
n=m(l-4)-xn - F plot (B, T,'+') ‘
i 1 B title(’'Training Vectors']:
n=x : xlabel (* Input Vector B');
Here various initi . . . t ylabel (' Target Vector T'):
given as initial funcrions can be used. On applying vector notations, the above state space form is - % Define the learning algorithm parameters- a feed forward
[~ network chosen
x=F ' net=newff ({0 20], 110,21, {’tansig’, ‘purelin’}, 'trainlm’};
. ) 4Define parameters
where ¥ net.trainParam.show = 100;
- net.trainParam.lr = 0.05;
x= ]:’-'1 and fix) = Alex)] _ =l -2 —x i net.trainParam,epochs = 500;
*1 (120 |~ x1 ‘ net.trainParam.goal = le-3;
g ' $Train network
F . .
or building this Van der Pol model, Simulink is used. netl = train(net, P, T};
Source Cade
The simulink model for Van der Pol equation is shown in Figure 19-35. ‘ Qutput
TRAINLM, Epoch 0/500, MSE 6. 81368/0.001, Gradient 408. 177/1e-010
. TRAINLM, Epoch 100/500, MSE 0.0208633/0.001, Gradient 0. 112283/1e-010
X - TRAINLM, Epoch 200/500, MSE 0.0208277/0.001, Gradient 0.00613187/1e-010
Producti i TRAINIM, Epoch 300/500, MSE 0.0208226/0.001, Gradient 0.0603704/1e-010
‘ TRAINLM, Epoch 400/500, MSE 0.0208181/0.001, Gradient 1.62252/1e-010
! TRAINLM, Epoch 500/500, MSE 0. 0208168/0.001, Gradient 0. 0403124/1e-010
1 y ' TRAINLM, Maximum epoch reached, performance goal was not met .
X N 3 > simout j " ¢ X
‘Consta — ! The states of the Van der Pol equation are plorted as funcrion of time as shown in Figure 19-36.
& Product tntegrator Integratort To workspace ; The training vccto:s are show‘:\qin F?gureelg-ﬁ g
The convergence has not occurred {performance goal not mer), since network structure is simple. As
: 2 resulr, by modifying its structure, perform further iterarions to achieve the performance goal.
= simoutt i Figure 19-38 shows the tiaining performance.
To workspace i
Figure 19-35 Simulink model for Van der Pof equation. I’ I 19.8 Fuzzy Logic MATLAB Source Codes
% . . } 1. Write a MATLAB program to implement fuzzy set operation and properties
N Dﬁflne the simulation parameters for Van der Pol equation Source Code
The period of simulaktion: tfinal = 15 . .
tfinal = 15; seconds; %Program for fuzzy set with properties and cperations
% Solve Van der pPol differential eguation clear all;
[t,x]=sim{ vandpol‘,tfinal); 1 cle;
% Plot the states as function of time i disp('Fuzzy set with properties and operation’};
plot(t,x) . a={0 1 0.5 0.4 0.6];
xlabel('time (secs)’}; b=[0 0.5 0.7 0.8 0.4];
ylabel{'xl q_nd X2 - states’); c=[0.3 0.9 0.2 0 11;
title(’van Dex Pol Equation’); phi={0 0 0 0 0):

disp(‘'Union of a and b');
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Figure 19-36 Plot of states vs time (Van der Pol equation).

-} Figue Mo. 1

Figure 19-37 Plor of training vectors.

671

Figure 19-38 Training performance {goal not mec)-

au=max{a.b}

displ'Intersection of a and b’);
iab=min(a,bl

disp!(’Union of b and a‘');
bu=max{b,a)

if (au==hu)
disp{ Commutative law is satisfied):
else

disp (' Commutative law is not satisfied’});
end
disp(‘'Union of b and c’);
cu=max (b, c)
disp{'a U (b U c));
acu=max(a,cu)
disp( {a U Dbl U c)');
anc=max (au, ¢}
if (acu==auc)

disp{’Associative law is satisifed’);
else

displ‘Associative law is not satisfied'}:
end §
disp('intersection of b and ¢'};
ibe=min(b, c)
disp('a U (b I c)’ )
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dml=max{ca,ch}
if (dml==ciab) o
disp{’Demorgans law is satisfied’};

dls=max(a,ibc)
disp('Union of a and c’};
vac=max{a,c)

else
disp{'{a Ub} I {(a Uc)}; disp('Demorgans law is not satisfie@f);
drs=min{au,uac) end ’
if (dls==drs} disp(’Complement of complement of a'};
disp({‘Distributive law is satisfied}; for i=1:5
else cca(i)=l-calii);
disp{‘distributive law is not satisfied’); " end
end 3 cca
disp{'a U a'); 9 -
idl=max(a,a) - if (a==cca)
a 5 disp(’'Involuticn law is satisified’);
if (idl==a) _ - else
disp{’Idempotency law is satisfied’); [ disp (' Tnvolution law is not satisfied’):
else end
Encdhs:.p( Idempotency law is not satsified’): 2. Write 2 program to implement composition of Fuzzy and Crisp relations
disp(‘a U phi’); : Source Code .
idtl=max(a,phi) . f¥program for composition on Fuzzy and Crisp relations
a l clear all;
if (idtl==a) cle;
disp(‘Identity law is satisfied’); disp('Composition on Crisp relation’);
else a=[0.2 0.6]
disp(’Identity law is not satisfied’); b={0.3 0.5]
end c=(0.6 0.7]
disp(’a T phi‘}; for 4=1:2
idt_:l=rnin(a,phi) riil=a(i)*b(i);
phi s(i)=b(i)*c(i);
if (idtl==phi) end
disp(’Identity law is satisfied’); r
else <
displ’Identity law is not satisfied’); irs=min{r,s) . ] omposition’):
end disp(’Crisp - Composition of r and s using max-min ©
disp{’'Complement of faIbj'); crs=max{irs)
for i=1:5 for i:1:2
ciab(i):l-iab(i}; preii)=r(ii*s(i};
end end
ciab N
dispf'Complement of a); EEZp('Crisp _ Composition of r and 5 using max-product camposition bi
for 1?1:5 mprs=max{prs)
;ﬂﬂl):l—a(i); ! disp(’Fuzzy Composition’):
en ; P i
ca ; E;ZSI?;Z;Z;SE Composition of r and s using max-min composition’);
disp(’Complement of b‘); i frs=max (Firs)
for i=1:5 for {i=1:2
cb(i)=1-b{i}; fprs(i)=r{i)*s(i):
end end
c? ) fprs
disp(‘a Complement U b Complient*);
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disp(’Fuzzy - Composition of r and s using max-product composition’);

SourceCode
fmprs=max (fprs)

% Program to check whether the given relation is tolerance relatlon

ot
3. Consider the following fuzzy sets p:ft]:p::t('entﬂr the relation’})
1 04 06 03 sum=0;
A= 5+?+—4—+-'5— suml=0;
03 02 06 05 [mni=stze ()
B=]"4+ =3 =4 == if (m==n)
{2 3+4+5] for i=i:m
- - if({p(1,1)==p{i, i)}
Calculate, AU B, AN B, A, Bby a MATLAB program. clse

Source Code fprintf(’ the given relation is irrelexive and '};

%Program to find union,- intersection and complement of fuzzys sets

sumi=1;
% Enter the two Fuzzy sets break;
u=input ('enter the first Euzzy set A'}; end

v=input(‘enter the second fuzzy set B');
disp('Union of A and B');

w=max (u, v)

disp(’'Intersection of A and B'};

end
if(suml ~= 1) . ) ] .
fprintf(’the given relation is reflexive and )

. end
p=m1nl(u,v) y for isl:m
I |
spl’Complement of AT)i if{p(i,§)==p(j,i))
gl=ones (m) -u i
inl=size(v); 3 else try hence ');
. ’ i intf (‘not symme i
disp('Complement of B'); fpriz;- i
g2=ones(n)-v Sum=-
break;
Output end
enter the first fuzzy set All 0.4 0.6 0.3] ?nd
enter the second fuzzy set B[0.3 0.2 0.6 0.5] if (sum==1)
Union of A and B break;
w = end
1.0000 0.4000 0.6000 0.5000 end
Intersection of A and B i€ (sum~=1} .
p = fprintf (/symmetry hence )i
0.3000 0©.2000 0.6000 0.3000 end
Complement of A end

ql =
0 0.6000 0.4000 0.7000
Complement of B

if (suml~=1}

if {sum~=1) o1
fprintf(‘the given relation tolerance relation’);

! else . .
7% fonom 9w 90t fprintf (- the given relation is not tolerance relation yi
4. Find whether the following relacion is a wlerance relation or nor by writing 2 MATLAB file. end
else L
proeoo fprintf(’ the given relation is not tolerance relation Y
11000 end
R=(001 00
; Output
| H ;600111
gggi i : er.tertherelation[llOOO;l1000:00100.00011
1
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(==l = |
[« =l
oo OO
B 2o oo
H O OO

The given relation is reflexive and symmetry hance the given relation is a wolerance relation.

5. To find whether the following relation is equivalence or not using a MATLAB program.

J 087 0 013 035
087 1 046 0 098
R=|0 046 1 0 o0
013 0 0 1 054
024 098 0 054 1

Source Code

$Program to check whether the given relation
%$is an Equivalence relation or not
p=input {‘enter the matrix')
sum=0;
Suml=0;
sum2=0;
sum3=0;
[m,n]=sizelp);
l=m;
if (m==n}
for i=1:m
1f(pld, 1)==p(i,i))
else
fprintf(* the given relation is irreflexive ');
suml=1;
break;
end
end
if{suml ~= 1)
tprintf(‘ the given relation is reflexive’);

end
m;
n;
[m,n]=size(p)
for i=l:m
for j=1:n
if(pii, J)==p{5,i))
else
fprintf(* , not symmetry-);
sum=1;
break;
end
end

19.8 Fuzzy Logic MATLAB Source Codes

if {sum==1)
break;
end
end
if (sum~=1)
fprintf (¢ ,symmetry’);:

end
for i=1l:m
for j=1:n
for k=1:-1:1
lambdal=p(i,3)
lambdaz=p(j,.k);
lambda3=p{i, k) ;
g=min (lambdal, lambda2) ;
if (lambdal »>= q)
else
sum2=1;
break:
end
end
end
end

if (sum2 ~= 1}
fprintf(’ and transitivity hence ‘};
else
fprintf(‘ and not transitivity hence ‘J;
end
if (suml~=1}
if (sum~=1)
if (sum2~=1)
fprintf{' the given relation is equivalence relation’};
else
fprintf{’the given relation is not equivalence relation’);
end
else
fprintf{’not equivalence relation');
end
else .
fprintf{'not equivalence relation’};
end
end

QOutput

enter the matrix,. 0.87 0 0.13 0.35;0.87 1 0.46 0 0.98; 0 0.456 1 0
0.13 0 0 1 0.54;0.24 0.98 0 0.54 1]

p:
1.0000 0.8700 0 0.1300 0.3500
0.8700 1.0000 0.4600 0 0.9800
0 0.4600 1.0000 0 [\
0.1300 0 6 1.0000 0.5400

0.2400 0.9800 0 0.5400 1.0000

677
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The given relation is reflexive, not symmetry and not transitivity and hence not an equivalence relation.
6. Find the fuzzy relation using fuzzy max-min method for the following using MATLAB program:

0.2 0.3 04 01 1
R=|03 05 07| and S= |04 02
1 08 06 0.3.07

%Program to find a relation using Max-Min Composition
$enter the two vectors whose relation is to be find
R=input ('enter the first vector’)

S=input (‘enter the second vector’)

% find the size of two vectors

[m,n)=size(R)

[%,v)=size(S)

if{n==x)

for i=1:m

for j=1:¥y

c=R{i,:)

d=S(:,3)

f=d-

%find the minimum of two vectors

ag=min{c, f)

%find the maximum of two vectors

hii,3)=max{q);

end

end

$print the result

display('the fuzzy relation between two vectors is’);

display{h}
else
display(’'The fuzzy relation cannot be find’)
end
Outpur
enter the first vecter[0.2 0.3 0.4;0.3 0.5 0.7;1 0.8 0.6]
R =
0.2000 0.3000 0.4000
0.3000 0.5000 0.7000

1.0000 0.8000 0.6000
enter the second vector[0.1 1;0.4 0.2;0.3 0.7]

8 =
0.1000 1.0000
0.4000 0.2000
0.3000 0.7000
ans =
the fuzzy relation between two vectors is
h =
0.3000 0.4000
0.4000 0.7000
0.4000 1.0000
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d Gaussian membership function. Given x = 0

7. Use MATLAB commands 10 display the triangular an (5 6 7} and Gaussian

w0 10 with increment of 0.1. Triangular membership Funcrion is defined berween

function is defined berween 2 and 4.

Source Code . .
$Program to depict membership functions

x={0:0.1:120}"';

= 41);
yl—gaussmf{x, [2 . .
4Plot of Gaussian membership function
plot (x,¥1)

hold ) .
sPlot of Triangular membership function

y2=trimf (x, (s 6 71):
plot (x,¥2)

Output

1 Figure K. 1

Gruzas Hemarkip
Fupeton

Triangiler Hawdenhip

Furclian

Figure 19-3% Gaussian and triangular membership funcdons.

i MATLAB program.
8. Find the fuzzy relation between Two VECIOTS R and S using max-product method by a

02 03 04 0l 1
R=103 05 07 and S=|04 02
1 05 06 03 07
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Source Code

$Program to find a relation using Max-Product Composition
$enter the two input vectors
R=input (‘enter the first vector'}
S=input{‘’enter the second veckor’)
%find the size of the two vector
[m,n)=size{R};

[x,yl=size(8);

if({n==x)

for i=1:m

for j=1:vy

c=R(i,:};

d=5¢(:,j);

{f.gl=size(c);

[h,g)=size(d);

%finding product

for 1=1:g
e(l,1)=c(l,1)*d(1,1);
end

$finding maximum

E{i,j)=max(e);

end ’

end

disp('Max-product composition relation is’);
disp(t)

else

display(’Cannot find relation using max

roduct com ition’) ;
end P position’);

. Using MATLAB program find the cnisp lambda cue st relations for fambda = 0.6, The fuzzy marrix is

given by
0.1 06 08 1
pe| 1 07 04 02
*=10 06 v os
01 05 1 09
Source code

$Lambda Cut method of defuzzification
% Enter the given relational matrix
R=input ('Enter the relational matrix’)
% Enter the lambda value
lambda=input{‘enter the lamhda value')
[m,n]=size(R};

for i=l:m

for j=1:n

1E(R({i,j)<lambda)

b{i,j)=0;
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else

b{i.j=1;

end

end

end

% output value

display(’the crisp value is*)
displqy(b)

Qurpur

Enter the relational matrix({0.1l .1 0.7 0.4 0.2;0 0.6 10.3;
0.1
R =
0.1000 0.6000 0.8000 1.0000
1.0000 0.7000 0.4000 0©.2000
0 0.6000 1.0000 0.5000
0.1000 10,5000 1.0000 0.9000

enter the lambda value 0.6

lambda =
0.6000
ans =
the crisp value is
b =
601 1 1
1 1 0 0
01 1 ©
0o 0 1 1

I 19.9 Genetic Algorithm MATLAB Source Codes

= 2 using GA, where x is ranges from 0 to 31. Perform

1. Write s MATLAB program for maximizing f (=)
5 iterations only.
Steps involved .
Step 1: Generate initial four populations of binary string with 5 bits length.
Step 2: Calculate corresponding x and fitness value (4} = 2 '
Step 3: Use the tournament selection method to generate new four populations. .
Step 4: Apply crossover operator to the new four populations and generate new populations.

Step 5: Apply mutation operator for each population.

Step 6: Repear the steps 25 for 5 iterations.

Step 7: Finally print the result.

Source Code

4program for Genetic algorithm to maximi
clear all;

ze the function £ (x} =xsquare
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clc;
%x ranges from 0 to 31 Zpower5 = 32

%five bits are enough to represent x in binary representation
n=input (‘Enter no. of population in each iteration');

nit=input (‘Enteyr no. of iterations’);
%Generate the initial population
[0ldchrom] =ini tbp(n,s)

%The popultion in binary is converted to integer

FieldD=lS;0;31;U;ﬂ;l;l)
for i=1:nig

phen=bindecod(oldchrom,FieldD,3); % phen gives the integer value

of the binary population
%obtain fitness value
sax=phen.” 2;
sumsgx=sum{sqx) ;
AvVSgA=sumsgx/n;
hsgx=max (sqx} ;
pselect=sqx./sumsqx;
sumpselect=sum(pselect);
avpselect=sumpselect/n;
hpselect:max(pselect};
%apply roulette wheel selection
FitnV=sqx;
Nsel=4;
newchrix=selrws(Fith, Nsel);
newchrom:oldchrom(newchrix,:);
$Perform Crossover
crossrate=1;

newchromc=recsp(newchrom,crossrate); tnew population after crossover

%Perform mutation

vlub=0:31;

mutrate=0.001;

newchromm:mutrandbin(newchromc,vlub,0.00l)
after mutation

disp('For iteration-y;

i

disp('Population'):

aldchrom
disp{‘X‘};
phen
disp( £{X)*};
sqx
oldchrom=newchromm ;
end
Ourpur

Enter no. of population in each iterationd
Enter no. of iterationss

At the end of fifrh iteration, the output ig

i %rew population

puling Techniquss
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For iteration
i=

S
Population
oldchrom =

0

o oo
= oo
or oo
OO
oo o

£(%)
sgx =
1
4
144
64

. i ithin the -6 <x<0.
2. Use Gatool and minimize the quadratic equation £ () = x* 4 3x + 2 within the range

Funciion Definition . -
Define the given funcrion f{x) = #* + 3% + 2 in 2 separate m-file as shown in Figure 19-4

1 '\.‘ g i # .,i;..-,._-: 32 Rt i~
T — imize adr s ation
3 %funccion to winimize la quadratic equat
function z=qudratic (x}

2= (XTX+3 4T )

Figure 19-40 M-file showing defined quadratic function.

Creation of Gatool _
0 ing “gatool” in the command prompe, the GA woolbox opens. In }:ool',) irﬁf;:\ec;si;r letﬁd
@n [ciguf and mencion the number of variables defined in the funcrion. Select be

qu

specify the other parameters as shown in Figure 19-41.
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Figure 19-41 Genetic algorithm taol for quadratic equation.
Output
The output showing the best fitness for 50 genetations is shown in Figure 19-42.
The status and results for this functions for 50 generations are shown in Figure 19-43.

Create a Gatool to maximize the function f{x1, x2) = 4x; + 5x; within the range 1-1.1.

W

Function Definition
Define the given function f{x1, 2} = 4x| + Sx2 in a separate m-file as shown in Figure 19-44.
Creation of Garool

On typing “gatool” in the command prompr, the GA roolbox opens. In tool, for fitness value type
@uwofunc and mention the number of variables defined in the function. Select best fitness and best
individual in plot and specify the other parameters as shown in Figure 19.45.
Qutput
The output for 50 generarions is as shown in Figure 19-46, The output also shows the best inidvidual,
The searus and resuls for this funceion are shown in Figure 19-47.

4. UseGataol and minimize the function f(x1, x2, x3) = —3 sin{x1) sin(x2) sin{x3)-+{— sin(5x1) sin(5x2) sin{x3)],
where 0 < xi < pi,for1 i< 3,
Function Definition

Define the given function

Fix1,x2,x3) = —5sin{x1) sin(x2) sin(x3) + [— sin(5x1) sin{5x2) sin(x3)]
in a separate m-file as shown in Figure 1948

19.0 Genetic Algorithm MATLAB Scurce Codes

et Algactinn

.
eteavstisracivnnserlitlalitace

YRV IR LEL R

1A terminated.
l¢itness function value: -0.2499560899692960

Flgure 19-43 Status and resulss.

885

E————- L
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woluncam

tFunction to be optimized
funevion z=zctuofunc (x) |
2= (4¥x TL +5%K {2)): ‘

L]
sldrs
.e

:;"'Sllltouo'

Figure 19-44 M-file showing defined function.

Figure 19-46 Ourput response (best fitness and best individual).

Gk terminated. .
IFimess funcrion value: 1,9350994539468735
lOptinization terminaved: paximum nunber of

Flgure 19-45 Genetic algorithm toel for given funcrion.

Creation of Gatool

On typing “gatocl” in the command prompt, the GA toolbox opens. In wol, for fitness value type @sinefn

and mencion the number of variables defined in the function. Select best fitness in plot and specify the ;
other paramerers as shown in Figure 19-49,

Ourpur

The output for 100 generations is as shown in Figure 19-50. Figure 19-47 Starus and results.
The status and result for this function are shown in Figure 1951



688

MATLAB Environment for Soft Computing Techniques

’ ! # function z=ginefnix)
= (~{5%ain{x (1)} *gin(x(2)) *sin(x(3})}+
(~(3in{5*x{1)} *ain(5*X(2)) *8in(x (3]} }} )}

Flgure 19-48 M-file showing defined sine function.

mess funccion valus! -5, 57458831100914L
ptinization temminated: waxisus musber of

Flgure 18-48 Genetic algorithm ool for sine equation.

b e

9.9 Genstic Algorithm MATLAB Source Codes

689

senckic algoitkm

l6A terminated.
Fitness function value: ~5,974668311008141

Figure $9-51 Status and results.
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l 19.10 Summary

In this chapter soft computing rechniques are implemented using MATLAB software. MATLAB software is
very user-friendly and enables the user to simulate the jdeas of soft compuring for their applications. This

chapter provides an overview of the various commands 2and GUI module involved in MATLAB for neural
nerworks, furzy logic and GA approaches. The source codes developed using these commands and GUI
toolbox for the soft computing techniques have also been included for the ready refererice of the reader.

l 19.11 Exercise Problems

1. Implement the AND funciion using perceptron
nerwork using a MATLAB program.

2. Write a MATLAB program to apply back 11
propagation nerwork for a pattern recognition
problem.

3. Implement OR function with bipolar inpues 12
and rargets with a MADALINE neural net.

4. Wrire a program to create an ART 1 nerwork to
clustér 7 input units and 3 cluster units.

10. Minimize Rastrigin’s function using MATLAB
GUI GA roolbox.
. Given a polynomial equation of the form f{x) =

4¢* + 32 + 22 + x + 7, find its roors using
GA approach.

. Consider a hyperbolic tangent function. Max-
imize it within the range 0<x<22/7. Apply
owo-point crossover and tournament selection
process, Construct a GA GUI roolbox.

5. Develop a Kohonen self-organizing fearure map 13- Find the roots of the quadratic equarion using

for a image recognition problem. genetic algorithm, The quadratic equation is

Fl) = 6x* 4 5x+ 3.
. Find the seolution of the functien f{x) =

sin{7x x) + 10 with the constraint =3 <x < 3

6. Write a program to implement various opera-
tions of fuzzy sets. 14

7. Implement the properties of fuzzy sets using an

m-file by using genetic algorichm and MATLAB pro-
’ gramming,
8. Develop an m-file to perform compositional . e, .
T : 15. Write a program to minimize “cosine” funcrion.
operations in fuzzy relations.
9. Maximize Rosenbrock’s function using a
MATLAB program.

|
|
i
!
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